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Abstract. In many data mining applications, the data manifold is of
lower dimension than the dimension of the input space. In this paper, it is
proposed to take advantage of this additional information in the frame of
variational mixtures. The responsibilities computed in the VBE step are
constrained according to a discrepancy measure between the Euclidean
and the geodesic distance. The methodology is applied to variational
Gaussian mixtures as a particular case and outperforms the standard
approach, as well as Parzen windows, on both artificial and real data.

1 Introduction

Finite mixture models [1] are commonly used for clustering purposes and mod-
eling unknown densities. Part of their success is due to the fact that their pa-
rameters can be computed in an elegant way by the expectation-maximization
algorithm (EM) [2]. Unfortunately, it is well known that mixture models suffer
from an inherent drawback. EM maximizes iteratively the data log-likelihood,
which is an ill-posed problem that can lead to severe overfitting; maximizing the
likelihood may result in setting infinite probability mass on a single data point.

Among others, the variational Bayesian framework was introduced in order
to avoid this problem [3]. In variational Bayes (VB) a factorized approximation
of the joint posterior of the latent variables and the model parameters is used
in order to compute a variational lower bound on the marginal data likelihood.
In addition, VB allows determining the optimal number of components in the
mixture by comparing the value of this variational lower bound. In [4] a variant
was proposed to perform automatic model selection.

Recently, manifold Parzen [5] was introduced in order to improve nonpara-
metric density estimation when the data is lying on a manifold of lower dimen-
sionality than the one of the input space. In this paper, a related technique for
variational mixtures is proposed by constraining the responsibilities according
to the mismatch between the Euclidean and the geodesic distance. The key idea
is to favor the directions along the manifold when estimating the unknown den-
sity, rather than wasting valuable density mass in directions perpendicular to the
manifold orientation. The approach is applied to VB Gaussian mixtures as a par-
ticular case. Manifold constrained variational Gaussian mixtures (VB-MFGM)
are compared experimentally to standard VB-FGM and standard Parzen.
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2 Variational Bayes for Mixtures Models

Let X = {xn}N
n=1 be an i.i.d. sample, Z = {zn}N

n=1 the latent variables asso-
ciated to X and Θ = {θm}M

m=1 the model parameters, M being the number of
mixture components. Finite mixture models are latent variable models in the
sense that we do not know by which component a data sample was generated.
We may thus associate to each data sample xn a binary latent vector zn, with
latent variables znm ∈ {0, 1} that indicate which component has generated xn

(znm = 1 if xn was generated by component m and 0 otherwise).
In Bayesian learning, both the latent variables Z and the model parameters

Θ are treated as random variables. The quantity of interest is the marginal data
likelihood, also called incomplete likelihood (i.e. of the observed variables only).
For a fixed model structure HM , it is obtained by integrating out the nuisance
parameters Z and Θ:

p(X |HM ) =
∫

Θ

∫
Z

p(X,Z,Θ|HM )dZdΘ . (1)

This quantity is usually untractable. However, for any arbitrary density q(Z,Θ)
a lower bound on p(X |HM ) can be found using Jensen’s inequality:

log p(X |HM ) ≥
∫

Θ

∫
Z

q(Z,Θ) log
p(X,Z,Θ|HM )

q(Z,Θ)
dZdΘ (2)

= log p (X |HM ) − KL [q(Z,Θ)||p (Z,Θ|X,HM )] , (3)

where KL[·] is the Kullback-Leibler (KL) divergence. It is easily seen from (3)
that the equality holds when q(Z,Θ) is equal to the joint posterior p(Z,Θ|X,HM).

In VB, the variational posterior approximates the joint posterior by assuming
the latent variables and the parameters are independent:

p(Z,Θ|X,HM ) ≈ q(Z,Θ) = q(Z)q(Θ) . (4)

By assuming this factorization, the lower bound (2) on the marginal likelihood
is tractable and the gap between both can be minimized by minimizing the KL
divergence between the true and the variational posterior. Setting the derivatives
of KL with respect to q(Z) and q(Θ) to zero results in an EM-like scheme [6]:

VBE step : q(Z) ∝ exp (EΘ{log p(X,Z|Θ,HM )}) . (5)
VBM step : q(Θ) ∝ p(Θ|HM ) exp (EZ{log p(X,Z|Θ,HM )}) . (6)

In these equations EΘ{·} and EZ{·} denote respectively the expectation with
respect to Θ and Z, and p(X,Z|Θ,HM ) is the complete likelihood (i.e. of the
observed and unobserved variables). Note also that the prior p(Θ|Hm) on the
parameters appears in (6). If we choose p(Θ|Hm) conjugate1 to the exponen-
tial family, learning in the VB framework consists then simply in updating the
parameters of the prior to the parameters of the posterior.
1 The prior p(Θ) is said to be conjugate to r(Θ) if the posterior q(Θ) is of the same

form as p(Θ), that is q(Θ) ∝ p(Θ)r(Θ). In (6), r(Θ) is of the exponential family.
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Since sample X is i.i.d., the posterior q(Z) factorizes to
∏

n q(zn). Fur-
thermore, in the case of mixture models q(zn) factorizes as well, such that
q(Z) =

∏
n

∏
m q(znm). The resulting VBE step for mixture modes is:

q(znm) ∝ exp (Eθm{log p(xn, zn|θm,HM )}) , (7)

where Eθm{·} is the expectation with respect to θm. As in EM, the quantities
computed in the VBE step are the responsibilities, each of them being propor-
tional to the posterior probability of having a componentm when xn is observed.

