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Abstract
The analysis of financial time series is of primary importance in the economic world.

This paper deals with a data-driven empirical analysis of financial time series. The goal
is to obtain insights into the dynamics of series and out-of-sample forecasting.

In this paper we present a forecasting method based on an empirical functional anal-
ysis of the past of series.

An originality of this method is that it does not make the assumption that a single
model is able to capture the dynamics of the whole series. On the contrary, it splits
the past of the series into clusters, and generates a specific local neural model for each
of them. The local models are then combined in a probabilistic way, according to the
distribution of the series in the past.

This forecasting method can be applied to any time series forecasting problem, but is
particularly suited for data showing nonlinear dependencies, cluster effects and observed
at irregularly and randomly spaced times like high-frequency financial time series do. One
way to overcome the irregular and random sampling of "tick-data" is to resample them
at low-frequency, as it is done with "Intraday". However, even with optimal resampling
using say five minute returns when transactions are recorded every second, a vast amount
of data is discarded, in contradiction to basic statistical principles. Thus modelling the
noise and using all the data is a better solution, even if one misspecifies the noise distri-
bution.

The method is applied to the forecasting of financial time series of «tick data» of assets
on a short horizon in order to be useful for speculators



1 Introduction
The analysis of financial time series is of primary importance in the economic world. This
paper deals with a data-driven empirical analysis of financial time series, the goal is to
obtain insights into the dynamics of series and out-of-sample forecasting.

Forecasting future returns on assets is of obvious interest in empirical finance. If one
were able to forecast tomorrow’s returns on an asset with some degree of precision, one
could use this information in an investment today. Unfortunately, we are seldom able to
generate a very accurate prediction for asset returns.

Financial time series display typical nonlinear characteristics, it exists clusters within
which returns and volatility display specific dynamic behavior. For this reason, we con-
sider here nonlinear forecasting models, based on local analysis into clusters. Although
financial theory does not provide many motivations for nonlinear models, analyzing data
by nonlinear tools seems to be appropriate, and is at least as much informative as an
analysis by more restrictive linear methods.

Time series of asset returns can be characterized as serial dependent. This is revealed
by the presence of positive autocorrelation in squared returns, and sometimes in the re-
turns too. The increased importance played by risk and uncertainty considerations in
modern economic theory, has necessitated the development of new econometric time se-
ries techniques that allow for modelling of time varying means, variances and covariances.

Given the apparent lack of any structural dynamic economic theory explaining the
variation in the second moment, econometricians have thus extended traditional time se-
ries tools such as AutoRegressive Moving Average (ARMA) models (Box and Jenkins,
1970) for the conditional means and equivalent models for the conditional variance. In-
deed, the dynamics observed in the dispersion is clearly the dominating feature in the
data. The most widespread modelling approach to capture these properties is to spec-
ify a dynamic model for the conditional means and the conditional variance, such as an
ARMA-GARCH model or one of its various extensions (Engle, 1982), (Hamilton, 1994).

The Gaussian random walk paradigm - under the form of the diffusion geometric
Wiener process - is the core of modelling of financial time series. Its robustness mostly
suffices to keep it as the best foundation for any development in financial modelling, in
addition to the fact that, in the long run, and with enough spaced out data, it is almost
verified by the facts. Failures in its application are however well admitted on the (very)
short term (market microstructure) (Fama, 1991), (Olsen and Dacorogna, 1992), (Franke
et al., 2002). We claim that, to some extent, such failures are actually caused by the
uniqueness of the modelling process.

The first breach in such a unique process has appeared with two-regime or switching
processes (Diebold et al., 1994), which recognize that a return process could be originated
by two different stochastic differential equations. But in such a case, the switch is gov-
erned by an exogenous cause (for example in the case of exchange rates, the occurrence
of a central bank decision to modify its leading interest rate or to organize a huge buying
or selling of its currency through major banks) .



