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ABSTRACT

Marginal entropy can be used as cost function for blind
source separation (BSS). Recently, some authors have
experimentally shown that such information-theoretic
cost function may have spurious minima in specific sit-
uations. Hence, one could face spurious solutions of the
BSS problem even if the mixture model is known, ex-
actly as when using the maximum-likelihood criterion.
Intuitive justifications of the spurious minima have been
proposed, when the sources have multimodal densities.

This paper aims to give mathematical arguments,
complementary to existing simulation results, to explain
the existence of such minima. This is done by first de-
riving a specific entropy estimator. Then, this estima-
tor, although reliable only for multimodal sources with
small-overlapping Gaussian modes, allows one to show
that spurious minima may exist when dealing with such
sources.

1. INTRODUCTION

In [1, 2], the output marginal entropy (also called Shan-
non’s entropy) is used as cost function to develop a de-
flation approach to blind source separation (BSS). Shan-
non’s entropy of a random variable U is defined by [3]

H(U) = −
∫

ΩU

pU (ξ) log pU (ξ)dξ , (1)

where ΩU and pU denote the support and the probability
density function (pdf) of U , respectively. In this paper,
the basis of the logarithm is taken equal to 2.

Under the common independent component analy-
sis (ICA) assumptions, globally minimizing the entropy
of a unit-variance instantaneous linear mixture yi of n
independent sources s1, . . . , sn leads to recovering the
lowest entropic source [2]. The entropy of an output yi
can be rewritten as

H(yi) = H




∑

j

ci(j)sj



 s.t. 1 ≤ i, j,≤ n , (2)

where ci denotes the i-th row of the transfer matrix.
The marginal entropy is an interesting alternative

to mutual information, since according to (1), it only
requires a one-dimensional density estimation. When
using (2) as ICA cost function, a pre-whitening step
may be used. Hence, if we constrain the output signal to
be whitened, the unmixing matrix must be orthogonal:
it must lay on the Stiefel manifold [4]. This manifold
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is the n(n− 1)/2 dimensional subspace spanned by the
orthogonal matrices in the whole n×n dimensional space
of the square matrices.

One must distinguish two kinds of entropy minima.
The non-mixing ones refer to H(yi) local minima in
which |ci| (the vector composed of the absolute value
of ci’s entries) is equal to a row of In (the n×n identity
matrix). On the contrary, the mixing ones correspond
to entropy minima for which at least two entries of ci
are non-zero. In the source extraction application, all
non-mixing minima of H(yi) are satisfactory solutions.
By contrast, all mixing minima, if they exist, are spuri-
ous. Recently, several results have shown that in some
cases, H(yi) has mixing minima (see [1] and references
therein). The existence of such minima, appearing when
dealing with multimodal sources, has been understood
by looking to the modality of the output distribution,
which is a function of the mixture weights. Neverthe-
less, the link between modality and entropy was only
justified by intuitive considerations, and not by mathe-
matical arguments.

The aim of this paper is twofold. First, we derive an
entropy estimator for variable having multimodal distri-
bution with small overlap between the modes. Second,
this estimator is applied to present mathematical argu-
ments showing that spurious minima in the marginal
entropy cost function may exist. The paper is orga-
nized as follows. After some definitions, the entropy
approximator is derived in Section 2: a simple example
shows its efficiency to estimate the entropy of a vari-
able having a distribution with several non-overlapping
Gaussian modes (NOGM). For such variables, the esti-
mator is used to link modality and entropy. Next, in
Section 4, we focus on the n = 2 BSS application: two
sources with distributions having two NOGM are pre-
sented. The entropy estimator is then applied to com-
pare H(ci(1)s1 + ci(2)s2) for various ci, and indicates
that spurious minima exist.

2. SEPARABLE MULTI-NORMAL PDF
Consider the normal pdf K(x, µ, σ) of a random Gaus-
sian variable with mean µ and standard deviation σ:

K(x, µ, σ) = 1√
2πσ

e
−(x−µ)2

2σ2 . (3)

In the next subsections, we shall define the concepts
of multi-normality and separability of probability den-
sity functions.

2.1 K-normal Density
The pdf of the random variable U is said to beK-normal
if pU has K normal modes, i.e. if
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pU (x) =
K∑

i=1

γiK(x, µi, σi) , (4)

where γi are positive scaling factors ensuring that pU
integrates to one (

∑K
i=1 γi = 1). It is further assumed

that µi 6= µj if i 6= j, and that µ1 < µ2 < . . . < µK ,
without loss of generality.