3 Manifold Constrained Mixtures Models

Nonlinear data projection techniques [7,8] aim at finding the lower dimensional
data manifold (if any) embedded in the input space and at unfolding it. A central
concept is the geodesic distance, which is measured along the manifold and not
through the embedding space, akin the Euclidean distance. The geodesic distance
thus takes the intrinsic geometrical structure of the data into account.

Data Manifold. Consider two data points xi and xj on the multidimensional
manifold M of lower dimensionality than the one embedding space. The geodesic
distance between xi and xj is defined as the minimal arc length in M connect-
ing both data samples. In practice, such a minimization is untractable. However,
geodesic distances can easily be approximated by graph distances [9]. The prob-
lem of minimizing the arc length between two data samples lying on M reduces
to the problem of minimizing the length of path (i.e. broken line) between these
samples, while passing through a number of other data points of M. In order
to follow the manifold, only the smallest jumps between successive samples are
permitted. This can be achieved by using either the K-rule, or the ε-rule. The
former allows jumping to the K nearest neighbors. The latter allows jumping to
samples lying inside a ball of radius ε centered on them. Below, we only consider
the K-rule as the choice for ε is more difficult in practice.

The data and the set of allowed jumps constitute a weighted graph, the
vertices being the data, the edges the allowed jumps and the edge labels the
Euclidean distance between the corresponding vertices. In order to be a distance,
the path length (i.e. the sum of successive jumps) must satisfy the properties of
non-negativity, symmetry and triangular inequality. The first and the third are
satisfied by construction. Symmetry is ensured when the graph is undirected.
For the K-rule, this is gained by adding edges as follows: if xj belongs to the K
nearest neighbors of xi, but xi is not a neighbor of xj then the corresponding
edge is added. Besides, extra edges are added to the graph in order to avoid
disconnected parts. For this purpose a minimum spanning tree [10] is used.

The only remaining problem for constructing the distance matrix of the
weighted undirected graph is to compute the shortest path between all data
samples. This is done by repeatedly applying Dijkstra’s algorithm [11], which
computes the shortest path between a source vertex and all other vertices in a
weighted graph provided the labels are non-negative (which is here the case).
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Manifold Constrained VBE step. Let us denote the Euclidean and graph
distances (i.e. approximate geodesic distances) between sample xn and the com-
ponent center µm by δe(xn,µm) and δg(xn,µm) respectively. The exponential
distribution E(y|η, ζ) = ζ−1 exp {−(y − η)/ζ} is suitable to measure the discrep-
ancy between both distances by setting η to δe(xn,µm)2 and y to δg(xn,µm)2,
since δe(xn,µm) ≤ δg(xn,µm). The manifold constrained responsibilities are
obtained by penalizing the complete likelihood by the resulting discrepancy:

q′(znm) ∝ exp
(
Eθm{log p(xn, zn|θm,HM )E(δg(xn, µm)2|δe(xn, µm)2, ζ = 1)})

≈ q(znm) exp
(
δe(xn, αm)2 − δg(xn, αm)2

)
, (8)

where it is assumed that the variance of µm is small and αm = Eθm
{µm}. Choos-

ing ζ equal to 1 leaves the responsibility unchanged if both distances are iden-
tical. However, when the mismatch increases, q′(znm) decreases, which means
that it is less likely that xn was generated by m because the corresponding
geodesic distance is large compared to the Euclidean distance. This results in a
weaker responsibility, reducing the influence of xn when updating the variational
posterior of the parameters of m in the VBM step.

4 Manifold Constrained Variational Gaussian Mixtures

In this section, the manifold constrained variational Bayes machinery is applied
to the Gaussian mixture case. A finite Gaussian mixture (FGM) [1] is a linear
combination ofM multivariate Gaussian distributions with means {µm}M

m=1 and
covariance matrices {Σm}M

m=1: p̂(x) =
∑M

m=1 πmN (x|µm,Σm), with x ∈ R
d.

The mixing proportions {πm}M
m=1 are non-negative and must sum to one. Their

conjugate prior is a Dirichlet p(π1, ..., πM ) = D(π1, ..., πM |κ0) and the conju-
gate prior on the means and the covariance matrices is a product of Normal-
Wisharts p(µm,Σm) = N (µm|α0,Σm/β0)W

(
Σ −1

m |γ0,Λ0

)
. The variational

posterior factorizes similarly as the prior and is of the same functional form.
The posterior on the mixture proportions q(π1, ..., πM ) are jointly Dirichlet
D(π1, ..., πM |κ1, ..., κm) and the posterior on the means and the covariance ma-
trices q(µm,Σm) are Normal-Wishart N (µm|αm,Σm/βm)W (

Σ −1
m |γm, Λm

)
.

