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Abstract. Isotop is a new neural method for nonlinear projection of
high-dimensional data. Isotop builds the mapping between the data space
and a projection space by means of topology preservation. Actually, the
topology of the data to be projected is approximated by the use of neigh-
borhoods between the neural units. Isotop is provided with a piecewise
linear interpolator for the projection of generalization data after learn-
ing. Experiments on artificial and real data sets show the advantages of
Isotop.

1 Introduction

Often the analysis of numerical data raises some difficulties because of their high
dimensionality. This problem can be attenuated by projection techniques such
as the well-known Principal Component Analysis (PCA, [6]). However, PCA is
a strictly linear method that is unable to detect nonlinear dependencies between
variables. Numerous nonlinear projection methods have been created to address
this issue. For example, the nonmetric Multidimensional Scaling (MDS, [12])
and Sammon’s nonlinear mapping (NLM [11]) are based on the preservation
of either pairwise dissimilarities or Euclidean distances. Neural versions of the
NLM, like Curvilinear Component Analysis (CCA, [3, 4]), generally show better
performance, particularly when they do not use the traditional Euclidean met-
rics [9, 13]. Finally, nonlinear projection can be achieved by the Self-Organizing
Map (SOM, [8, 14, 10]), that works with true topology preservation rather than
the more constraining distance reproduction. In this framework, Isotop is a new
nonlinear projection algorithm combining the advantages of the SOM and the
distance preserving algorithms like Sammon’s NLM.

The following of this paper describes how Isotop works (Sect. 2) and shows
some results of experiments (Sect. 3). Finally, Sect. 4 draws the conclusions and
sketches some perspectives for future developments.
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2 Description of Isotop

Isotop proceeds in three stages: vector quantization of the raw data, linking of
the neighboring prototypes and mapping to the projection space.

Assuming that N data patterns are stored in matrix X (one row xi per
pattern), Isotop first proceeds with a vector quantization (VQ) step. For exam-
ple, the well-known Competitive Learning (CL, [1]) may be used. This neural
algorithm transforms the raw data into a set of n representative units called
prototypes. These are stored as the rows pj of matrix P and may be seen as
neurons. Formally, P is initialized with randomly selected rows in the data set
and is then modified adaptively in several epochs (sweeps of the data set). For
each data row xi the closest prototype p∗ (best matching unit) is modified ac-
cording to the rule:

p∗ ← αt(xi − p∗) (1)

where αt is a learning rate with values between 0 and 1, decreasing as epochs
go by.

The second step of Isotop consists in defining neighborhood relations between
the prototypes. Actually, this task is realized by linking prototypes that are close
to each other. For example, each prototype can be linked with the k closest
ones, with k being a predetermined constant. Another possible method links
each prototypes with the ones lying closer than a fixed radius ε. In both cases,
the result is a connected structure, where each link can be characterized by its
Euclidean length.

The third and last step of Isotop builds the mapping from the d-dimensional
data space to the p-dimensional projection space. It uses only the neighborhoods
defined by the links. The link lengths define distances δj,k between direct neigh-
bors j and k. These distances can be extended to any pair (k, l) of prototypes
by summing the lengths associated with the shortest path [5] walking from k to
l. Such distances help to build matrix M whose rows mj correspond to those of
P and contain the coordinates of the neurons in the projection space. Matrix M

is initialized randomly around zero. Next, the twisted structure of links has to
be unfolded in the projection space, in order to retrieve the same neighborhoods
as in the data space. This goal is reached by randomly stimulating the mapped
prototypes. At time t, stimulus g(t) is drawn from a zero-mean, unit-variance,
p-dimensional Gaussian distribution. Defining the best matching unit (BMU) as
the closest mapped prototype m∗ from the stimulus, all prototypes mj are then
moved towards the stimulus. The movement of each mapped prototype becomes
smaller and smaller as its neighborhood distance from the BMU grows. Formally,
adjustments are made according to:

mj ← αtνt
j(g

t
−mj) (2)

where αt is a learning rate with time-decreasing values between 0 and 1. The
neighborhood factor νj is defined as:

νt
j = exp

1
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where δ∗,j is the neighborhood distance from the BMU p∗ to the prototype pj

and where λt is a time-decreasing neighborhood width.
The choice of a Gaussian distribution for the network stimulation is arbitrary

in the absence of a priori information about what would be the best distribution
of the mapped prototypes. The Gaussian distribution is just an ‘average’ choice
as is the choice of a uniformly distributed rectangular grid when using a SOM.
An advantage of the Gaussian pdf is its smoothness, by comparison to the sharp
edges of a SOM grid.

