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Abstract

K-Nearest Neighbors relies on the definition of a global
metric. In contrast, Discriminant Adaptive Nearest Neigh-
bor (DANN) computes a different metric at each query point
based on a local Linear Discriminant Analysis. In this
paper, we propose a technique to automatically adjust the
hyper-parameters in DANN by the optimization of two qual-
ity criteria. The first one measures the quality of discrimi-
nation, while the second one maximizes the local class ho-
mogeneity. We use a Bayesian formulation to prevent over-
fitting.

1. Introduction

Consider a classification problem with J classes and N
training observations. The observations have D features.
The goal is to predict the class of a new observation at a
query point x0. K-Nearest Neighbors (K-NN) is a simple
method to tackle classification. The principle is to find the
K nearest points to x0 in the training set and to predict that
x0 belongs to the most represented class within the near-
est neighbor set. K-NN relies on the definition of a metric.
The Euclidean metric assumes equal importance to all di-
rections in space. This is a limiting assumption especially
in high-dimensional space. A better metric should constrict
distances in directions where class densities are constant
and elongate distances in directions where class densities
change. This idea lead in [4] to the development of the Dis-
criminant Adaptive Nearest Neighbor (DANN). For a query
point x0, DANN finds anisotropic directions based on a lo-
cally weighted Linear Discriminant Analysis (LDA). These
directions allow defining a local metric to be used in K-NN.
A similar procedure is proposed in [3] with recursive parti-
tioning methods. In [6] and [2], it is a support vector classi-
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fier that is used to construct the anisotropic metric. In [5], a
soft version of K-NN is used with a kernel smoother.

While K-NN requires choosing only the number of
neighbors, locally adaptive methods usually add several
other hyper-parameters. These are set by heuristics or cross-
validation techniques. In this paper, we follow DANN
and propose a technique to optimize directly the hyper-
parameters. This new method is called automatic DANN.
The principle is to maximize two criteria with respect to the
hyper-parameters. The first criterion evaluates the quality
of discrimination of the local LDA model while the second
one evaluates the homogeneity of the distribution of points
in the final neighborhood. We will show that this distribu-
tion can be viewed as a local Multinomial model. To pre-
vent overfitting, we work with a Bayesian formulation of
the local models.

In section 2, DANN is exposed. In section 3, automatic
DANN is developed and illustrated on a toy example. Sec-
tion 4 presents a comparison of automatic DANN, LDA,
K-NN and DANN on synthetic and real datasets.

2. Discriminant Adaptive Nearest Neighbors

DANN proceeds in two steps. In the first step, the class
distributions around a query point x0 are locally modeled
with LDA. The second step computes a matrix ΣDANN and
uses the associated metric in K-NN.

Subsequently, a point from the training set is noted xn

and the corresponding class label is noted tn ∈ {1, . . . , J}.
To define locality around query point x0, DANN considers
the KQ nearest neighbors according to the Euclidean met-
ric. The local LDA model computes then the within and
between classes covariances by

W̄ =
1

NQ

J∑
j=1

∑
tn=j

wQn
(xn − µ̄j)(xn − µ̄j)T (1)

B̄ =
J∑

j=1

πQj(µ̄j − µ̄)(µ̄j − µ̄)T , (2)
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where the contribution of xn to the local LDA is wQn =
1 if xn belongs to the KQ nearest neighbors of x0 and
wQn = 0 otherwise, µ̄j =

∑
tn=j wQnxn/NQj is the

weighted mean of the observations in class j and µ̄ is the
global weighted mean. NQ =

∑
n wQn is the equiva-

lent number of points included in the local LDA model and
πQj = NQj/NQ are the empirical prior class probabilities
with NQj =

∑
tn=j wQn.

Next, DANN considers the KH nearest neighbors to
x0 and constructs a second K-NN classifier based on the
weighted Euclidean metric

dΣDANN
(x, x0)2 = (x − x0)TΣ−1

DANN (x − x0) , (3)

where Σ−1
DANN ≡ W̄−1B̄W̄−1 + εW̄−1. The hyper-

parameter ε prevents the space to be totally shrunk in least
discriminant directions (see [4] for further details).

DANN has thus three hyper-parameters: KQ, ε and KH .
As such, the method does not give indications on how to set
these parameters; we have to call upon heuristics or cross-
validation techniques. Automatic DANN tries to overcome
this limitation.

3. Automatic DANN

3.1. New parametrization

Instead of using hard neighborhoods, we prefer to work
with soft ones. The resulting parametrization is more con-
venient when optimizing the hyper-parameters in automatic
DANN.

To define local contributions wQn, we will use a gaussian
weighting function instead of KQ-NN,

wQn = exp
(
−1

2
dΣQ

(xn, x0)2
)

. (4)

In this paper, we work with ΣQ = ρQID where ID is the
identity matrix and ρQ is a global scale parameter playing a
role similar to KQ.

