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Selecting relevant features in mass spectra analysis is important both for classification 

and search for causality. In this paper, it is shown how using mutual information can 

help answering to both objectives, in a model-free nonlinear way. A combination of 

ranking and forward selection makes it possible to select several feature groups that may 

lead to similar classification performances, but that may lead to different results when 

evaluated from an interpretability perspective. 

1.   Introduction 

Mass spectrometry allows identifying chemicals in a substance by their mass and 

charge. It produces spectra that plot the quantity of chemicals in the substance as 

a function of their mass to charge ratio (m/z). Typically, several thousands m/z 

values are considered. Such spectra are said to be high-dimensional.   

For illustration purposes, the detection of cancer will be considered.  The 

interesting question for researchers is of course which chemicals are involved in 

the process and which biomolecules are affected by the disease process. Two 

objectives are thus sought together: classification performances should be high, 

and the method should identify which chemicals are affected.  Focusing only on 

features (m/z) that allow building an efficient classification model is not 

sufficient; indeed several sets of features could lead to similar classification 

performances, while one set could be of much greater interest for causality 

interpretability than the other ones.  

Another way of identifying relevant features is to examine the statistical 

dependency between each of them (taken individually) and the class label.  

While the statistical dependency concept does not make any assumption on the 

model that is further used for classification, it will discard features that are only 

relevant in a group, and not individually. 
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In this paper, we suggest to overcome these limitations by using the mutual 

information measure between features and the class label. Mutual information is 

a nonparametric, model-free method for scoring a set of features. It can be used 

to spot all features relevant to the classification, and to identify groups of 

features that allow building a valid classification model. It is applied to the 

detection of ovarian cancer through spectra of human serum. The process allows 

identifying feature sets that can be later assessed from a clinical perspective. 

The paper is organized as follows: Section 2 reviews the existing literature, 

Section 3 introduces the concept of the mutual information. Section 4 proposes 

some experiments with the Ovarian Cancer dataset and Section 5 concludes. 

2.   Previous work 

Several mass spectrometry classification algorithms have been proposed in the 

literature [1, 2, 3]; yet only a few studies focus on feature selection.  

In a comparative study, Liu [4] considers the Chi-squared test and the t-test, 

making the assumption that the class populations are normal-distributed. He 

furthermore uses an entropy-based method, considering the mutual information 

between pairs of features, and between each feature and the class label. Those 

methods will however eliminate features relevant only in conjunction with each 

other. 

Petricoin uses a Genetic algorithm [5] prior to probabilistic classification. 

This allows to find an (sub-)optimal feature subset, but fails at scoring each 

feature individually. The method may thus find a set of features adequate for 

classification, but not all sets that could be of interest. Furthermore, the 

procedure is model-dependent and prone to convergence issues. 

Lilien [6] proposes the use of the Linear Discriminant Analysis, and Back 

Projection to score the features. The LDA results in a discriminant vector that is 

then normalized according to the initial features variances. The score associated 

to each feature is the corresponding element in the normalized discriminant 

vector. The classification model is thus constructed on all features; therefore, a 

lot of poorly scored (by the LDA criterion) features may have the same weight in 

the classification process as a single high-scoring feature. Here again, two 

features that are relevant only when paired will not be identified as such.  

In the following section, we will see that the mutual information allows 

scoring groups of features, independently from a subsequent classification 

model, and without making any assumptions about the class sample distributions. 
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3.   The mutual information 

The mutual information (MI) between two random variables or random vectors 

measures the “amount of information”, i.e. the “loss of uncertainty” that one can 

bring to the knowledge of the other, and vice versa.  

3.1.   Definition of the mutual information 

The concept of uncertainty of a random variable is expressed by its entropy [7].  

Although the notion of entropy has first been developed for discrete variables, it 

can be extended to continuous variables rather easily.  The entropy H(Y) of a 

random variable Y with probability density function (pdf) µY is defined by 

 ∫−= dyyyYH YY )(log)()( µµ . (1) 

The entropy of a random variable or vector Y when the value of some other 

random variable X is known is the conditional entropy:  

 dxdyxXyxXyxXYH YYX ∫∫ ==−= )|(log)|()()|( µµµ . (2) 

The mutual information is the difference between the entropy of a variable and 

the conditional entropy I(X,Y) = H(Y) – H(Y|X).  The mutual information can be 

expressed as the Kullback–Leibler divergence between the joint distribution µX,Y 

of the variables and the product of the marginal distributions µX and µY : 
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When X and Y are independent, the mutual information is zero; the higher the 

dependency between variables X and Y, the higher is their mutual information.  

