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Abstract. Input variable selection is a key preprocess step in any I/O
modelling problem. Normally, better generalization performance is ob-
tained when unneeded parameters coming from irrelevant or redundant
variables are eliminated. Information theory provides a robust theoretical
framework for performing input variable selection thanks to the concept
of mutual information. Nevertheless, for continuous variables, it is usu-
ally a more difficult task to determine the mutual information between
the input variables and the output variable than for classification prob-
lems. This paper presents a modified approach for variable selection for
continuous variables adapted from a previous approach for classification
problems, making use of a mutual information estimator based on the
k-nearest neighbors.

1 Introduction

Input variable selection is a very important preprocessing step in any supervised
or unsupervised learning problem. Having a number of irrelevant or redundant
input variables can lead to overfitting and to a poor generalization of the model
[3]. Furthermore in models that suffer from the curse of dimensionality in the
number of input variables like grid-based fuzzy models [5], input variable selec-
tion becomes essential.

Two main trends can be followed to perform this process. Filter methods try
to select the variables in a preprocess step with the only information that the
I/O values bring. Wrapper methods employ the learning methodology that is
going to be used, in order to select the subset of variables that brings the best
performance. In both cases, there are two options to perform the “selection” of
the variables subset. On the one hand it is possible to select a subset of the
original variables (feature selection or input variable selection). On the other
hand the initial set of input variables can be replaced by a new subset of variables
that are usually obtained by linear or nonlinear transformations of the original
ones (feature extraction or input variable extraction).

This paper deals with filter methods for feature selection. Filter methods have
the great advantage that the model has no influence on the selected variables.
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Thus they can be used as a completely separated preliminary step to the In-
put/Output (I/O) modelling problem. Several methodologies for input variable
selection exist in the literature for both feature selection and feature extraction
approaches. Principal component analysis (PCA) and kernel-PCA algorithms
are examples of feature extraction methods [2,3,4]. Feature selection methods
have the advantage that the meaning or understandability of the input variables
of the problem is kept in the model.

For input variable selection, information theory offers a good theoretical envi-
ronment for variable filtering thanks to the concepts of entropy and mutual in-
formation (MI) between variables [11]. Nevertheless, for regression problems it is
a harder task to use these concepts. In regression the input and output variables
take continuous values, and additional techniques have to be used to estimate
the probability distribution [1]. This problem becomes even more pronounced
specially when the number of data points is low comparing to the number of
input variables (DNA Micro-arrays, etc.). Among the techniques to estimate
the probability density functions (PDF) we can find histogram and kernel-based
PDF estimators. But those estimators suffer from the curse of dimensionality
and can be used for problems with a low number of variables.

A number of estimators for the entropy based on the k-nearest neighbor statis-
tics also exist. Only recently they have been extended to the mutual information
estimation by Kraskov et al [9,10]. A nice property of this estimator is that it
can be used easily for sets of variables.

Using the concept of mutual information between two or more variables, a
number of algorithms could be designed [1,7,8]. This paper presents a modifica-
tion of the work presented in [6], adapted for continuous variables thanks to the
use of the MI estimator based on the k-nearest neighbors [9]. The simulations
section presents the application of the new methodology to Least Squares Sup-
port Vector Machines (LS-SVMs). It is also compared with other recent input
variable selection methods presented in the literature.

The rest of the paper is organized as follows. Section 2 briefly explains the mu-
tual information concept for continuous variables (subsection 2.1); it overviews
the k-nearest neighbors estimator that is used (subsection 2.2); and finally
presents the proposed algorithm for variable selection based on MI (subsection
2.3). Section 3 shortly reviews the basics of the LS-SVMs. Section 4 presents ex-
amples of application of the variable selection methodology. Section V presents
the main conclusions drawn from the study.