Once the three learning stages are completed, Isotop has build a mapping
between the data space and the projection space, resulting from the correspon-
dence between the rows of P and the rows of M . Starting from this discrete
representation of the mapping, Isotop can work in conjunction with a piecewise
linear interpolator. Such device generalizes the mapping and projects new data.

3 Experiments

Experiments on artificial and real data sets have been conducted in order to
compare Isotop with the SOM, which is the most used neighborhood preserving
mapping algorithm for nonlinear projection.

Fig. 1. Artificial data sets: Swiss roll (left) and open box (right)

The implemented SOM algorithm uses rectangularly shaped grids, with a
hexagonal neighborhood structure. The neighborhood factor is an exponentially
decreasing function of the grid distance from the best matching unit, as described
in [7]. Isotop uses Competitive Learning for the VQ step.

As an illustrative example, the ‘Swiss roll’ data set (see left of Fig. 1) con-
tains 10000 samples. It can be unfolded by Isotop (300 prototypes) and by the
SOM (30 × 10 prototypes). The projections are shown in Fig. 2. Despite of a
careful parameterization, a grid shaped SOM poorly unfolds the data because its
learning process occurs in the data space, whose dimensionality (3D) is higher
than the one of the grid (2D). The result is a map that jumps from one spire
to the following one in the Swiss roll, as shown in Fig. 2. Isotop does not suffer
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Fig. 2. Swiss roll unfolded by a SOM (left) and by Isotop (right), both shown in the
3D data space (top) and the 2D projection shown (bottom)

from this shortcoming since it builds its mapping in the projection space, whose
dimensionality is ideally equal to the one of the linked structure (2D).

Another artificial example is the ‘open box’ shown in the right part of Fig. 1
(20000 samples). A 30 × 10 SOM converges easily. But this time, the problem
comes from the rectangular shape of the grid that difficultly fits to the topology
of the box. Indeed, Fig. 4 shows that some neighborhoods are not preserved:
faces of the box are cut out into two parts that are not directly contiguous on
the grid. With the help of its data-driven linking step, Isotop (300 prototypes)
works with no difficulties and perfectly reproduces the neighborhoods.

Finally, Isotop and the SOM have been applied to a real database, namely
the ‘Abalone’ set from the UCI machine learning repository [2]. This set gathers
various attributes from 4177 abalone shells in order to determine their age.
Among the nine given attributes, the sex and the age (given by the number
of rings in the shell) are eliminated because they are respectively nominal and
integer-valued. The seven kept attributes are real values related to the size and
weight of the shells. Each attribute is normalized to have zero mean and unit
variance. Next, the dimensionality is reduced from 7 to 2 by a SOM and Isotop.
After some preliminary analysis, it appears that the data cloud is quite elongated.
Therefore, the above-mentioned SOM algorithm give good results when used
with 20 × 10 prototypes. In the same way, the stimulation distribution of Isotop
is modified in order to have standard deviations equal to 4 and 1. Like the SOM,
Isotop works with 200 prototypes. The results are shown in Fig. 4, where the
gray level of each prototype is proportional to the mean age of the shells it
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Fig. 3. Open box unfolded by a SOM (left) and by Isotop (right), both shown in the
3D data space (top) and the 2D projection shown (bottom)

represents. Both projection method converges well. At first sight, the regular
grid of the SOM is visually pleasant, compared to the irregular cloud given
by Isotop. However, a careful examination shows that Isotop preserves more
information about the data than the SOM: the global shape of the data cloud is
well reproduced and the outliers are still visible.

4 Conclusion

Isotop has been shown as an effective nonlinear projection method. Isotop com-
bines advantages of different projection methods. Indeed, in the same way as
many distance preserving algorithms do (e.g. Sammon’s mapping), Isotop builds
the mapping by working mainly in the low-dimensional projection space; by com-
parison, a SOM learns exclusively in the high-dimensional data space, what often
leads to undesired twists and folds. Like the SOM, Isotop also uses neighborhood
preservation instead of distance preservation, which is more constraining. More-
over, Isotop builds data-driven neighborhood structures, while a SOM suffers
from its predetermined shape.

Perspectives for future work relates to the choice of the probability distribu-
tion for stimulating Isotop. Ideally, the stimulation pdf should be automatically
chosen by the algorithm, according to the data distribution.
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Fig. 4. Abalone dataset: nonlinear projection from 7 to 2 dimensions by a SOM (above)
and by Isotop (bottom); the gray level of each prototype is proportional to the mean
age of the shells it represents (black is young and white is old)
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