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Abstract. This paper presents an alternative for center-based clustering algo-
rithms, in particular the k-means algorithm, via statistical learning analysis. The 
essence of statistical learning principle, i.e., both the empirical risk and structural 
assessment, is taken into particular consideration for the clustering algorithm so 
as to derive and develop the relevant minimization mathematical criterion with 
automatic parameter learning and model selection in parallel. The proposed algo-
rithm roughly decides on the number of clusters, by earning activation for the 
winners and assigning penalty for the rivals, so that the most competitive center 
wins for possible prediction and the extra ones are driven far away when starting 
the algorithm from a too large number of clusters without any prior knowledge. 
Simulation experiments prove the feasibility of the algorithm and show good 
performances of the double learning tasks during clustering.  

1   Introduction 

Clustering, an unsupervised learning process to pursue natural groups among unla-
beled data, is one of the most important tasks in Intelligent Computing and Machine 
Learning. Typically, there is still no perfect solution for the generation and evaluation 
of clusters. Clustering algorithms proposed in the literature try to seek the minimiza-
tion of certain mathematical criterion as good as possible [1-4].  

In practice, center-based clustering has shown its generality, maneuverability and 
effectiveness for many applications [1-3]. Usually assuming that each cluster adheres 
to a unimodal distribution, center-based clustering algorithms try to make each center 
describe the truth in a single cluster drawn from one mode. However, there still re-
main some problems not yet completely solved in center-based clustering. First, the 
best value for the number of clusters is not always clear; it is usually required to spec-
ify the number of clusters beforehand in most cases, which is often an ad hoc decision 
based on prior knowledge, assumptions, and practical experience, and becomes more 
difficult in a high dimensional space. Second, in mixture distribution cases, it is still a 
NP hard problem to select and partition data into approximately original clusters 
which capture and reflect the natural attributes among data.  
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In virtue of statistical tools, problems existing in clustering could be to some extent 
discovered, analyzed and solved. Classical statistics typically focuses on sufficient 
statistic cases, while statistical learning theory is a machine learning principle to ex-
plore the inherent distribution, dependence structure, and generalization ability as 
good as possible from a finite sample size [5, 6]. Vapnik first put forward statistical 
learning theory for model complexity based on a minimal capacity measure - VC 
dimension confidence [5]. Lei Xu also proposed a general statistical learning frame-
work, Bayesian Ying-Yang harmony learning theory, for simultaneous parameter 
learning and model selection [6]. 

In this paper, with the help of the general statistical learning principle from a direct 
perspective, we heuristically explore an alternative conceptually equivalent to the 
previous work [4, 7], for center-based clustering algorithms, in particular for k-means 
algorithm, by taking both the empirical risk and structural assessment into considera-
tion. We derive the relevant minimization mathematical criterion with joint parameter 
learning and model selection, try to seek one solution to learn about both the range 
and the number of the clusters in mixture distribution cases simultaneously, and ac-
complish the double learning tasks during clustering procedure. Simulation experi-
ments prove the feasibility of the algorithm and show good performances for both the 
clustering itself and the estimation on the number of clusters. 

2   Center-Based Clustering Algorithms 

Center-based clustering algorithms consider that each cluster follows a unimodal 
distribution and attempt to seek centers from natural clusters [3]. Given an input data 
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 in a machine learning system. The k-means 

algorithm is one of the most popular center-based clustering algorithms. The basic 
idea of k-means algorithm is to partition data into clusters with the objective that tries 
to achieve the minimization of the total intra-cluster variance, or, the Mean Square 
Error (MSE) function [1]. Similar to the k-means algorithm, the Expectation-
Maximization (EM) algorithm for mixtures of Gaussians is another widely studied 
method in center-based clustering algorithms, which maximizes the likelihood estima-
tion in probabilistic models that depends on unobserved latent variables [2].  