2 Effective Feature Selection Based on the Mutual
Information

In this section the basics of the proposed variable selection algorithm are pre-
sented. First the mutual information concept for continuous variables is briefly
explained, followed by a k-nearest neighbors procedure to estimate it. Finally
the algorithm, which is an adaptation of a previous work for discrete cases in
[6], is presented.
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2.1 Mutual Information

Given a single-output multiple input (MISO) function approximation or classi-
fication problem, with input variables X = [x1, x2, . . . , xn] and output variable
Y = y, the main goal of a modelling problem is to reduce the uncertainty on
the dependent variable Y . According to the formulation of Shannon, and in the
continuous case, the uncertainty on Y is given by its entropy defined as

H(Y ) = −
∫

μY (y) log μY (y)dy, (1)

considering that the marginal density function μY (y) can be defined using the
joint PDF μX,Y of X and Y as

μY (y) =
∫

μX,Y (x, y)dx. (2)

Given that we know X , the resulting uncertainty of Y conditioned to known
X is given by the conditional entropy, defined by

H(Y |X) = −
∫

μX(x)
∫

μY (y|X = x) log μY (y|X = x)dydx. (3)

The joint uncertainty on the [X, Y ] pair is given by the joint entropy, defined
by

H(X, Y ) = −
∫

μX,Y (x, y) log μX,Y (x, y)dxdy. (4)

The mutual information (also called cross-entropy) between X and Y can
be defined as the amount of information that the group of variables X provide
about Y , and can be expressed as

I(X, Y ) = H(Y ) − H(Y |X). (5)

In other words, the mutual information I(X, Y ) is the decrease of the un-
certainty on Y once we know X . Due to the mutual information and entropy
properties, the mutual information can also be defined as

I(X, Y ) = H(X) + H(Y ) − H(X |Y ), (6)

leading to

I(X, Y ) =
∫

μX,Y (x, y) log
μX,Y (x, y)

μX(x)μY (y)
dxdy. (7)

Thus, only the estimate of the joint PDF between X and Y is needed to
estimate the mutual information between two groups of variables.

Estimating the joint probability distribution can be performed using a number
of techniques. As mentioned already, histograms and kernel density estimators
have been used for this purpose [1]. The next subsection will shortly review how
to use a k-nearest neighbors methodology to estimate the MI.
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2.2 Estimating the Mutual Information Using the k-Nearest
Neighbors

There is extensive literature about estimators based on the k-nearest neighbors
for the entropy, but it has been only recently extended to the MI [9].

Thanks to that estimator, it is possible to use sets of variables in the estimation
of the MI, and thus it will allow to adapt the method presented in [6].

We define the space Z = X, Y and we will use the maximum norm for any
pair of points z = (x, y) and z′ = (x′, y′),

‖z − z′‖ = max{‖x − x′‖, ‖y − y′‖}, (8)

although any other norm could be used. Denote by ε(i) the distance from a
point zi to it is k-th nearest neighbor and by εx(i) and εy(i) the distances
between the same points projected into the X and Y subspaces. Obviously ε(i) =
max{εx(i), εy(i)} .

We will count the number nx(i) of points xj whose distance from xi is strictly
less than ε(i), and similarly for y instead of x. The estimate for MI is then (see
[9] for a proof of the convergence of this estimator)

Î1(X, Y ) = ψ(k) − 1
N

N∑
i=1

[ψ(nx(i) + 1) + ψ(ny(i) + 1)] + ψ(N), (9)

where ψ is the digamma function given by

ψ(t) =
Γ ′(t)
Γ (t)

=
d

dt
ln Γ (t). (10)

Function ψ satisfies the recursion ψ(x + 1) = ψ(t) + 1/x and ψ(1) = C where
C = −0.5772156 . . . is the Euler-Mascheroni constant.

Another alternative is to replace nx(i) and ny(i) by the number of points with
‖xi − xj‖ ≤ εx(i)/2 and ‖yi − yj‖ ≤ εy(i)/2. The estimate for MI is then

Î2(X, Y ) = ψ(k) − 1
k

− 1
N

N∑
i=1

[ψ(nx(i)) + ψ(ny(i))] + ψ(N). (11)

In this paper this second estimator is used, which is the one implemented in
[10]. Please check [9] for an extended explanation.