Contrarily to the correlation, the mutual information measures any relationship 

between variables, and not only linear relations.  In the above equations, X and Y 

can be random vectors instead of random variables. If Y is a binary class label, 

definition (3) holds. Its extension to multi-class problem is not obvious though, 

as an adequate class labeling has to be provided. 

3.2.   Estimation 

Equations (1) to (3) are not applicable as such, as the pdf are not known in 

practice. The estimation of the mutual information given finite samples is thus a 

problem of density estimation. Density estimation can be achieved in several 

ways [8], for instance with histograms, kernels, B-splines, or Nearest 
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Neighbours. The latter has the major advantage to be reasonably efficient for the 

estimation of a multivariate density (when a random vector is involved), while 

the other ones suffer more dramatically from the ‘curse of dimensionality’ (the 

required number of samples needed for the estimation grows exponentially with 

the dimension of the random vector). 

There exists an extensive literature on density-based entropy estimators [9, 

10]; recently, they have been extended to the Mutual Information by Kraskov et 

al [11]. The latter estimator is used in the experimental part of this paper. 

3.3.   Using the mutual information for feature scoring/selection 

A high mutual information between a feature X and the class label Y thus means 

that feature X is relevant, regardless of the classification algorithm. However, the 

mutual information can be used in several ways to select (sets of) features. 

First, the mutual information scores can be estimated between each feature 

individually (m/z) and the class label. The highest scores correspond to features 

that are most relevant in discriminating between the two classes. In contrast, the 

features with a mutual information near zero are statistically independent from 

the class label. The drawback of this method is that features that are relevant 

together but useless individually cannot be accurately spotted. 

Secondly, the mutual information can be used to search for the optimal 

feature subset (which may or may not be the subset of optimal features) in a 

forward manner: the feature with the highest mutual information with the class 

label is chosen first. Then, pairs of features containing the already selected one 

and any remaining one are built. The mutual information between each of these 

pairs and the class label are measured; the second chosen feature is the one 

contained in the pair with the highest mutual information score. The procedure is 

then iterated until the adequate number of features has been reached. Although 

this procedure, which is greedy in the sense that the choice of a feature is never 

questioned afterwards, can lead to a sub-optimal feature subset, it performs most 

often efficiently, and definitely better than the previous option. 

While the second procedure is good at identifying the most relevant subset, 

it will probably not select all features that could be relevant for the problem, as 

redundancy between features is avoided.  Both procedures have advantages; 

therefore, in order to identify all features relevant as well individually as in 

conjunction with others, they are merged into a single one, inspired from [12]:  

1. N features are selected by individual mutual information 

2. M features are selected by the forward procedure 

3. All 2
N+M

 possible feature subsets are constructed and their mutual 

information with the class label is estimated. 
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The subset with the highest mutual information can be chosen for 

classification purposes; however, all other subsets associated to a high value of 

the mutual information with the class label can be considered as relevant for the 

problem too. In this way, several subsets of features can be identified, hopefully 

allowing spotting all features relevant to the problem, either individually or in 

conjunction with others.  The subsets can thus be ranked and further application-

dependent investigations performed. The values of N and M should be chosen as 

high as possible, while keeping the 2
N+M

 MI estimations tractable. Despite the 

fact that the complexity of the method is proportional to the square of the 

number of features in the worst case, the average number of computations is 

linear with the number of features. In practice, the computation of all MI values 

does not exceed a few tenth of minutes on a standard computer if, as an example, 

N+M is limited to 7. Furthermore, the whole variables selection process can be 

performed off-line, as it does not need to be repeated to classify a new sample. 

