ICPR'1992 proceedings - 11th IAPR International Conference on Pattern Recognition
Ten Haag (The Netherlands), 30 August - 3 September 1992, pp.147-150

A Real-Time VLSI-based Architecture
for Multi-motion Estimation

J.D. Legat, J.P. Coril, D. Macq, M. Verleysen

Microelectronics Laboratory
Université Catholique de Louvain
B-1348 Louvain-La-Neuve
Belgium

Abstract

This paper describes a new parallel architecture dedicated
to multi-motion estimation. The input image is scanned
by a standard video camera with 256 grey levels. Motion
computing is based on the optical flow determination.
Some constraints are proposed to allow multi-motion
evaluation. The algorithm will be presented and the main
features of a 1-D systolic architecture which is based on a
custom VLSI chip will be given. This architecture allows
a real-time implementation of the multi-motion
estimation algorithm.

1. Introduction

Motion estimation of objects or people from image
sequences plays a key role in early vision processing [1].
It is used in dynamic image segmentation and recognition.
Relative motion allows mobile robot to navigate quickly
and efficiently through the environment [2].

There exist two basic algorithms for determining
motion [3]. The first is based on the estimation of special
features in the image which are then matched from image
to image. This method supposes that the image is first
analyzed carefully before computing motion. Psycho-
physical tests suggest that it is not the case in the human
system. The second algorithm uses local gradients of the
image brightness to compute the optical flow. In general,
the optical flow and the true 2-D velocity field differ.
Nevertheless, if strong enough gradients exist, the optical
flow will be a good approximation of the velocity field.

Through many types of optical flow estimation
techniques have been developed [3], [4], most of them are
restricted to global motion estimation [5]. However, most
of the real-life applications require multi-motion eva-
luation.

This paper describes the architecture and the
implementation of a parallel processor dedicated to motion
estimation which is based on a custom VLSI chip. This
architecture allows a real-time implementation of a multi-
motion algorithm based on the optical flow estimation.

0-8186-2925-8/92 $3.00 © 1992 IEEE

147

The general configuration is represented at figure 1. The
input image is scanned by a standard video camera with
256 grey levels and the motion evaluation system is
directly connected to the camera output.

Motion
estimation ! Camera P
) |
Motion Image
display display

Figure 1 : General configuration of the motion system

2. Multi-Motion Evaluation

Following Horn and Schunk [6], we denote the image
brightness at the point (x,y) in the image plane at time t
by I(x,y,t). When a pattern moves, the brightness of a
particular point in the pattern is constant, so that :

da_
dt
Using the chain rule of differentiation and defining the
velocity V as (vx, vy) = (dx/dt,dy/dt), we obtain a single
linear equation in two unknowns, vx and vy :

a o - d_
xVx oyt aT
This equation by itself is not sufficient to determine the
velocity flow. It only defines a constraint line in velocity
space that has the same orientation as does the edge of the
moving pattern in physical space. This ambiguity is
known as the "aperture problem". If we suppose that there
is only one moving pattern, each edge of the moving
object generates a constraint line. The intersection of
these lines determines the actual velocity.

If many objects can move independently, it will not be
possible to determine the velocity without introducing
additional constraints. We can suppose that neighboring

ICPR'1992 proceedings - 11th IAPR International Conference on Pattern Recognition

Ten Haag (The Netherlands), 30 August -

points of a moving object have similar velocities and the
velocity field in the image varies smoothly. Based on this
smoothness assumption, we introduce the three following
constraints :

1. If a moving object at time t has the velocity v(b), it
will have at time t+1 a velocity v(t+1) so that :

v(t) - Av < v(t+1) < v(t) + Av

In the velocity space as illustrated in figure 2, if we
have a velocity v(t) defined by the intersection of 2
constraint lines, at time t+1, the velocity v(t+1) has
to be included inside a circle having as center v(t) and

as radius Av.
A
Vy
N Constraint Lines ~a
o~
Av
v(t)
v(t+1)

Vx

\j

/ AN

Figure 2 : Constraint 1 for multi-motion computing.