As can be noted, this MI estimator has a dependency on the value chosen for
k (k-th nearest neighbor). As it is recommended in [12] for a tradeoff between
variance and bias, in the examples, a mid-range value for k (k = 6) will be used.

2.3 Effective Variable Selection for Function Approximation
Problems Using MI

The MI estimator detailed above will allow us to carry out the proposed variable
selection method. It also gives the possibility of estimating the MI for groups of
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variables even when the number of data points we have at disposal is relatively
small.

In the following it is reviewed how the MI can be used for variable selec-
tion, and it is presented the proposed method for variable selection in function
approximation problems.

According to the definition of MI, I(X, Y ) gives the information that the
group of variables X bring about Y . Any modelling problem would try to use
this information and try to predict new values of Y given new values of X . As
mentioned before, having unneeded variables can unnecessarily complicate the
model. Furthermore the generalization capability can be decreased. Thus it is
essential to select a right subset XG ⊂ X that comprises the same information
that X has of Y . That is, we want to find a subset XG ⊂ X such that

I(X, Y ) ∼= I(XG, Y ). (12)

We could directly try to evaluate I(XG, Y ) for all the possible subsets XG of
X , and then select the smallest subset X ′

G, whose I(XG, Y ) is the highest. In
this way irrelevant and redundant variables would not be selected in the optimal
X ′

G. This approach suggested in [13] and [1], and partially in [8] has two main
drawbacks. First the number of possibilities for XG is exponential in the number
of input variables n (2n possible subsets). Second, as the number of available
data is limited, the robustness of the k-nearest neighbor MI estimator is also
limited when taking into account too many input variables in XG.

Other approaches could consider the MI of single input variables over the
output variable I(xi, Y ) to perform a ranking and use it as a filter to eliminate
variables [7]. This approach is very good for avoiding irrelevant variables but
does not consider redundant ones. For example two variables xi and xj can have
a very high MI with respect the output variable Y , but using both of them can
bring no more MI w.r.t the output variable. In this case I({xi, xj}, Y ) is similar
to I(xi, Y ) and I(xj , Y ), and thus one could be discarded.

A more robust approach would be to try selecting input variables as the MI
with respect to the output variable of the selected subset increases. An iterative
process would add a new variable to the current subset such that

I({XG ∪ xi}, Y ) − I(XG, Y ), (13)

is maximum over j. Nevertheless, as mentioned before, if the number of variables
to be selected is high, the precision of the MI estimator can be lost. The results
offered by the MI estimator, as exposed in [9] are optimal when the number of
data points is very high, but in practice this is rarely the case.

Here it is proposed to adapt the method for discrete variables presented in [6]
to function approximation problems (i.e. to continuous variables). An iterative
backwards variable selection will be performed, starting from the complete set
of variables X . The idea is to eliminate a variable xi in the current selected
subset XG ∪ {xi} ⊂ X if we estimate that I({XG ∪ {xi}}, Y ) = I(XG, Y ). To
help in this iterative procedure, the concept of Markov blanket, adapted for this
problem, will be used. We will suppose that this concept can be applied for the
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specific variable selection problem we deal with. The use of Markov blankets [15]
implies strong conditioning between the variables. Nevertheless it will be relaxed
to help us performing the variable selection.

Definition: Let M be a set of variables that do not contain xi. We say that M
is a Markov blanket for xi if I({M ∪ xi}, X − {M ∪ xi}) ∼= I(M, X − {M ∪ xi})

Corollary: Let XG be a subset of variables and xi a variable in XG. Assume
that a subset M of XG is a Markov blanket of xi. Then I(XG, Y ) ∼= I(XG −
{xi}, Y ).

As we can see, the Markov blanket condition is stronger than the one we
desire. It can be even a harder problem to find a Markov blanket of a variable
in a set of variables that the variable selection problem itself. However it brings
the idea on how to perform a more robust variable selection procedure. The
difficult evaluation of I({XG ∪ {xi}}, Y ) = I(XG, Y ) to eliminate variables, will
be transformed into estimating if xi has a Markov blanket in XG. Those xi will
be removed from the current XG.