In this paper, for the center-based clustering algorithms, we lay emphasis on the  
k-means algorithm and explore some improvements. In general, the membership for 
k-means algorithm is: 
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where ( , )t jd x y  is the similarity measure between tx  and jy , and each input is 

assigned to the nearest cluster label tl . The objective function for optimization in the 

k-means algorithm is the Mean Square Error function as follows: 
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Here Y  is obtained by minimizing this objective function minY MSEE . Only one 

winner tl  is activated and its corresponding inner center 
t

yl  is modified, while the 

rest remain all the same. This basic clustering algorithm takes the conventional com-
petitive learning of winner-take-all (WTA) learning [1].  

3   Clustering Via Statistical Learning Analysis    

In most cases, the performance of the above classical center-based clustering algo-
rithm greatly depends on the number of clusters fixed in advance and contributes to 
good clustering results only if the number of clusters has already been known as prior 
knowledge. However, when the number of clusters is unknown beforehand, it will be 
quite difficult to achieve a reasonable solution.  

In order to tackle this problem, an alternative clustering mechanism is directly in-
spired from statistical learning analysis. The essence of statistical learning analysis is 
to achieve Structural Risk Minimization instead of Empirical Risk Minimization, as a 
sound statistical basis for the assessment of model adequacy [5]. Given that the learn-
ing model is completely unknown, the goal for clustering here not only concerns the 
issue of parameter learning, but also attaches great importance to the construction of 
the predictive models from the data to be learned.  

3.1   Membership Hypothesis 

One typical membership hypothesis is first specifically considered [7], so that not 
only the winner would be modified to adapt to the input, but also its rival will receive 
some penalty:  
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where 
1

K

j jn nγ
=

= ∑ ll
, is the relative winning frequency of the inner representa-

tion jy , as a conscience strategy to reduce the winning probability of certain frequent 

winners to some extent, and jn is the cumulative number of the occurrences of 

( ) 1j tM y x =  during the past learning. When starting from a number of clusters that 

is larger than the natural number of groups in the dataset, the aim is to automatically 
adjust the effective number of clusters.  

3.2   Objective Function 

On the basis of the above membership hypothesis, the clustering procedure here will 
not only be determined by the winner, but also by its rival. In other words, for each 
input, both the corresponding inner centers of the winner and the rival are modified by 
feed-back, with one for pure learning and the other for penalty.  

Heuristically, when taking the membership hypothesis into the objective function 
of the k-means algorithm, we can update the objective function for optimization as: 
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The above function is made up of two parts in the sense of statistical learning, one for 
empirical risk calculation, the other one for structural assessment. Let the objective 

function E  be decomposed into the plain part MSEE  and the additional part SRE , 

MSE SRE E E= + . Minimizing the objective function E  will lead to tx  partitioned 

into the direction of both the minimal similarity with 
t

yl  and maximal dissimilarity 

with 
r

yl  simultaneously.  

In detail, for the benefit of more compatibility in high-dimensional space, here we 
replace the commonly used Euclidean norm by one higher order metric as the similar-
ity measure so that one of the problems encountered in high-dimensional space, i.e., 
the “concentration of measure” phenomenon, will be diminished to some degree [8]. 
And in order to seek a simpler solution as well as to avoid a negative or infinite objec-
tive function coming from the structural assessment, we take the Cityblock distance 
for an easy realization in the second part with only additions, subtractions, and arith-
metic comparisons, and turn it into a power fraction expression instead. Inspired by 
the Minkowski distance metric, the objective function E  then becomes 
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Here d  refers as the dimension in the space, 2p ≥  defines the order of the average 

error in the objective function, and α is introduced as a constant factor, 0 1α< ≤ , 

to control the influence of the structural assessment. Although SRE  is an indispensa-

ble part in the model construction of the proposed clustering method, MSEE  still plays 

the most essential role in the whole learning process, which should be attached greater 
importance to.  

