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Abstract. In usual ICA methods, sources are typically estimated by
maximizing a measure of their statistical independence. This paper ex-
plains how to perform non-linear ICA by preprocessing the mixtures with
recent non-linear dimensionality reduction techniques. These techniques
are intended to produce a low-dimensional representation of the data (the
mixtures), which is isometric to their initial high-dimensional distribu-
tion. A detailed study of the mixture model that makes the separation
possible precedes a practical example.

1 Introduction

Independent Component Analysis [2, 3] (ICA) aims at recovering a vector of un-
known latent variables x starting from a vector of observed variables y. Usually,
the variables in y are assumed to be (noiseless) linear mixtures of x, according
to the generative model:

y = Ax , (1)

where A is a full-rank D × P ‘mixing’ matrix, with D ≥ P . In order to retrieve
x, the ICA model also assumes that all components of x have zero mean and
are statistically independent from each other. Therefore, the goal of ICA is to
identify A by determining the ‘separating’ matrix B in the reversed model

x ≈ x̂ = By . (2)

Practically, ICA proceeds by defining a measure of independence EICA on x̂ and
by maximizing it:

x̂ = argmaxEICA(By) . (3)

Thanks to the independence hypothesis on x and because the model is linear, it
can be proved that EICA reaches its maximum when BA = ∆Π where ∆ and
Π are respectively a diagonal and a permutation matrices [2, 3].

When providing ICA with a non-linear model, the same statement should be
true too. Unfortunately, it is not difficult to show that non-linear transformations
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of any set of variables allows building an infinity of variables that are independent
from each other. Hence the maximization of EICA does not lead to the desired
solution anymore. As a matter of fact, this has considerably slown down the
investigation of non-linear ICA.

However, although ICA proves incompatible with a non-linear model in its
full generality [6], it has been shown by several authors that non-linear ICA
is still feasible in some specific cases. In particular, some work [8, 6] has been
devoted to so-called post-non-linear mixtures (PNL), defined as follows:

y = f(Ax) , (4)

where f is a vector of D invertible and differentiable functions from R to R.
Under mild conditions on A, the latent variables x can be retrieved using the
same principle as in linear ICA. Indeed, by maximizing the independence of
x̂ = g(By), it is possible to identify f (as the inverse of g) and A (AB = ∆Π).

This paper explores another way to perform non-linear ICA. In PNL mix-
tures, the inversion of the non-linear functions is achieved by maximizing the
independence. A slightly different and more complex model is proposed, consist-
ing of two parts — a linear one and a non-linear one —, as in PNL mixtures. The
main difference holds in the fact that the non-linear part of the model is identified
by optimizing a criterion that does not relate to statistical independence. Actu-
ally, the non-linear part is inverted by computing an isometric transformation
of the available data. Section 2 explains how isometric transformations can be
integrated in an ICA model in a very natural way. In particular, Subsection 2.1
describes the particular metric that is used in the isometry. Section 3 gives some
experimental results and Section 4 comments them. Finally, Section 5 draws the
conclusions.

2 Mixture Model

The following generative model is considered:

y = f(z) = f(Ax) , (5)

where f is a smooth (C∞) function from R
P to R

D, A is a square P ×P matrix
and the vector y is assumed to be isometric to the vector z. By ‘isometric’ it
is meant that the distance measured between two realizations of y equals the
distance measured between the corresponding realizations of z.

Of course, if the Euclidean distance is used for both y and z, then the mixing
function f can only be a rotation matrix. More precisely, f(z) = Qz, where Q is
a D × P matrix, resulting from the concatenation of P unit-norm vectors. This
obviously raises little interest. Fortunately enough, the use of the Euclidean
distance proves not mandatory at all. A couple of recent works [7, 4, 5] suggest
using different metrics to measures distances on y and z. In particular, the use
of the so-called geodesic distance for y is advised, while keeping the Euclidean
distance for z.
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2.1 Geodesic Distances

Geodesic distances are used in the fields of manifold learning and non-linear
dimensionality reduction (NLDR) by distance preservation [7, 4, 5]. Given a P -
dimensional smooth (C∞) manifold M in a D-dimensional space, the geodesic
distance between two points yi and yj of the manifold is measured along the
manifold, unlike the Euclidean distance, which is measured along the line seg-
ment connecting the two points. Actually, the geodesic distance δ(yi,yj) is com-
puted as the minimum arc length between the two points, an arc γ being a
smooth one-dimensional submanifold. Hence,

δ(yi,yj) = min
γ(ζ)

∫ ζj

ζi

‖Jζf(γ(ζ))‖2dζ , (6)

where yi = γ(ζi) and yj = γ(ζi) are in M, the function f(z) designates the
parametric equations of M and Jζ is the Jacobian matrix with respect to ζ.
It is easy to see that geodesic distances are equivalent to Euclidean ones if the
manifold is linear (planar).