As already mentioned, calculating the Markov blanket of a variable in a set,
or even trying to know if it exists is a very difficult task. Therefore it will be as-
sumed that the Markov blanket exists, and we will derive a heuristic to guess the
variables M that compose the Markov blanket of any variable xi. The proposed
algorithm is the following:

1. Calculate the MI between every two input variables I(xi, xj)
2. Starting from the complete set of input variables XG = X , iterate:

(a) For each variable xi, let the candidate Markov blanket Mi be the set of
p variables in XG for which I(xi, xj) is highest.

(b) Compute for each xi

Lossi = I({Mi ∪ xi}, Y ) − I(M, Y ). (14)

(c) Choose the xi for which Loss′i is lowest and eliminate x′
i from XG.

The procedure may be stopped after a fixed number of input variables are
eliminated; alternatively it may be stopped when Loss′i reaches a certain thresh-
old. This methodology is suboptimal in some aspects, but still offers a robust
variable selection methodology. The Markov blanket selected for every variable
is just an approximation and the number p of variables is fixed a priori. With
respect to parameter p, high values can bring better chances that the pseudo-
Markov blankets taken subsume real Markov blankets of the variables. However,
the reliability of the MI estimator can be decreased. Considering this trade off,
in general, a medium value of p should be considered. For problems with low
number of data points, a lower value for p should be taken.

As we will see in the simulation section, the method proposed can outperform
the other methods commented in this paper: it can therefore be a good solution
for the key problem of variable selection in regression or function approximation
problems.



Effective Input Variable Selection for Function Approximation 47

3 Least-Squares Support Vector Machines

This section presents a brief introduction to the learning methodology used in
the simulations. LS-SVMs are reformulations to standard SVMs, closely related
to regularization networks and Gaussian processes but additionally emphasize
and exploit primal-dual interpretations from optimization theory. LS-SVMs are
a paradigm specially well suited for function approximation problems [4].

The LS-SVM model [14] is defined in its primal weight space by

ŷ = WT φ(X) + b, (15)

where WT and b are the parameters of the model, φ(X) is a function that
maps the input space into a higher-dimensional feature space and X is the n-
dimensional vector of inputs xi. In Least Squares Support Vector Machines for
function approximation, the following optimization problem is formulated,

min
W,b,e

J(W, e) =
1
2
WT W + γ

1
2

N∑
i=1

e2
i , (16)

subject to the equality constraints (inequality constraints in the case of SVMs)

ei = yi − ŷi(Xi), i = 1 . . .N. (17)

Solving this optimization problem in dual space leads to finding the λi and b
coefficients in the following solution

ŷi =
N∑

i=1

λiK(X, Xi) + b, (18)

where the function K(X, Xi) is the kernel function defined as the dot product
between the φ(X) and φ(Xi) mappings. If we consider Gaussian kernels, the
width of the kernel σi together with the regularization parameter γ, are the
hyper-parameters of the problem. Note that in the case of Gaussian kernels, the
obtained model resembles Radial Basis Function Networks (RBFN), with the
particularities that there is an RBF node per data point, and that overfitting is
controlled by a regularization parameter instead of by reducing the number of
kernels [7]. In LS-SVM, the hyper-parameters of the model are usually optimized
by cross-validation.

4 Simulations

This section presents the application of the variable selection method proposed
in this paper to a significant example. The MI estimator in [10] will be used in
all the simulations. A LS-SVM Matlab toolbox can be found in [14]. The error
measure used here is the Normalized Mean Square Error, NMSE [7].