Market practitioners (Engle, 1982), however, have always observed that financial mar-
kets can follow different behaviors over time, such as overreaction, mean reversion, etc,
which look like succeeding each other with the passing of the time. Such observations
would justify a rather fundamental divergence from the classic modelling foundations.
That is, financial markets should not be modeled by a single process, but rather by a suc-
cession of different processes, even in absence of the exogenous causes retained by existing
switching process. Such a multiple switching process should imply, first, the determina-
tion of a limited number of competitive sub-processes, and secondly, the identification of
the factor(s) causing the switch from one to another sub-processes. The resulting model
should not be Markovian, and, without doubt, would be hard to determine.

The aim of this paper is, as a first step, to at least empirically verify, with the help
of functional clustering and neural networks, that a multiple switching process leads to
better short term forecasting.

In this paper we present a forecasting method based on an empirical functional anal-
ysis of the past of series. An originality of this method is that it does not make the
assumption that a single model is able to capture the dynamics of the whole series. On
the contrary, it splits the past of the series into clusters, and generates a specific local
neural model for each of them. The local models are then combined in a probabilistic
way, according to the distribution of the series in the past.

This forecasting method can be applied to any time series forecasting problem, but is
particularly suited for data showing nonlinear dependencies, cluster effects and observed
at irregularly and randomly spaced times like high-frequency financial time series do.

One way to overcome the irregular and random sampling of "tick-data" is to resam-
ple them at low frequency, as it is done with "Intraday". However, even with optimal
resampling using say five minute returns when transactions are recorded every second,
a vast amount of data is discarded, in contradiction to basic statistical principles. Thus
modelling the noise and using all the data is a better solution, even if one misspecifies
the noise distribution (Ait-Sahalia and Myland, 2003). And, one way to get to this goal
is by using Functional Analysis as done in this paper.

Further in this paper, we first describe how Functional Analysis can be applied to
time series data (section 2), and briefly introduce the Radial-Basis Functions Networks
we use as nonlinear models (section 3). Then, we describe the forecasting method itself
(section 4), and illustrate its results on the IBM series of "tick data" (section 5).

2 Functional Modelling and Clustering
Our purpose is to realize the clustering of the observations into classes having homogenous
properties in order to build nonlinear local forecasting models in each class.

When the observations are sparse, irregularly spaced, or occur at different time points
for each subject, as with high-frequency financial series, standards statistical tools can
not be used because we do not have the same number of observations for each series,
and the observations are not at the same time-point. In this case it will be necessary to



represent these data by a fixed number of features. One way to get to this purpose is
to smooth the rough data by projecting them onto a functional basis, for example cubic
splines. Then, the coefficients of this projection may be used in a more standard way for
clustering purposes.

In (section 2.1) we introduce the generic problem of clustering, in (section 2.2) we
explain why we have to use this tool for high-frequency financial series, in (section 2.3)
we define the functional model we use, in (section 2.4) we build the likelihood function,
and in (section 2.5) we have the procedures to optimize the parameters .

2.1 Clustering

Cluster analysis consists in identifying groups in data; it is the dual form of discriminant
analysis but in cluster analysis the group labels are not known a priori. It is an unsuper-
vised process.

We assume that the observations {y1, · · · ,yN} are generated according to a mixture
distribution with G clusters. Let fk(y|θk) be the density distribution function corre-
sponding to cluster k, with parameters θk, and let 1{k}(i) be the cluster membership
(indicator function of cluster k) for the observation i where 1{k}(i) = 1 if yi is a member
of cluster k and 0 otherwise. The indicators are unknown and 1{k}(i) is multinomial with
parameters [π1, · · · , πG] and πk is the probability that an observation belongs to cluster k.

We can estimate the parameters by maximizing the likelihood

L(θ1, · · · , θG; π1, · · · , πG|y1, · · · ,yN) =
N∏

i=1

G∑

k=1

πk fk(yi|θk). (1)

The maximum likelihood corresponds to the most probable model, given the observations
{y1, · · · ,yN}.

Such model can be used in finite dimensional problems, but it is not appropriated to
infinite dimensional data such as curves (Hastie et al., 2001). We could get around by dis-
cretizing the time interval, but generally the resulting data vectors are highly correlated
and high-dimensional, and by resampling at low frequency we loose much information
(Ait-Sahalia and Myland, 2003).