Training Procedure. The parameters of manifold constrained variational
Gaussian mixtures (VB-MFGM) can be learnt as follows:
1. Construct the training manifold by the K-rule and compute the associated

distance matrix δg(xi,xj) by Dijkstra’s shortest path algorithm.
2. Repeat until convergence:

Update the distance matrix of the expected component means.
Find for each αm the K nearest training samples {xk}K

k=1 and compute
its graph distances to all training data: δg(xn,αm) = mink{δg(xn,xk)+
δe(xk,αm)}.

VBE step. Compute the manifold constrained responsibilities using (8):

q′(znm) ∝ π̃mΛ̃ 1/2
m exp

{
−γm

2
(xn − αm)T Λm (xn − αm) − d

2βm

}

× exp
{
δe(xn, αm)2 − δg(xn, αm)2

}
, (9)
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where log π̃m ≡ ψ(κm) − ψ (
∑

m κm) and log Λ̃m ≡ ∑d
i=1 ψ

(
γm+1−i

2

)
+

d log 2 − log |Λm|, with ψ(·) the digamma function.
VBM step. Update the variational posteriors by first computing the fol-

lowing quantities:

µ̄m =

∑
n q′(znm)xn∑

n q′(znm)
, Σ̄m =

∑
n q′(znm)C(xn, µ̄m)∑

n q′(znm)
, π̄m =

∑
n q′(znm)

N
,

where C(xn, µ̄m) = (xn − µ̄m) (xn − µ̄m)T. Next, update the parame-
ters of the posteriors:

αm =
Nπ̄mµ̄m + β0α0

βm
, βm = Nπ̄m + β0 , γm = Nπ̄m + γ0 , (10)

Λ −1
m = Nπ̄mΣ̄m +

Nπ̄mβ0C(µ̄m, α0)

βm
+ Λ −1

0 , κm = Nπ̄m + κ0 . (11)

The computational overhead at each iteration step is limited with respect to
standard VB-FGM, as the number of components in the mixture is usually small
and updating δg(xn,αm) does not require to recompute δe(xi,xj).

5 Experimental Results and Conclusion

In order to asses the quality of the density estimators the average negative
log-likelihood of the test set {xq}Nt

q=1 is used: ANLL = − 1
Nt

∑Nt

q=1 log p̂(xq).
In the following, VB-MFGM is compared to standard VB-FGM and standard
nonparametric density estimation (Parzen) [12] on artificial and real data.

The first example is presented for illustrative purposes. The data samples
are generated from a two dimensional noisy spiral: x1 = 0.04t sin t + ε1 and
x2 = 0.04t cos t + ε2, where t follows a uniform U(3, 15) and ε1, ε2 ∼ N (0, .03)
is zero-mean Gaussian noise in each direction. The training, validation and test
sets have respectively 300, 300 and 10000 samples. The optimal parameters are
M = 15 andK = 5. The estimators are shown in Figure 1. On the one hand, VB-
MFGM avoids manifold related local minima in which standard VB-FGM may
get trapped into by forcing the expected component centers to move through
the training manifold and the covariance matrices to be oriented along it. On
the other hand, VB-MFGM clearly produces smoother estimators than Parzen.

In order to asses the performance of VB-MFGM on a real data set, the density
of the Abalone2 data is estimated after normalization. Note that the information
regarding the sex is not used. The available data is divided in 2500 training, 500
validation, and 1177 test points. The optimal parameters areM = 7 andK = 20.
The optimal width of the Gaussian kernel in Parzen is 0.17. The ANLL of test
set for Parzen windows, VB-FGM and VB-MFGM are respectively 2.49, 0.84
and 0.37. Remark that the improvement of VB-MFGM compared to VB-FGM
is statistically significant (the standard error of the ANLL is 0.025).

2 The Abalone data is available from the UCI Machine Learning repository:
htttp://www.ics.uci.edu/ mlearn/MLRepository.html.
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(a) Learn. Manif. (b) VB-MFGM (-.50). (c) VB-FGM (-.45). (d) Parzen (-.48)

Fig. 1. Training manifold of a noisy spiral, as well as the VB-MFGM, the standard

VB-FGM and the Parzen window estimator. For each one, the ANLL of the test set is

between parentheses (and the best is underlined).

Conclusion. The knowledge that the data is lying on a lower dimensional man-
ifold than the dimension of the embedding space can be exploited in the frame of
variational mixtures. By penalizing the complete data likelihood, the responsi-
bilities (VBE step) are biased according to a discrepancy between the Euclidean
and the geodesic distance. Following this methodology, manifold constrained
variational Gaussian mixtures (VB-MFGM) were constructed. It was demon-
strated experimentally that the resulting estimators are superior to standard
variational approaches and nonparametric density estimation. In the future, we
plan to investigate alternative mismatch measures.
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