The example considered has been taken from [7] and is a spectrometric data
set coming from the food industry. This type of data form vectors with a large
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number of exploitable variables. Usually however, only a small subset of them
is required to build a good model. The “tecator meat” data set consist of 100
spectral input variables and one output variable (the original data set has three,
but we consider only the fat content). It relates to the determination of the fat
content of meat samples analyzed by near infrared transmittance spectroscopy.
This data set contains 172 training spectra and 43 test spectra. As in [7], the
spectra are reduced to zero mean and unit variance. Also to avoid loosing in-
formation, the original mean and standard deviation are kept as two additional
variables. A selection of training spectra is shown in Figure 1.

Fig. 1. A selection of the spectra from the “tecator meat” data set

In [7], first an initial subset of 16 variables is selected. Using them, a LS-SVM is
optimized using cross-validation. The test NMSE obtained for this case is 0.0040.
Next, all 216 possible subsets of variables are tested, checking which subset of
those 16 variables brings the highest MI with respect to the output variable. The
optimal subset found had 8 variables. The test NMSE on the LS-SVM model is
0.0049. Note that in the comparisons presented in this section, there are some
differences with the results shown in [7], since the second estimator Î2(X, Y ) was
used here.

Next we proceed by selecting 16 most significant variables using the approach
proposed in this paper (for example using p = 6). The test NMSE obtained after
the optimization of the LS-SVM is 0.0022. As can be seen, the initial subset
selected by our method has a higher performance than the one selected by the
approach in [7]. Forcing the number of variables to 8 (with parameter p = 6) to
compare with the sub-set selected in [7], the test NMSE was 0.0024.

With respect to the value of the parameter p, similar results of NMSE with
16 variables were given by other values of p both in training and in test, showing
the efficiency of the method eliminating irrelevant and redundant variables. For
very low values of p, the training and test errors were even lower (test NMSE
for p = 1 is 0.0016). It is noticeable that the variables selected for different
values of p are remarkably different. This is due to the high level of redundan-
cies that exist among the input variables and also to the low number of data
points that we handle in this problem. In problems like this one, there are usually
several possibilities of suboptimal subsets of variables, instead of a single
optimal set.
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For this problem the results obtained show that lower values of p provide bet-
ter results both for training and test data sets. But during the filtering process,
there are also some details that suggest discarding higher values for p. The loss
function (see Eq. 14) for high values of p does not follow an increasing trend. We
have a low number of data points and very high redundancies among the input
variables. Thus the MI estimator can provide confusing results.

Taking p = 1, we will now look for a final pseudo-optimal subset of variables.
As mentioned before, we could have in principle two possible stopping criteria in
our algorithm. One is to specify a number of input variables to be selected. This
number could be chosen according to the results of the model on the subsets of
variables. In this case, the method would become a mixture of filter and wrapper.
A good stopping criterion would be to select the subset that brought the best
training error after the cross-validation optimization of the LS-SVM model.

Nevertheless, in order not to loose the filtering advantage of the method, a
possible heuristics is to select a limit in the loss function in Eq. 14. In Figure 2
the evolution of the loss function in Eq. 14 in the iterative process is shown, for
p = 1. From this graph we can get an idea on how much information is lost as
variables are discarded in the iterative process. We saw that selecting a subset
of 16 variables leads to good performance. For this value, the Loss′ is around
0.23. Consequently we establish a limit of 0.26, that corresponds to the next
peak in the graph. From this threshold no more variables will be eliminated.
Finally, the optimal subset contains 11 variables and the performances are test
NMSE = 0.0016 and training NMSE = 0.0010. Other tests showed that further
elimination of variables leads to a small worsening of the performances (both in
training and test), increasing as more variables are discarded.

Fig. 2. Evolution of the Loss′ function in the run of the algorithm with p = 1

5 Conclusions and Further Work

In this paper it was presented an effective backward variable selection method for
function approximation problems, based on the concept of MI, adapted from a
previous method for classification problems. It is a robust approach compared to
other ones from the literature, thanks to the use of the Markov blanket concept.
As further work, we intend to design a general methodology to select the number
of input variables to be discarded. Furthermore the application of the method
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in other domains, in particular in time series prediction, will be investigated to
help solving the difficult problem of deciding which variables should intervene
in the prediction model.
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