Another approach is to project each curve onto a finite-dimensional basis φ(x), and
find the best projection of each curve onto this basis. The resulting basis coefficients
can than be used as a finite-dimensional representation making it possible to use classical
clustering methods on the basis coefficients (Ramsay, and Silverman, 1997).

These approaches can work well when every curve has been observed over the same
fine grid of points, but they break down if the individual curves are sparsely sampled.
The variance of the estimated basis coefficients is different for each individual because
the curves are measured at different time points. And for sparse data sets many of the
basis coefficients would have infinite variance, making it impossible to produce reasonable
estimates.



In this case, we convert the original infinite dimensional problem into a finite dimen-
sional one using basic functions and we use a random effects model for the coefficients
(Rice 2001).

2.2 Modelling functional data

Modern financial data sets may contain tens of thousands of transactions per day stamped
to the nearest second. The analysis of these data are complicated due to stochastic tem-
poral spacing, diurnal patterns, prices discreteness, and complex temporal dependence.

Let data coming from an interval [t0 · · · tN ]. If we use very liquid series, like stocks,
with observations onto the whole interval of time, we could realize the smoothing by
splines and afterwards the clustering from the spline coefficients, in two separate steps.
If we don’t have enough data near the limits t0 or tN of the interval, the smoothing by
splines will not be fine at these limits, we will have many outliers and the clustering will be
very poor. If we use poorly liquid data with large fragment of curve without observations,
like options, the smoothing could be very chaotic. In those cases we have to realize the
smoothing of the observations and the clustering in the same iterative steps.

Thus, when the observations are sparse, irregularly spaced, or occur at different time
points for each subject and moreover when only fragments of the function are available,
with the Linear Discriminant Analysis (LDA), many of the basis coefficients would have
infinite variance, making it impossible to produce reasonable estimates (Gareth et al.,
2000), and similar problem arise with the clustering methods. In this case, we will use
a random effects model for the coefficients and we will realize, in the same step, the
estimation of the splines coefficients and the clustering (Gareth and Sugar, 2003).

2.3 Functional Clustering

We will use basis functions in order to convert the original infinite dimensional problem
into a finite dimensional one, but instead of treating the basis coefficients as parameters
and fitting a separate spline for each individual, we will use a random effects model for the
coefficients. This procedure borrows ’information’ across curves and produces far better
results no matter how sparsely or irregularly the individual curves are sampled, provided
that the total number of observations is large enough. Moreover, it automatically weights
the estimated spline coefficients according to their variances, which is highly efficient
because it requires fitting few parameters, and it can be used to produce estimates of
individual curves that are optimal in terms of mean square errors.

Let gi(t) the true value for the curve i at time t and gi , yi and εi the vectors of true
values, measurements and errors at times ti1, ti2, · · · , tini

We have got :

yi = gi + εi, i = 1, · · · , N , (2)

where N is the number of curves. The errors are assumed to have mean zero and uncor-
related with each other and with gi.
Let :

gi =
(
gi(t1), · · · , gi(tj), · · · , gi(tni

)
)T

,

yi =
(
yi(t1), · · · , yi(tj), · · · , yi(tni

)
)T

,



εi =
(
εi(t1), · · · , εi(tj), · · · , εi(tni

)
)T

,

where tj is the time-point for the observation j and ni is the number of observations for
the curve i.
For the true values gi , we use a functional basis for their representation, and we have :

gi(t) = sT (t) ηi , (3)

where s(t) is the spline basis vector with q dimensions, and ηi is a vector of spline coeffi-
cients, (ηi is a Gaussian random variable). Let :

s(t) =
(
s1(t), · · · , sq(t)

)T

,

ηi =
(
ηi1, · · · , ηiq

)T

,

If we used a "power cubic spline" with 1 knot, then q = 5 and we would have :

s(t) =
(
s1(t), · · · , s5(t)

)T

,

with : s1(t) = 1, s2(t) = t, s3(t) = t2, s4(t) = t3, s5(t) = (t− τ)3
+, where τ is the knot.