Figure 1 illustrates the purpose of geodesic distances in NLDR: such a metric
allows measuring distances that are (almost) independent of the manifold em-
bedding. Contrarily to Euclidean distances, geodesic ones do not change if the
‘C’-shaped manifold in Fig. 1 is unrolled or unfolded. This shows how NDLR
by distance preservation works: a low-dimensional embedding of the manifold is
computed as the result of a (nearly) isometric transformation from R

D to R
P .
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Fig. 1. Geodesic distances for dimensionality reduction in the case of a ‘c’-shaped
curve: for short (left) as well as long (right) distances, the geodesic distances makes
possible the isometry between the manifold and its low-dimensional embedding.

In practice, computing geodesic distances from a finite-size sample Y =
[. . . ,yi, . . . ,yj , . . .]1≤i,j≤N is difficult. Fortunately, geodesic distances can be ap-
proximated by so-called graph distances, as illustrated in Fig. 2. The quality
of that approximation is assessed in [1] (theoretical point of view) and [4, 5]
(practical issues).
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Fig. 2. Procedure to compute graph distances: (1st plot) a few manifold points are
available, (2nd plot) each point becomes a graph vertex and is connected with its
closest neighbors in order to obtain a graph, (3rd plot) after labeling the graph edges
with their length, Dijkstra’s algorithm is run on the graph, with the central point of
the spiral as source vertex, (4th plot) the Euclidean and graph distances between the
same two points.

2.2 Isometry

Back to the generative model in Eq. 5, it may be assumed as in the previous
section that the vector z and the function f respectively contain the parameters
of a manifold and its parametric equations. The hypothesis of isometry amounts
to state that δ(yi,yj) = ‖zi − zj‖2 for any corresponding pairs of realizations of
y and z. A manifold which satisfies that hypothesis is said to be Euclidean and
has nice properties. For example, the minimization involved in the computation
of the geodesic distance δ(yi,yj) may be dropped in Eq. 6. Indeed, by virtue of
the isometry, it comes that

δ(yi,yj) = ‖zi − zj‖2

= ‖zi − (zi + α(zj − zi))‖2 + ‖(zi + α(zj − zi)) − zj‖2

= δ(f(zi), f(zi + α(zj − zi))) + δ(f(zi + α(zj − zi)), f(zj)) , (7)

where α is a real number between 0 and 1. These equalities simply demonstrate
that the shortest geodesic arc between yi and yj is the image by f of the line
segment going from zi to zj : all points f(zi + α(zj − zi)) on that segment must
also lie on the shortest path. Therefore, in the case of a Euclidean manifold, the
arc γ(ζ) in Eq. 6 can be written as

ζ : [0, 1] ⊂ R → R
P , ζ �→ z = γ(ζ) = zi + ζ(zj − zi) (8)

and the minimization in Eq. 6 becomes useless. Using the last result and knowing
that geodesic distances equal Euclidean ones in a vector space, it comes that

‖zi − zj‖2 = δ(zi, zj) =
∫ 1

0

‖Jζγ(ζ)‖2dζ and (9)

δ(yi,yj) =
∫ 1

0

‖Jζf(γ(ζ))‖2dζ =
∫ 1

0

‖Jγ(z)f(γ(ζ))Jζγ(ζ)‖2dζ . (10)

As ‖zi−zj‖2 = δ(yi,yj), the equality ‖Jζγ(ζ)‖2 = ‖Jγ(ζ)f(γ(ζ))Jζγ(ζ)‖2 must
hold. This means that the Jacobian of a Euclidean manifold must be a D-by-
P matrix whose columns are orthogonal vectors with unit norm. This leaves
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the norm of Jζγ(ζ) unchanged after left multiplication by Jγ(z)f(γ(ζ)). More
precisely, the Jacobian matrix can be written in a generic way as Jzf(z) =
QV(z), where Q is a constant orthonormal matrix (a rotation matrix in the
D-dimensional space) and V(z) a D-by-P matrix with unit-norm columns and
only one non-zero entry per row. The last requirement ensures that the columns
of V(z) are always orthogonal, independently from the value of z.

Because of the particular form of its Jacobian matrix, a Euclidean P -manifold
embedded in a D-dimensional space can always be written with the following
‘canonical’ parametric equations:

y = Qf(z) = Q [f1(z1≤p≤P ), . . . , fD(z1≤p≤P )]T , (11)

where Q is the same as above, Jzf(z) = V(z) and f1, . . . , fD are constant,
linear or non-linear continuous functions from R to R. Hence, if Q is omitted,
the parametric equation of each coordinate in the D-dimensional space of a
Euclidean manifold depends on at most a single latent variable zp.

Visually, in a three-dimensional space, a manifold is Euclidean if it looks like
a curved sheet of paper.

2.3 Isometric Dimensionality Reduction

Using the above-mentioned ideas, it may be stated that if a manifold is Eu-
clidean, its latent variables can be retrieved. More formally, knowing a sufficiently
large set Y = [. . . ,yi, . . . ,yj , . . .]1≤i,j≤N of points drawn from a Euclidean P -
dimensional manifold, it is possible to determine the corresponding values of
the latent variables, up to a translation and a rotation, by finding an isometric
P -dimensional representation Z of Y.