Also, we do not work with ΣDANN but a slightly differ-
ent matrix ΣH . Let us note UQ the matrix of eigenvectors of
W̄−1B̄ corresponding to the eigenvalues λ1 ≥ . . . ≥ λD.
According to LDA, the eigenvectors in UQ are the succes-
sive most discriminant directions. For this reason, we chose
to express ΣH directly with the LDA eigen values/vectors
decomposition:

ΣH = ρHUQ ∆γ UT
Q , (5)

where ∆ is a diagonal matrix with diagonal elements δd

inversely proportional to the eigenvalues (δd ∝ 1/λQd) and
with additional constraint Πdδd = 1. We impose a priori

a bound on the anisotropy to prevent some directions to be
completely degenerated:

∀d, λQ1 > λQd · Rmax : δd = δ1 · Rmax . (6)

In (5), matrix ΣH is parameterized by two new hyper-
parameters, γ and ρH , playing roles similar to ε and KH .

Finally, it is convenient to view the KH -NN classifier as
a local Multinomial model. The contributions wHn of the
training points to this model are computed by (4) with the
distance dΣH

(xn, x0). The number NHj =
∑

tn=j wHn

of local points in each class are drawn from a Multinomial
distribution :

p({NHj}) = Mn(NH , {πHj}) , (7)

where NH =
∑

n wHn refers to an equivalent number of
points in the local Multinomial model and the πHj are the
unknown prior class probabilities. In DANN (or K-NN in
general), the prior class probabilities are evaluated by the
empirical means πHj = NHj/NH and the predicted class
at x0 is given by y(x0) = argmaxjπHj .

In the next section, we show how to optimize the hyper-
parameters ρQ, γ and ρH .

3.2. Optimization Criteria

In automatic DANN, we propose to adjust the hyper-
parameters in two stages. First, we optimize ρQ based on
the quality of discrimination of the local LDA model. This
model gives us an orientation UQ and relative scale ∆ to
construct ΣH . To complete the definition, we set γ and ρH

in order to maximize the homogeneity according to the local
Multinomial model.

The quality of discrimination can be measured by a
weighted classification likelihood

Q(ρQ) =
1
J

J∑
j=1

∑
tn=j

wQn p(yn = j|x0,MQ)
NQj

, (8)

where MQ refers to the local LDA. Following this model,
we have p(yn = j|x0,MQ) ∝ N (xn|µj , W̄ ) πQj , with
N (·|·, ·) the multivariate normal distribution.

The weighting appearing in (8) accounts for local contri-
bution of points and gives equal importance to each class.
This second property sets the quality of discrimination to
1/J (i.e., random guess) when only one class is represented
locally.

The homogeneity of the local Multinomial model is de-
fined by

H(ρH , γ) = max
j

(πHj) . (9)

The maximization of the homogeneity corresponds to find-
ing a neighborhood around x0 in which one class is highly
dominant.
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Working with too few points in the local models leads to
overfitting. For example, a local LDA computed with one
point in each class has a high Q(·) although the discriminant
directions UQ are not relevant for the complete distribution.
Also, at the limit ρH → 0, the neighborhood corresponds to
1-NN for which homogeneity is perfect. To circumvent this
problem, we introduce a Bayesian formulation of the local
models.

3.3. Bayesian formulation

Following the Bayesian paradigm, we will assume that
the distribution of the parameters of the local models are
conjugate prior distributions. This leads to tractable pos-
terior distributions. We will not work with the complete
posterior distributions as marginalisation integrals are too
expensive. Instead, we consider the posterior means and
use these estimates of the model parameters to evaluate the
criteria (8) and (9).

We will assume that the parameters of the LDA model
{W,µj , πQj} are random variables with prior Normal-
Wishart and Dirichlet distributions

p({µj},W−1) = Wi(W−1|ν0,W 0)
∏
j

N (µj |µ0
j , N

0
QjW )

p({πQj}) = Di([N0
Q1, . . . , N

0
QJ ]) . (10)

Then, we can show (e.g. [1]) that the posterior distributions
of the parameters have a known analytical forms, and the
corresponding mean posterior estimates are

µ�
j = (N0

Qjµ
0
j + NQj µ̄j)/(N0

Qj + NQj)

W � =
W 0 + 1

2W̄ + 1
2

∑
j

N0
QjNQj

N0
Qj+NQj

(µ0
j − µ̄j)(µ0

j − µ̄j)T

ν0 + 1
2 (NQ − D − 1)

π�
Qj = (N0

Qj + NQj)/(N0
Q + NQ) . (11)

The choice of the parameters of the prior reflects addi-
tional model assumptions. Considering that a priori we only
know the position of the query point x0 and the metric de-
fined by ΣQ, we propose to set

W 0 = ΣQ, ν0 =
1
2
(D + 1) + J2,

µ0
j = x0, N0

Qj = N0
Q/J . (12)

The two first equalities set the prior mean of W to ΣQ/J2

and thus the prior volume for each class is
√

ρQ/J . With the
third equality we assume the distributions to be centered on
the query point. The last equality gives equal importances to
all the classes. The parameter N0

Q corresponds to an equiv-
alent number of points attributed to the prior. Additional
knowledge should help choosing this parameter.