For the Gaussian coefficients ηi we have :

ηi = µzi
+ γi , γ ∼ N(0,Γ) , (4)

where zi denotes the unknown cluster membership for the curve i, and it will be treated
as missing data,

zki =

{
1 if curve i belongs to cluster k,

0 otherwise,

then we have :
P

(
zki = 1

)
= πk|i ,

µzi
=

(
µi1zi

, · · · , µiqzi

)T

,

µzi
=

{
(µ(1))

zi1 · · · (µ(k))
zik · · · (µ(G))

ziG
}

,

γi =
(
γi1, · · · , γiq

)T

.

We have split ηi into two terms, µzi
represents the centroid of the cluster and γi represents

the curve in its cluster. Also in the same way, we can represent the centroid of the cluster
from the global mean of the population by :

µk = λ0 + Λαk , (5)

where λ0 is a (q, 1) vector, and αk (h, 1), Λ is (q, h) matrix, with h ≤ min(q,G− 1).

λ0 =
(
λ01, · · · , λ0q

)T

,

αk =
(
αk1, · · · , αkh

)T

,



Λ =




Γ11 · · · Γ1h
... . . . ...

Γp1 · · · Γqh


 ,

With this formulation, the functional clustering model can be written as :

yi = Si(λ0 + Λαzi
+ γi) + εi , i = 1, · · · , N , (6)

εi ∼ N(0,R) , γi,∼ N(0,Γ) ,

where Si =
[
s(ti1), · · · , s(tini

)
]T

is the splines basis matrix for the individual i.

Si =




s1(t1) · · · sq(t1)
... . . . ...

s1(tni
) · · · sq(tni

)


 ,

αzi
=

{
(α(1))

zi1 · · · (α(k))
zik · · · (α(G))

ziG
}

,

but λ0, αk, and Λ could be confounded if no constraints were imposed : Hastie et al.
(2001), Therefore we require that :

∑

k

αk = 0 , (7)

that means that s(t)T λ0 may be interpreted as the overall mean curve, and

ΛTSTΣ−1SΛ = I , (8)

with :
Σ = σ2I + SΓST ,

where S is the splines basis matrix on a fine grid of time points over the full range of the
data, and we will put R = σ2I, and with Γ the same for every cluster.

Then we have :

• s(t)T λ0 the representation of the global mean curve,

• s(t)T (λ0 + Λαk) the global representation of the centroid of cluster k,

• s(t)TΛαk the local representation of the centroid of cluster k in connection with the
global mean curve,

• s(t)T γi the local representation of the curve i in connection with the centroid of its
cluster k.



2.3.1 Example : Equations for curve i

Let the curve i with ni observations at times {ti1, ti2, · · · , tini
}, with gi(t) the unknown

true value, yi(t) the measurement, and εi(t) the measurement error, at time t, and G the
number of clusters. We have :




yi(t1)
...

yi(tni
)


 =




gi(t1)
...

gi(tni
)


 +




εi(t1)
...

εi(tni
)


 . (9)

We represent the value gi(t) at time t on a spline basis vector s(t), with q dimensions,
and ηi the random spline coefficients vector. Then we have :

gi(t) =
(
s1(t) · · · sq(t)

)



ηi1
...

ηiq


 , (10)

and an exhaustive description :



gi(t1)
...

gi(tni
)


 =




s1(t1) · · · sq(t1)
... . . . ...

s1(tni
) · · · sq(tni

)







ηi1
...

ηiq


 . (11)

We split the random spline coefficients vector ηi into a deterministic coefficients vector
µzi

if the curve i is part of the cluster k defined by the cluster membership zik = 1 and
zil = 0 for l 6= k, l = 1 · · ·G, and a random coefficients vector γi :




ηi1
...

ηiq


 =




µ1
...

µq




zi

+




γi1
...

γiq


 . (12)

We also split the deterministic spline coefficients vector µi into a deterministic coefficients
vector λ0 which represents the coefficients of the global mean curve of all curves, and Λαk

which represents the centroid coefficients of the cluster k from the coefficients of the global
mean curve of the population :




µk1
...

µkq


 =




λ01
...

λ0q


 +




λ11 · · · λ1h
... . . . ...

λq1 · · · λqh







αk1
...

αkh


 , (13)

With all these representations, we have got :



yi(t1)
...

yi(tni
)


 =




s1(t1) · · · sq(t1)
... . . . ...

s1(tni
) · · · sq(tni

)











λ01
...