3.3   Adaptive Algorithm 

With the above selection and modification of mathematical criterion, the derivatives 

of the objective function E  with respect to the center yl  can be computed and an 

iterative procedure for clustering can then be derived:   
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where sgn( ) ( )t t tx y x y x y− = − −l l l ,  refers to the sign function that extracts 

the sign from the difference between the input tx  and the center yl .  

For each input tx , the adaptive update algorithm for the center yl is: 
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where tη  and rη  both are constant rates for learning, with 0 1r tη η< ≤ < . These 

iterative steps are repeated until one of the two following conditions is fulfilled: either 

each extra center yl  is pushed far away from the data, or if the clustering results 

remain roughly fixed for all inputs. When the above rates are appropriately selected, 
the clustering algorithm has the capacity to not only assign a suitable cluster position  
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to each input, but also to automatically allocate a proper number of clusters for the 
input dataset. 

4   Simulation Experiment 

Simulation experiments on a sample database (Gaussian mixture) were carried out to 
verify the performance of the proposed clustering algorithm. The experimental dataset 
consists of a set of samples following a mixture of no more than five Gaussian distri-
butions with different location, mixture proportion and degree of overlap among clus-
ters inside the [-1, 1] domain in a 2-dimensional space. Some examples of datasets are 
shown in Fig.1.  

Given a hypothetical number of clusters larger than the original number of mixtures, 
both k-means and the proposed algorithm were respectively employed for clustering.  

     
(a)                                                                   (b) 

Fig. 1. Dataset examples 

5   Result Analysis 

Starting from a too large number of clusters (set to eight here), the clustering per-
formances as well as the paths of centers in both k-means and the proposed algorithm 
for the above example databases are shown as Fig.2. A comparison could be made 
accordingly between their clustering results. Fig. 2 (a1) and (b1) are the results of the 
k-means algorithm, and (a2) and (b2) are the results of the clustering algorithm pro-

posed in this paper with the learning rate 0.005tη =  and 0.0005rη = ; (a1) and 

(a2) refer to dataset (a), and (b1) and (b2) to dataset (b). The clustering algorithm 
proposed in this paper earned activation for the winners and assigned penalty for their 
rivals, so that the winners concentrate more around the natural centers of the clusters 
and their rivals are driven far away from the datasets. Samples from unknown clusters 
are then assigned to the most competitive clusters, whose centers are representative of 
the datasets. With adequate parameters, the effective number of clusters can be easily 
observed, while the extra ones can be identified and removed after or even during  
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(a1)                                                               (a2) 

     
(b1)                                                                (b2) 

Fig. 2. Clustering performances and paths of cluster centers during learning. The final position 
is identified by a dot. Fig.2 (a1) and (b1) show the results of the k-means algorithm; (a2) and 
(b2) show the results of the clustering algorithm proposed in this paper. (a1) and (a2) corre-
spond to dataset (a), and (b1) and (b2) to dataset (b) in Fig.1.  

learning. On the contrary, the k-means algorithm maintains the originally given num-
ber of clusters, some of them turning out to be meaningless at the end for the correct 
number was not guessed before learning.  

6   Conclusions 

In this paper, an alternative for center-based clustering algorithms, in particular the k-
means algorithm, is presented via statistical learning analysis. The essence of statisti-
cal learning principle, i.e., both the empirical risk and structural assessment, is taken 
into particular account for the clustering algorithm so as to derive and develop the 
relevant minimization mathematical criterion with automatic parameter learning and 
model selection in parallel. The proposed clustering algorithm roughly decides on the 
number of real clusters, prompts the winner by activation and obstructs its rival by 
penalty, so that the most competitive center wins for possible prediction and the extra 
ones are driven far away from the distribution. The only prerequisite is to start with a  
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number of clusters that exceeds the natural number of clusters in the dataset. Simula-
tion experiments achieve good performances of the double learning tasks in cluster-
ing, and show how the number of effective clusters is automatically extracted during 
learning.  
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