The hyper-parameter ρQ is selected by (8) and we com-
pute the eigenvectors UQ and eigenvalues λd of W �−1B�,
where B� comes from (2) with µ�

j and π�
Qj .

For the Multinomial model, we impose a Dirchlet distri-
bution on the class probabilities p({πHj}) = Di({N0

Hj}).
It is natural to impose N0

Hj = N0
H/J where N0

H corre-
sponds to an equivalent number of points attributed to the
prior. The posterior distribution become a Dirichlet, with
mean

π�
Hj = (N0

Hj + NHj)/(N0
H + NH) . (13)

The hyper-parameters γ and ρH are optimized with (9) and
the predicted class at x0 is y(x0) = argmaxjπ

�
Hj .

We can see in (11) and (13) that the posterior mean
estimates corresponds to the empirical estimates used in
DANN, biased towards the means of the prior distributions.
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Figure 1. (a) Local LDA model for √
ρQ =

{0.15, 0.5, 1.5} and corresponding Q(ρQ). (b)
(left) Homogeneity criterion H(γ, ρH) and
(right) shape of final neighborhoods.

3.4. Illustration

Automatic DANN is illustrated on a two-dimensional toy
example. On figure 1 (a) we can visualize the local LDA
model for three values of ρQ. The two segments line is the
true classification boundary. The star represents the query
point and the ellipses represent the estimated class distri-
butions (centered in µ�

j and with the shape determined by
W �). The size of the markers accounts for the contributions
wQn of the training points to the local model. The bottom
right plot shows the corresponding criterion Q(ρQ).
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On figure 1 (b) left, H(γ, ρH) is evaluated for the same
query point on a grid of hyper-parameter values. On the
right plot, we visualize the shape of the neighborhoods de-
fined by ΣH for different query points.

4. Experiments and Discussion

In this section, we compare LDA, K-NN, DANN and
our automatic DANN method (a-DANN) on four datasets
discribed below. For LDA, the class priors is determined by
the empirical estimates. For K-NN, the Euclidean distance
is used and the number K is optimized by 5-fold cross-
validation. For DANN, we follow [4] and fix the hyper-
parameters KQ to min{50, N/5} and ε to 1. The hyper-
parameter KH is optimized by 5-fold cross-validation. For
a-DANN, the anisotropy is limited to Rmax = 16. We also
took N0

Q = KQ/3 and N0
H = K/3. This choice affects the

optimization of the hyper-parameters. Only further model
assessement can tell us the extend of this influence. How-
ever, it should be small if the data distribution matches the
model assumptions.

4.1. Datasets

• Two normals: two normaly distributed classes in di-
mension two centered at (0,0) and (2,0). Predictors
have variance (1,2) and correlation 0.75. There are 14
additional standard Gaussian noise features.

• Radial: four-dimensional data with the same number
of data in each class. The first class is generated by
N (0, I). The second class is isotropic around the ori-
gin 0 and the norm of the data are drawn from an uni-
form distribution U(2.6, 3.5).

For these simulated data, we generate 20 times 200 points
for learning and 300 points for test.

• Sonar: 60 features reduced to 10 by PCA, two classes
to predict (mine or rocks) and 208 observations.

• Glass: 9 features to predict, 6 classes (the type of
glass) and 214 observations.

For these two datasets taken from the UCI repository, we re-
peat 20 times a random 5-fold cross-validation and compute
for each run the average validation error.

For all the experiments, the data are normalized before
running the algorithms. The 50 percent central quantiles on
misclassification rates are reported in table 1.

4.2. Discussion

The two normals dataset respects the assumptions of
the LDA model. As expected, LDA gives the best perfor-

mances. What is interesting is that a-DANN is approaching
the LDA performances while DANN is not.

On the radial dataset, LDA is incapable of discriminat-
ing the classes. On the contrary, the local LDA can bring
useful information as the DANN and a-DANN methods per-
form better than K-NN.

In all the experiments, automatic DANN performs con-
sistently better than DANN. However, it is seen in the Sonar
and Glass results that the advantage of using DANN and a-
DANN is not obvious on real datasets in such dimensional-
ity. We have the feeling that the method would benefit from
additional constraints reducing the effective space dimen-
sionality.

LDA K-NN DANN a-DANN
2 Normals 7-8.5 19-23 17-21 9.8-12
Radial 47-51 20-23 15-18 13-16
Sonar 20-23 14-16 16-18 14-16
Glass 37-39 29-32 33-36 30-33

Table 1. Percentage of misclassifications

5. Conclusion

We propose a method to automatically adjust the hyper-
parameters of Discriminant Adaptive Nearest Neighbor.
The method is based on the definition of two criteria for
evaluating the quality of local LDA and local Multinomial
models. To prevent overfitting appearing with local mod-
els, we introduce prior distributions over the parameters and
work with the posterior mean estimates.

We show on simple classification examples the advan-
tage of adjusting the hyper-parameters over an heuristic.
Further research should look for additional constraints that
effectively reduce space dimensionality.
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