λ0q


 +




λ11 · · · λ1h
... . . . ...

λq1 · · · λqh







αk1
...

αkh


 +




γi1
...

γiq








+




εi(t1)
...

εi(tni
)


 (14)



2.4 Parametric Identification

Now, we have to estimate the parameters λ0 , Λ , αk , Γ , σ2 et πk by maximization of
a likelihood function.
For yi we have a conditional distribution :

yi ∼ N
(
Si(λ0 + Λαzi

),Σi

)
,

where
Σi = σ2I + SiΓST

i .

Since the observations of the different curves are independent, the joint distribution of y,
and z is given by :

f(y, z) =
G∑

k=1

πk
1

(2π)
n
2 |Σ| 12

exp
[
− 1

2

(
y− S(λ0 + Λαz)

)T
Σ−1

(
y− S(λ0 + Λαz)

)]
,

(15)

and the likelihood for the parameters πk,λ0,Λ, αk,Γ, σ2, given the observations yi, zi is :

L(πk,λ0,Λ,αk,Γ, σ2|yi, zi) =
N∏

i=1

G∑

k=1

πk
1

(2π)
ni
2 |Σi| 12

exp
[
− 1

2

(
yi − Si(λ0 + Λαzi

)
)T

Σ−1
i

(
yi − Si(λ0 + Λαzi

)
)]

.

(16)

Maximizing this likelihood would give us the parameters λ0 , Λ , αk , πk , Γ and σ2 but
unfortunately, a direct maximization of this likelihood is a difficult non-convex optimiza-
tion problem. If the γi had been observed, then the joint likelihood of yi, zi and γi would
simplify, and like zi and γi are independent, the joint distribution can be written as :

f(y, z, γ) = f(y|z,γ)f(z)f(γ) ,

where zi are multinomial (πk), γi are N(0,Γ), and yi are conditional N
(
Si(λ0+Λαk+

γi); σ
2I

)
.

The joint distribution is now written as :

f(y, z, γ) =
1

(2π)
n+q

2 |Γ| 12
exp

(− 1

2
γTΓ−1γ

) G∏

k=1

{
πk exp{−1

2
n log(σ2)}

exp
[
− 1

2σ2

(
y− S(λ0 + Λαk + γ)

)T (
y− S(λ0 + Λαk + γ)

)]}zk

, (17)

and the likelihood of the parameters is given by :

L(πk,λ0,Λ,αk,Γ, σ2|yi, zi,γi) =
N∏

i=1

1

(2π)
ni+q

2 |Γ| 12
exp

(− 1

2
γT

i Γ−1γi

) G∏

k=1

{
πk exp{−1

2
ni log(σ2)}

exp
[
− 1

2σ2

(
yi − Si(λ0 + Λαk + γi)

)T (
yi − Si(λ0 + Λαk + γi)

)]}zik

.

(18)



In the paper, we will use the log likelihood :

l(πk,λ0,Λ,αk,Γ, σ2|yi, zi,γi) =

−1

2

N∑
i=1

(ni + q) log(2π)

+
N∑

i=1

G∑

k=1

zik log(πk) (19)

−1

2

N∑
i=1

[
log(|Γ|) + γT

i Γ−1γi

]
(20)

−1

2

N∑
i=1

G∑

k=1

zik

[
ni log(σ2) +

1

σ2

∥∥yi − Si(λ0 + Λαk + γi)
∥∥2

]
. (21)

2.5 EM algorithm

The EM algorithm consists of iteratively maximizing the expected values of (19), (20) and
(21) given yi and the current parameters estimates. As these three parts involve separate
parameters, we can optimize them separately :

2.5.1 E step

The E step is realized from :

γ̂i = E
{

γi|yi, λ0,Λ,α,Γ, σ2, zik

}
.

For the curve i we have the model :

yi = Si(λ0 + Λαk + γi) + εi .