2. If this moving object at time t is included in a
rectangular boundary having the coordinates ((x0(t),
yo(t)), (x1(t),y1(t))), it will be included at time t+1
into a rectangle having the coordinates ((x0(t+1),
yO(t+1)), (x1(t+1),y1(t+1))) so that (figure 3) :

x0(t+1) = x0(t) +H((vg(t) - Av) . At
yO(t+1) = yO(t) + ((vy(D) - Av) . At)
x1(t+1) = x1(t) +((vx(t) +Av) . At)
yl(t+1) = y1(t) + ((vy(t) +Av) . At)

. Only one new motion can appear at the same time.
Indeed, if 2 objects can set themselves in motion at
the same time, the system has no way to separate
them because their initial velocity is null and their
initial boundary rectangle is all the scene. In practice,
this constraint is not very restricting due to the fact
that the image frequency is high and thus the
probability to have 2 new motions exactly at the same
time is quite low.

3 September 1992, pp.147-150

yi(t+1)

yi®

yo(t+1) 4
¥o(?) 5

1

|
| |
| |
i | X

x1(t) x1(t+1)

Figure 3 : Constraint 2 for multi-motion computing.

By using these hypotheses,

it is now possible to

associate each constraint line with a particular motion and
to efficiently initiate new motions.

time t+1

Object 1 at
time t+1

\

Object 2 at

%~ Object 1 attime t

S

f

Object 2 at
time t

1847

N

V2

Vx

Figure 4 : Example of multi-motion computing

148

ICPR'1992 proceedings - 11th IAPR International Conference on Pattern Recognition
Ten Haag (The Netherlands), 30 August - 3 September 1992, pp.147-150

This method is illustrated by a simple example (figure
4) where two objects, a rectangle and a triangle, are
moving : the rectangle has 2 constraint lines and a
velocity V1 at the intersection of the 2 lines, the triangle
has 3 lines and the velocity V2.

The constraint 1 which allows V1 and V2 to fluctuate
inside their respective circle, is not sufficient to detect the
2 motions. Indeed, the 2 objects having similar speeds,
the 2 circles are overlapping in the velocity space. The
constraint 2, which defines a boundary rectangle for each
moving object, is then used to separate the 2 motions.

The algorithm has been successfully simulated on
synthetic and some natural time-varying images. There are
of course some limitations. The main problems occur
when there are too many noisy gradients or when the
moving objects are crossing or are overlapping. In this
case, the boundary rectangle is not useful and during the
crossing time the result represents more or less the
average of the 2 motions. If an object has different
movements, the system will fail or will only detect the
main motion.

3. Parallel Architecture

To obtain a real-time implementation of the multi-
motion algorithm, a parallel architecture based on an 1-D
systolic array has been developed (figure 5). Each node of
the systolic array handles a specific motion and the array
has been designed in such a way that it filters the moving
parts of the image. The first node of the array receives the
input image from the camera, computes the motion 1,
generates an output image without the moving object 1
and transfers this image to the node 2. The second node
computes the motion 2 and so on. At the end of the array,
we have an image without moving object if the number
of nodes is equal or superior to the number of movements
to detect.

A global view of all the system is shown on figure 6.
Each node of the systolic array is a full processor. The
camera having a serial output, the processing is done
pixel by pixel. The pixel is transferred to the first
processor plus some other values generated by a delay
logic. The pixel is processed by the first processor and
then transmitted to the second one. A disable signal is
used to filter the pixels. This signal is always true at the
input of the processor and becomes active if the pixel has
been associated with the current moving object. At the
last node, the disable signal acts as an overflow signal
indicating if the number of motions to detect is superior
or not to the number of nodes. Each processor works
synchronously and has the same architecture.

The delay logic is a simple logic based on FIFO
memory which is used to simultaneously generate the
different values of the intensity needed by the multi-
motion estimation algorithm (figure 7).