From a practical point of view, an estimation Ẑ of Z can be computed us-
ing NLDR methods [7, 4, 5] that work by distance preservation. These methods
precisely attempt to find a low-dimensional representation of high-dimensional
points that is ‘as isometric as possible’. If these methods use geodesic distances
in the D-dimensional space and Euclidean distances in the P -dimensional space
and if the manifold is Euclidean, then a prefect isometry is possible. This means
that starting from an observation yi the corresponding value zi of the latent
variables can be recovered or, in other words, that the function y = f(z) can
be perfectly inverted, up to the above-mentioned undeterminacies (translation
and rotation). Within the framework of ICA, this also means that the non-linear
part of the generative model in Eq. 5 can be inverted to find ẑ ≈ z = Ax; next,
x̂ can be recovered by using a classical linear ICA method.

3 Experimental Results

In order to illustrate how isometric ICA works, the two following sources are
proposed:

x =
[

arccos(cos(0.034πt))
sin(0.006πt)

]
. (12)
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Thousand observations of x are available in the interval [0.000 ≤ t ≤ 0.999] and
are shown on the left of Fig. 3. Sources are artificially mixed as follows:

y = 0.5


+

√
2 +1 +1

−√
2 +1 +1

0 −√
2 +

√
2





 cos(πz1)

sin(πz1)
πz2


 , where z =

[
0.1 0.9
0.8 0.2

]
x . (13)

It is easy to see that the above-stated conditions to apply isometric ICA are
fulfilled. The mixtures are shown on the right of Fig. 3.
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Fig. 3. Sources (left) and mixtures (right); time (top) and space (bottom) representa-
tions are given.

Starting from the mixtures, a first attempt to separe the sources consists
in running a classical (linear) ICA method. For example, FastICA (deflation,
tanh non-linear function) yields the result shown on the left of Fig. 4. During
the whitening step, PCA indicates that three components are needed to explain
95% of the variance. Linear ICA succeeds rather well in recovering the serrated
source (already clearly visible in the mixtures) but fails in the case of the sine.

Isometric ICA yields the result shown on the right of Fig. 4. To obtain that
result, an isometric representation of the thousand available observations is com-
puted with the method described in [4, 5]. This dimensionality reduction method
works by gradient descent, contrarily to other methods which are purely alge-
braical [7]. The method indicates that an almost isometric two-dimensional rep-
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Fig. 4. Results computed by FastICA (left) and isometric ICA (right).

resentation of the observations is possible and computes it. Next, FastICA is run
on the two remaining linear mixtures, leading to the result on the right of Fig. 4.

4 Discussion

Because of space constraints, other experiments cannot be included in this paper.
However, here are some comments about the advantages and shortcomings of
isometric ICA.

The main drawback of isometric ICA holds in the very restrictive conditions
that must be satisfied to apply it. Exactly as for post-non-linear mixtures, the
non-linear functions involved in the mixture process must be one-to-one. More-
over, all non-linear functions depending on the same component of z must be
‘coupled’, otherwise the norm of the corresponding column of the Jacobian ma-
trix cannot be constant. Contrarily to PNL mixtures, isometric mixtures may
be further multiplied by any rotation matrix Q.

In practice, it has been shown experimentally that the isometry does not
need to be absolutely perfect. Actually, the norms of the Jacobian columns may
vary a little and slightly differ from each other. Similarly, the matrix Q does
not need to be perfectly unitary. Even in those cases, the non-linear part of the
model can be more or less well inverted, and better results are obtained than
when using a simple linear ICA method.

Other practical issues of isometric ICA regard the quality of the isometric
representation computed from the observations. Even if all above-mentioned
conditions are satisfied, it must be ensured that the methods described in [7,
4, 5] work correctly. It has been shown in [4, 5] that the good approximation of
the geodesic distances by the graph distances is very important. If the number
of observations is low, if their distribution is very sparse in some regions, or
simply if some parameters values are wrong, then the approximation becomes
very rough. This may jeopardize the computation of the isometric representation
and therefore the inversion of the non-linear function f . As a direct consequence,
the subsequent ICA step does not run in an optimal setting.
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5 Conclusion

Although true non-linear ICA is impossible, several constrained models have
been successfully proposed, especially post-non-linear mixtures. In this paper,
a different model is proposed, in which the inversion of the non-linear part is
based on geometrical considerations. More precisely, the proposed model assumes
that variables at the input and output of its non-linear part are isometric, i.e.
distances measured between two corresponding pairs of observations are equal.
Because the isometry involves other distances than Euclidean ones, the asso-
ciated transformation may be non-linear. In the case of the geodesic distance,
which has become popular in the field of dimensionality reduction, conditions
that makes a perfect isometry possible are studied in details. If those conditions
are fulfilled, the non-linear part of the mixture model can be fully inverted and
a linear ICA method may be run afterwards. Even if those conditions are rather
restrictive, isometric ICA can tackle problems that other linear or non-linear
ICA methods cannot solve. A simple example illustrates this fact.

Future work aims at comparing isometric ICA to post-non-linear ICA, from
different points of view (computational costs, robustness, etc.). A further study
of how isometric ICA behaves when the conditions of its model are not perfectly
met is also planned.
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