Let :
ui = yi − Si(λ0 + Λαk) ,

then, the joint distribution of ui and of γi is written as :(
ui

γi

)
∼ N

([
0
0

]
,

[
SΓST + σ2I SΓ

ΓST Γ

])
,

and the conditional distribution of γi given ui is :

γi|ui = N
(
γ̃i;Σγi

)
,

where :
γ̃i =

(
ST

i Si + σ2Γ−1
)−1

ST
i ui ,

and :
Σγi

= σ2
(
ST

i Si + σ2Γ−1
)−1

.

Then, we have got the conditional distribution for (γ̂i|yi, zik = 1) :

(γ̂i|yi, zik = 1) ∼ N
(
γ̃i;Σγ̂i

)
, (22)

with :

γ̃i =
(
ST

i Si + σ2Γ−1
)−1

ST
i

(
yi − Siλ0 − SiΛαk

)
, (23)

Σγ̂i
= σ2

(
ST

i Si + σ2Γ−1
)−1

. (24)



2.5.2 M step

The M step involve maximizing :

Q = E
{

l(πk, λ0,Λ, αk,Γ, σ2|yi, zi, γi)
}

,

holding γi fixed

2.5.3 Estimation of π̂k

The expected value of (19) is maximized by setting :

π̂k =
1

N

N∑
i=1

πk|i , (25)

with :

πk|i = P
(
zik = 1|yi

)
,

=
f(y|zik = 1)πk∑G
j=1 f(y|zij = 1)πj

,

with : f(y|zik = 1) given by :

yi ∼ N(Si(λ0 + Λαzi
),Σi) ,

where
Σi = σ2I + SiΓST

i .

2.5.4 Estimation of Γ̂

The expected value of (20) is maximized by setting :

Γ̂ =
1

N

N∑
i=1

E
[
γ̂iγ̂

T
i |Yi

]
,

=
1

N

N∑
i=1

G∑

k=1

E
[
γ̂iγ̂

T
i |yi, zik = 1

]
, (26)

with (γ̂i|yi, zik = 1) given by the E step.

2.5.5 Estimation of λ0, αk, Λ

To maximize (21), we need an iterative procedure where λ0, αk, and the columns of Λ
are repeatedly optimized while holding all other parameters fixed.



2.5.6 Estimation of λ0

From the functional model :

yi = Si(λ0 + Λαzi
+ γi) + εi , i = 1, · · · , N ,

we have got, by Generalized Least Squares (GLS) :

λ̂0 =
( N∑

i=1

ST
i Si

)−1 N∑
i=1

ST
i

[
yi −

G∑

k=1

πk|iSi(Λαk + γ̂ik)
]

, (27)

with γ̂ik = E
{

γik|zik = 1,yi

}
given by the E step.

2.5.7 Estimation of αk

The α̂k are estimated from :

α̂k =
( N∑

i=1

πk|iΛ
TST

i SiΛ
)−1

N∑
i=1

πk|iΛ
TST

i

[
yi − Siλ̂0 − Siγ̂ik

]
. (28)

2.5.8 Estimation of Λ

By GLS, we only have the possibility of estimating vectors and no matrix, thus we will
have to optimize each column of Λ separately, holding all other fixed using :

Λm =
( N∑

i=1

G∑

k=1

πk|iα̂
2
kmST

i Si

)−1

N∑
i=1

G∑

k=1

πk|iα̂kmST
i

(
yi −

G∑

l 6=m

α̂kmSiΛ̂l − Siγ̂ik

)
, (29)

where :

• Λm is the column m of Λ

• α̂km is the component m of α̂k

• yi = yi − Siλ̂0

We iterate through (27) (28) (29) until all parameters have converged , then we can
optimize σ2 .

2.5.9 Estimation of σ2

We have got :

σ̂2 =
1

N

N∑
i=1

G∑

k=1

πkE
[(

yi − SiΛαk − Siγi

)T (
yi − SiΛαk − Siγi

)|yi, zik = 1
]

. (30)

Let :

σ̂2 =
1

N

N∑
i=1

G∑

k=1

πk

{(
yi − SiΛαk − Siγi

)T (
yi − SiΛαk − Siγi

)

+Si Cov[γi|yi, zik = 1]ST
i

}
. (31)

The algorithm iterates until all the parameters have converged.