2.2 Separability

The support of a one-dimensional Gaussian variable is
R. However, one can define a finite approximation Ωi

of this support. Indeed, the contribution of K(x, µi, σi)
‘far from the mean’ is negligible, and if the support Ωi

is centered on the mean and large enough, we have
∫

Ωi

K(x, µi, σi) / 1 . (5)

In the following, a random variable U is said to be
K-normal separable if the support of its pdf pU can be
approximated by the union of K finite disjoint intervals
Ωi, i.e. if for all 1 ≤ i ≤ K we have

∫

Ωi

pU (u)du ' γi

∫

Ωi

K(x, µi, σi) ' γi . (6)

3. ENTROPY OF A SEPARABLE
MULTI-NORMAL DENSITY

3.1 Entropy estimator

If pU is a K-normal separable distribution, we have:

H(U) = −
∫ +∞

−∞

K∑

i=1

γiK(x, µi, σi) log
{ K∑

i=1

γiK(x, µi, σi)
}

(a)' −
K∑

j=1

∫

Ωj

K∑

i=1

γiK(x, µi, σi) log
{ K∑

i=1

γiK(x, µi, σi)
}

(b)
= −

K∑

i=1

γi

∫

Ωi

K(x, µi, σi) log γiK(x, µi, σi)

= −
K∑

i=1

γi

∫

Ωi

K(x, µi, σi)
{

log γi + logK(x, µi, σi)
}

(c)' −
K∑

i=1

γi

{

log γi +

∫

Ωi

K(x, µi, σi) logK(x, µi, σi)
}

(d)' −
K∑

i=1

γi

{

log γi +

∫

R

K(x, µi, σi) logK(x, µi, σi)
︸ ︷︷ ︸

=−H(Gi)

}

=

K∑

i=1

γiH(Gi)−
K∑

i=1

γi log γi

︸ ︷︷ ︸

,−Hγ

. (7)

In the previous development, (a) results from the
fact that far from the µi’s, pU ' 0 since pU is separa-
ble and 0 log 0 = 0 by convention. Relation (b) comes
from the separability of pU : in Ωi, we can neglect the
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Figure 1: 3-normal separable pdf.

contribution of the K(x, µj , σj) modes with respect to
the K(x, µi, σi) one, if i 6= j. In other words, in Ωi, pU
is mainly determined by the ith mode. If Ωi is large
enough, then (6) holds, leading to (c) and (d).

In equation (7), H(Gi) is the entropy of a Gaussian
variable Gi with E{Gi} = µi and E{Gi}2 − E{G2i } =
σ2i :

H(Gi) = log
√
2π e + log σi . (8)

Hence, when approximation (7) holds, we will use
the following approximation of a multi-normal separable
random variable entropy:

Ĥ(U) , log
√
2π e +

K∑

i=1

γi log σi +Hγ . (9)

The relative error ρ(U) resulting from the above ap-
proximation is defined by

ρ(U) ,

∣
∣
∣
∣
∣

H(U)− Ĥ(U)

H(U)

∣
∣
∣
∣
∣
. (10)

3.2 Example

In order to prove the efficiency of this estimator on
multi-normal separable variable, H(U) is compared to

Ĥ(U) on the distribution given in Figure 1. We can as-
sume that pU is separable, according to the definition
given in Section 2. The parameters of this 3-normal pdf
are:

{
µ = [−5, 0, 6]
σ = [2/5, 1, 2/5]
γ = [1/6, 1/2, 1/3]

. (11)

In order to evaluateH(U), the integral in the entropy
definition is replaced by a Riemanian sum: H(U) =
−∑

ui
pU (ui) log pU (ui), where ui ranges from -10 to 10

by increasing steps of 5.10−3. The approximation Ĥ(U)
has been computed through (11) and (9). In this exam-
ple, we find ρ(U) = 0.02%, which confirms the validity
of approximator (9) for K-normal separable pdf.
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i µ1(si) µ2(si) γ1(si) γ2(si) σ1(si) = σ2(si)
1 -0.995 0.995 1/2 1/2 0.1
2 -0.81 1.22 3/5 2/5 0.1

Table 1: Parameters of two bimodal pdf.

4. ORTHOGONAL CONSTRAINT AND
STIEFEL MANIFOLD

Let us focus on the simple case where two whitened
sources have to be separated from two whitened mix-
tures. The system can be rewritten as :

[

y1
y2

]

=

[

sin θ cos θ
− cos θ sin θ

]

︸ ︷︷ ︸

Cθ

.

[

s1
s2

]

. (12)

Note that since the whiteness property is invariant to
any orthogonal transformation, we have that the output
signals are whitened.