— e xyl)

Pixel FIFO I(x-1.y.t)

Line FIFO 1xy-1.8

Image FIFO I(xy.t-1)

Figure 7 : Delay logic

A standard microprocessor controls at a high level all
the processing.

4. VLSI Implementation

The elementary processor of the systolic array is
implemented in a custom integrated circuit. The tasks of
the VLSI circuit can be subdivided into 3 main steps. The
first step is to receive the pixel from the previous
processor. The circuit then tests the constraints 1 and 2. If
they are not satisfied, the pixel is directly transmitted to
the next processor. Otherwise, the velocity and the
boundary zone are updated.

1 Microprocessor Bus
I ey |

L]]
Tt

Input pixel Output pixel

Figure 8 : circuit block diagram

As illustrated in figure 8, the chip consists of 9
processing units : the input pixel unit (IPU) which
receives the pixel brightness and some other values from
the previous processor (or from the camera for the first
processor), the parameter computing unit (PCU) which
determines common parameters used by the other blocks,
VXU and VYU which compute the velocity in the X and
Y directions, BXU and BYU which estimate the boundary
of the moving object in the X and Y directions, the
output pixel unit (OPU) which transfers the pixel to the

149

ICPR'1992 proceedings - 11th IAPR International Conference on Pattern Recognition
Ten Haag (The Netherlands), 30 August - 3 September 1992, pp.147-150

next processor of the array, the microcoded control unit
(MCU) and the microprocessor interface unit (MIU) which
controls all interactions between the processor and the
standard microprocessor.

Due to the real-time requirement, a very high
parallelism and pipe-line has been achieved. Only four
clock cycles are needed by the processor to perform all the
operations associated with one pixel (parameters
computing, velocity updating, boundary checking, ...).

The custom integrated circuit is designed in a standard
CMOS technology. The die size is approximately 60
mm?2, The chip has been designed to have a clock
frequency of 40 MHz which will allow to have a pixel
frequency of up to 10 MHz.

5. Conclusion

An algorithm using the optical flow estimation and the
smoothness constraint for multi-motion computing has
been described. A parallel architecture allowing a real-time
implementation in a standard video camera environment
has been presented. This architecture is based on a custom

integrated circuit which integrates the full specifications
of the elementary array processor.

References

{1} D.G. Stavenga and R.D. Hardie, "Facets of Vision",
Springer Berlin Heidelberg 1989.

[2] J.M. Pichon, C. Blanes and N. Franceschini, "Visual
guidance of a mobile robot equipped with a network of
self-motion sensors”, Mobile Robots IV , SPIE vol.
1195, pp 44-53, 1989.

[3] J. Hutchinson, C. Koch, J. Luo and C. Mead,
"Computing Motion Using Analog and Binary Resistive
Networks", Computer,, pp 52-63, March 1988.

[4] J. Wu, R. Brockett and K. Wohn, “A Contour-based
Recovery of Image Flow : Iterative Method”, CVPR'89 -
IEEE Conference on Computer Vision and Pattern
Recognition, San Diego, pp 124-129, 1989.

[S] J. Tanner and C. Mead, "Optical Motion Sensor", Analog
VLSI and Neural Systems, Addison-Wesley, 1989.

[6] B. Horn and B. Schunck, "Determining Optical Flow",
Artificial Intelligence, vol. 17, pp 44-53, 1981.

Image without moving object 1

Image without moving object 2

Input Image without
image .) . moving object
Motion Motion Motion
Estimation Estimation B Estimation |
Motion 1 Motion 2 Motion N
Figure 5 : Systolic array architecture
m Standard Mi
andard Microprocessor ovf
1 | | A
Ca
mera True Disable Signal
vy | v vl VY
1 Processor »1 Processor [—% —® Processor
L] > 1 > 2 " — n
Delay logic ‘ J ‘ * ¢ *
Vx Vy Vx Vy Vx Vy
Motion 1 Motion 2 Motion n

Figure 6 : System architecture

150