3 Radial Basis Function Networks
Radial Basis Function Networks (RBFN) are neural networks used in approximation and
classification tasks. They share with Multi-Layer Perceptrons the universal approximation
property (Haykin, 1999). Classical RBF networks have their inputs fully connected to
non-linear units in a single hidden layer. The output of a RBFN is a linear combination
of the hidden units outputs. More precisely, the output is a weighted sum of Gaussian
functions or kernels (i.e. the nonlinearities) applied to the inputs :

y =
I∑

i=1

λi exp
{
− || x− ci ||2

σi

}
, (32)

where x is the input vector, y is the scalar output of the RBFN, ci, 1 ≤ i ≤ I, are the
centers of the I Gaussian kernels, σi, 1 ≤ i ≤ I, are their widths, and λi, 1 ≤ i ≤ I,
their weights. Intuitively those last λi parameters represent the relative importance of
each kernel in the output y. As shown in equation (32), the RBF network has three sets of
parameters ci, σi, λi, 1 ≤ i ≤ I. One advantage of RBFN networks compared to other
approximation models is that these three sets can be learned separately with suitable
performances. Moreover the learning of the λi weights results from a linear system. A
description of learning algorithms for RBF networks can be found in (Benoudjit and
Verleysen, 2003).

4 The Forecasting Method
In this section we present a detailed model-based approach for clustering functional data
and a time series forecasting method. This method will first be sketched to give an
intuition of how the forecasting is performed. Then each step of the method will be
detailed.

4.1 Method Description

The forecasting method is based on the "looking in the past" principle.

Let’s the observations on the time interval [t0, T ]. To perform a functional prediction
of the curve for the time interval [t, t +4tout], we create two functional spaces.
A first functional space IN is built with past observations for the time interval [t−4tin, t],
the "regressors" and a similar second functional space OUT is built with observations for
the time interval [t−4tin, t+4tout]. These two spaces are built with all data correspond-
ing to times t ∈ [t0 +4tin, T −4tin −4tout].

These functional spaces are combined into a probabilistic way to build the functional
prediction for the time interval [t, t+4tout] and are quantized using the functional cluster-
ing algorithm. The relationship between the first and the second functional spaces issued
from the clustering algorithms is encoded into a probability transition table constructed
empirically on the datasets.

In each of the clusters determined by the second clustering OUT , a local RBFN model
is built to approximate the relationship between the functional output (the local predic-



tion) and the functional input (the regressor).

Finally, the global functional prediction at time t for the interval [t, t + 4tout] is
performed by combining the local models results associated to clusters OUT , according
to their frequencies with respect to the class considered in the cluster IN .

4.2 Quantizing the « inputs »

Consider a scalar time series X, where x(t) is the value at time t, t ∈ [t0, T ]. This original
series is transformed into an array of observations Xin for the time intervals [t, t +4tin],
for all t ∈ [t0, t0 +4tin, t0 + 24tin, · · · , T −4tin −4tout].
Then the clustering algorithm is applied to the input array Xin; after convergence it gives
an IN map of Kin codewords and the spline coefficients for the curves of each cluster in
this IN map .

4.3 Quantizing the « outputs »

At each input vector of the matrix Xin we aggregate the next observations to get a
new array Yout for the time interval [t, t + 4tin + 4tout] for all t ∈ [t0, t0 + 4tin, t0 +
24tin, · · · , T −4tin −4tout].
The clustering algorithm is applied to the new array Yout; after convergence it gives an
OUT map of Kout codewords and the spline coefficients for the curves of each cluster in
this OUT map.
Note that, by construction, there is a one-to-one relationship between each input and each
output vector of spline coefficients.

4.4 Probability transition table

Both sets of codewords from maps IN and OUT only contain a static information. This
information does not reflect completely the evolution of the time series.
The idea is thus to create a data structure that represents the dynamics of the time series,
i.e. how each class of output vectors of spline coefficients (including the values for the
time interval [t, t+4tout]) is associated to each class of input vectors of spline coefficients
for the time interval [t−4tin, t].
This structure is the probability transition table T (i, j), with 1 ≤ i ≤ Nin, 1 ≤ j ≤ Nout.