4.   Example 

The method is illustrated on an ovarian cancer dataset from the Clinical 

Proteomics Program of the U.S. National Cancer Institute 
 
[13]. The spectra 

result from SELDI-TOF experiments. The healthy samples come from women 

showing risks of cancer from a clinical perspective, while the positive cancer 

samples come from women with various tumors types and severity (see [5] for 

details.) To get a tractable number of feature subsets to assess, three features 

were chosen by the forward selection method; then, four other ones were chosen 

among the highest scored features not already selected.  To assess the relevance 

of the selected features, a linear classification is performed on a test set, as in [6]. 

4.1.   Results 

Figure 1 shows the mutual information score for each m/z value. The vertical 

lines indicate which features were chosen by the forward strategy and not by the 

ranking procedure (in this case, the m/z ratios 2.7921 and 24.2851). Few features 

have really high mutual information scores. Note that negative values are 

obviously the result of the estimates bias (without consequence on the ranking) 

and variance (that gives an idea of the estimator accuracy). 

The final set of selected features is given in Table 1, with the corresponding 

m/z values. Feature 1679 has the highest mutual information with the class label. 

The features selected by the ranking method are obviously highly correlated; 

nevertheless, we will see that they are not totally equivalent for classification. 
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Figure 1. Mutual information for each m/z feature. 

 
Table 1. The seven selected features, along with their corresponding m/z values. An O in regard of 

the name of a method indicates that the feature was selected by the method. 

Feature 181 530 1678 1679 1680 1681 1682 

m/z 2.7921 24.2851 244.6604 244.9525 245.2447 245.5370 245.8296 

Forward O O  O    

Ranking   O O O O O 

 

The mutual information of each possible of the 128 feature subsets is given 

in Figure 2, along with the performances of a linear classifier built using that 

subset. The feature groups are ordered by increasing mutual information. Table 2 

presents some of those feature groups. Figure 2 confirms that the classification 

performances are highly correlated to the mutual information (0.9041). 
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Figure 2. The mutual information and classification performances for a linear classifier built on 

every possible subset of the selected features. 

4.2.   Discussion 

From the analysis of Table 2, it appears that:  

• The group of features achieving the best classification is not the group of 

most  individually  relevant  features  nor  it  is  the  group  identified  by the 
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Table 2.  Some values from Figure 2. 

Group 

 ID 
Feature group  

Mutual  

information 

% Correct  

classification 

126 181 0.3694 74.86 

127 530 -0.0349 58.00 

118 1678 0.3694 75.86 

113 530  ; 1678 0.5644 90.00 

38 181  ;  530  ;  1678 0.6571 100.00 

1 181; 1678; 1679; 1680; 1682 0.7026 98.43 

33 181; 530; 1678; 1679; 1680; 1682; 1681 0.6585 98.43 

59 1678; 1679; 1680; 1681; 1682  0.6347 95.31 

34 181; 530; 1680 0.6583 98.43 

35 1678 ; 1679 0.6581 95.23 

 

forward procedure. Group 38 is the best group and contains only one of the 

highest-ranked features. Furthermore, the group discovered by the forward 

procedure achieves less good classification performances; this is because the 

choice of the first feature was never questioned. Using a forward or ranking 

procedure alone does not lead to the optimal feature subset. 

• Some individually less relevant features help building more accurate 

classifiers than if using individually relevant features only. Features 530 

(Group 127 – low MI) 1678 together reach 90% of correct classification 

(Group 113), while feature 1678 (Group 118) classifies only 76% of the 

samples correctly. It can thus be assumed that feature 530 is involved in the 

process. Only ranking features may prevent from spotting relevant ones. 

• There are groups of different features that achieve very similar results. For 

example Groups 34 and 35 share no variable, although their classification 

performances (95 and 98 %) are rather close. Simply relying on the best 

feature subset according to the mutual information or to some model-based 

algorithm does not allow recovering all features involved in the process. 

• The performances in classification reached by the method are similar to the 

results obtained by Lilen with LDA and Back Projection [6]. 

• In this problem, it appears that only features with low m/z ratio are relevant.  

5.   Conclusion 

This paper shows that using the mutual information between features and class 

label in mass spectra analysis help choosing relevant feature sets. The method 

based on the combination of feature ranking and forward selection, and using 

mutual information on sets of features rather than individually, makes it possible 

to rank feature subsets. Then, an application-driven procedure can be used to 
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assess the (clinical in this example) relevance of the feature sets, starting from 

the highest-ranked ones by the proposed procedure.   
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