The set of Cθ matrices forms a 1-D Stiefel manifold
in the R

4-space, since CθC
T
θ = I2 and θ is its only degree

of freedom.
In the following, we will focus on the extraction of y1

(the other source is known once θ is known). For clarity,
we will adopt the following notation:

Zθ , y1 = sin θs1 + cos θs2 . (13)

Since both sources can be recovered for a specific θ ∈
[0, π/2], θ is constrained to be in the first quadrant,
without loss of generality. In the next section, it is
proven that H(Zθ) may have mixing minima (i.e. for
θ /∈ {0, π/2}), when s1 and s2 have specific probability
density functions.

5. SPURIOUS MINIMA IN THE OUTPUT
MARGINAL ENTROPY

Consider the bimodal separable pdf with parameters
given in Table 1. They correspond to mutually inde-
pendent zero-mean unit-variance source signals.

The entropies of these signal are: H(s1) = −0.27
and H(s2) = −0.30. Using the entropy estimator given
by (9), we have ρ(s1), ρ(s2) < 10−12.

Let us remark that the number of modes of pZθ
varies with θ, as is illustrated in Figure 2. Further-
more, for several θ, the modes of pZθ are Gaussian-shape
with small overlap; i.e. pZθ is multi-normal separable.
This is due to convolution properties of Gaussian func-
tions. With a slight abuse of notation, let us denote by
µi(θ), γi(θ) and σi(θ) the parameters of the i-th mode of
the output pdf pZθ (i.e. its mean, weight and variance).

The µi(θ), γi(θ) and σi(θ) parameters can be com-
puted. For instance, the trimodal case is obtained for

θ2 , arctan µ2(s2)−µ1(s2)
µ2(s1)−µ1(s1)

(γ1(θ2) = 0.3, γ2(θ2) = 0.5,

γ3(θ2) = 0.2 and σ1,2,3(θ2) = 0.1), and it also exists two
angles, noted θ1 and θ3, for which pZθ is four-modal
separable and such that 0 < θ1 < θ2 < θ3 < π/2.
For example, we can take θ3 = 13π

36 and we have
γ1(θ3) = γ3(θ3) = 0.3, γ2(θ3) = γ4(θ3) = 0.2 and
σ1,2,3,4(θ3) = 0.1 (see Figure 2). On the other hand,
we can choose θ1 = π/2− θ3 (σi(θ1) and γi(θ1) are the

same as σi(θ3) and γi(θ3), except that the values of γ2(.)
and γ3(.) have to be permuted). Note that the mean of
the modes do not matter as soon as the modes have a
negligible overlap.

The key point is that Ĥ(Z0 = s2) < Ĥ(Zπ/2 = s1) <

Ĥ(Zθ2) < Ĥ(Zθ1) ' Ĥ(Zθ3). Indeed, Ĥ(Zθ2) = 0.21

while Ĥ(Zθ1) = 0.70. In addition, pZθ is multi-normal
separable for θ ∈ {0, θ1, θ2, θ3, π/2} and therefore, ac-
cording to Section 3.2, the approximator (9) is valid: we

must have H(Zθ) ' Ĥ(Zθ). As a consequence, H(Zθ)
must have a mixing minimum for θ in (θ1, θ3). This
result can be observed in Figure 3 where H(Zθ) is plot-
ted w.r.t. θ in the first quadrant. Note that pZθ has
been computed by convoluting psin θs1 and pcos θs2 . By
doing so, H(Zθ) cannot be numerically evaluated with
a high precision for θ ' kπ/2; this is why H(Zθ) is
plotted for θ ∈ [ε, π/2 − ε], where ε is a small positive
number. Nevertheless, it is obvious that one must have
H(Zθ)→ H(Zkπ/2) when θ → kπ/2.

6. CONCLUSION

In this paper, the concept of separability of a multi-
normal density is presented. A simple approximator is
derived to estimate the entropy of a variable having such
density. Next, we have focused on the separation of two
sources having bimodal densities. The Gaussian mode
variances of the two pdf have been chosen small enough
with respect to the intermodal distance. The major con-
sequence of that choice is that the whitened mixture of
these sources may have 2, 3 or 4 Gaussian modes, de-
pending on the mixture coefficients. Then, the estima-
tor has been used to estimate the entropy of the output
signal, when the mixture weights are such that the out-
put density is separable (i.e. for densities for which the
estimator is valid). Mathematical results show that in
the analyzed case, the marginal entropic contrast has
mixing minima under the whitening constraint.

The existence of spurious minima in the entropy cost
function for source separation should be taken into ac-
count in all gradient-based algorithms that rely on this
criterion; otherwise, spurious solutions to the BSS prob-
lem could be obtained. In a more general framework, the
above results can be used to estimate the entropy of a
linear mixture of multi-normal separable sources when
the mixture weights are such that the mixture pdf is
also multi-normal separable.
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Figure 2: PDF pZθ for several values of θ ∈ [0, π/2].
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