Each element T (i, j) of this table represents the proportion of output vectors that
belongs to the jth class of the OUT map while their corresponding input vectors belong to
class i of the IN map. Those proportions are computed empirically for the given dataset
and sum to one on each line of the table.
Intuitively the probability transition table represents all the possible evolutions at a given
time t together with the probability that they effectively happen.

4.5 Local RBFN models

When applied to the « outputs », the functional clustering algorithm provides Nout classes
and the spline coefficients of the curves for the intervals [t, t + 4tout]. In each of these
classes a RBFN model is learned.
Each RBFN model has p inputs (the spline’s coefficients of the regressors) and q outputs



(the spline coefficients of the prediction curve).

These models represent the local evolution of the time series, restricted to a specific
class of regressors. The local information provided by these models will be used when
predicting the future evolution of the time series.

4.6 Forecasting

The relevant information has been extracted from the time series through both maps, the
probability transition table and the local RBFN models detailed in the previous sections.
Having this information, it is now possible to perform the forecasting itself.

At each time t, the goal is to estimate the functional curve for the time interval
[t, t +4tout] denoted x̂([t, t +4tout]).

First the input at time t is built, leading to X(t). This vector is presented to the IN
map, and the nearest codeword Xk(t) is identified (1 ≤ k(t) ≤ Nin).

In the frequency table, in the k(t)th line, there are some columns corresponding to
classes of the OUT map for which the proportions are non zero. This means that those
columns represent possible evolutions for the considered data X(t), since X(t) has the
same shape than data in the k(t)th class.

For each of those potential evolutions, the respective RBFN models are considered
(one RBFN model has been built for each class in the OUT map).
For each of them, a local prediction x̂j([t, t +4tout]) is obtained (1 ≤ j ≤ Nout).

The final prediction is a weighted sum of the different local predictions, the weights
being the proportions recorded in the probability transition table.

The final prediction is thus :

x̂([t, t +4tout]) =
Nout∑
j=1

T (k, j)x̂j([t, t +4tout]). (33)

5 Experimental Results
The examples presented here deal with the IBM stock time series of "tick data" for the
period starting on January 02, 1997 and ending on may 08, 1997 with more than 3000
transactions per day, on the New York Stock Exchange (NYSE).

The pricing model will use as inputs, inhomogeneous and high-frequency time se-
ries of bid and ask prices and also implied volatility. Such volatility time series can be
obtained from market data, derived from option market prices(from eight call and put
near-the-money, nearby and secondary nearby option contracts on the underlying asset)or
computed from diverse model assumptions.

On Fig. 1 we can see the evolution of the Prices (top) and Volumes (bottom) on one
day.



On Fig. 2 we see the distribution of transactions for the same day. Each point is a
transaction, with more transactions at the opening and closing of the NYSE.
The transactions are sampled discretely in time and like it is often the case with financial
data the time separating successive observations is itself random.
On Fig. 3 we can see two successive days of the stock IBM with a fine smoothing of the
"tick data" by splines.
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Figure 3: Two days of transactions for IBM (dashed curve),with smoothing splines (solid curve)

5.1 Prediction

We forecast the future transactions splines for three hours of day J between 10.30Hr. and
13.30 Hr. (4tout = 3.0Hr), from the past transactions (days J − 2 and J − 1 and half an
hour of day J between 10.00 Hr. and 10.30 Hr.), in this case (4tin = 11.30Hr).
We have eliminated the transactions at the opening and closing of the NYSE, which are
"outliers" without any correlation with the next hours.

On Fig. 4 we can see four out-of-sample forecasting days superposed with the obser-
vations and smoothing splines (not known by the model). There is a good correlation



between the out-of-sample forecasting and the observations.
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Figure 4: Four forecasting days for IBM stock price. Observations (Points); Smoothing splines
(solid curve); Out-of-sample forecasting by the model (dashed curve)

6 Conclusion
We have presented a functional method for the clustering, modelling and forecasting of
time series by functional analysis and neural networks. This method can be applied to
any types of time series but is particularly effective when the observations are sparse,
irregularly spaced, occur at different time points for each curve, or when only fragments
of the curves are observed; standard methods completely fail in these circumstances.
By the functional clustering, we can also realize the forecasting of multiple dynamic
processes.
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