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Abstract: Mutual Information estimation is an important task for many data mining and machine learning applications.
In particular, many feature selection algorithms make use of the mutual information criterion and could thus
benefit greatly from a reliable way to estimate this criterion. More precisely, the multivariate mutual informa-
tion (computed between multivariate random variables) can naturally be combined with very popular search
procedure such as the greedy forward to build a subset of the most relevant features. Estimating the mutual
information (especially through density functions estimations) between high-dimensional variables is however
a hard task in practice, due to the limited number of available data points for real-world problems. This paper
compares different popular mutual information estimators and shows how a nearest neighbors-based estimator
largely outperforms its competitors when used with high-dimensional data.

1 INTRODUCTION

The ways to acquire and store data increase every day;
machine learning practitioners often have to deal with
databases of very large dimension (containing data
described by a lot of features). When considering a
prediction task, all the features are not equally rel-
evant to predict the desired output while some can
be redundant; irrelevant or redundant features can in-
crease the variance of the prediction models with-
out reducing their bias while most of distance-based
methods are quite sensitive to useless features. More
generally, learning with high-dimensional data is a
hard task due to the problems related to the curse of
dimensionality (Bellman, 1961).

Two main approaches exist to reduce the dimen-
sionality of a data set. One solution is to project the
data on a space of smaller dimension. Projections can
be very effective but do not preserve the original fea-
tures; this is a major drawback in many industrial or
medical applications where interpretability is primor-
dial. On the contrary, feature selection, by trying to
find a subset of features with the largest prediction
power, does allow such an interpretability.

Even if many ways of selecting features can be
thought of, this paper focuses on filters. Filters are in-
dependent from the model used for regression or clas-
sification and thus do not require building any predic-

tion model (including time-consuming learning and
potential meta-parameters to tune by resampling
methods). They are faster than wrappers which try
to find the best subset of features for a specific model
through extensive simulations. Filters are often based
on an information-theoretic criterion measuring the
quality of a feature subset and a search procedure
to find the subset of features maximising this crite-
rion; the mutual information (MI) criterion (Shannon,
1948) has proven to be very efficient for feature selec-
tion and has been used successfully for this task since
many years (see e.g. (Rossi et al., 2007)).

As it is not possible in practice to evaluate the MI
between all the 2 f�1 ( f being the initial number of
features) possible feature subsets and the output vec-
tor when f is large, incremental greedy procedures
are frequently used, whose most popular ones are for-
ward, backward or forward/backward. Such proce-
dures are said to be multivariate, in the sense that
they require the evaluation of the MI (or of another
chosen criterion) directly between a set of features
and the output vector. These methods have the ad-
vantage over bivariate ones such as ranking that they
are able to detect subsets of features which are jointly
relevant or redundant. Consider the XOR problem
as a simple example; it consists in two features and
an output scalar which is zero if both features have
the same value and one otherwise. Obviously, indi-
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vidually each feature does not carry any information
about the outptut; univariate procedures will never be
able to detect them as relevant. However, when com-
bined, the two features completely determine the out-
put; when one is selected, a multivariate procedure
will select the other one as relevant. A detailed intro-
duction to the feature selection problem can be found
in (Guyon and Elisseeff, 2003).

As will be seen, the MI generally cannot be com-
puted analytically but has to be estimated from the
data set. Even if this task has been widely studied, it
remains very challenging for high-dimensional vec-
tors. In this paper, it is shown how a MI estima-
tor based on the principle of nearest neighbors (NN)
outperforms traditional MI estimators with respect to
three feature selection related criteria. This study is,
to the best of our knowledge, the first one to compare
MI estimators in such a context.

The rest of the paper is organized as follows. Sec-
tion 2 briefly introduces the MI criterion and de-
scribes five of the most popular MI estimators. Sec-
tion 3 presents the experiments carried out to com-
pare these estimators and shows the results obtained
on artificial and real-world data sets. Discussions and
conclusions are given in Section 4.

2 MUTUAL INFORMATION

This section recalls basic notions about the MI and
briefly presents the estimators used for comparison.

2.1 Definitions

Mutual information (Shannon, 1948) is a symmetric
measure of the dependence between two (groups of)
random variables X and Y , assumed to be continuous
in this paper. Its interest for feature selection comes
mainly from the fact that MI is able to detect non-
linear relationships between variables, whereas, as an
example, it is not the case for the popular correla-
tion coefficient which is limited to linear dependen-
cies. Moreover, the MI can be naturally defined for
groups of variables and is thus well-suited for multi-
variate search procedures. MI is formally defined as

I(X ;Y ) = H(X)+H(Y )�H(X ;Y ) (1)

where H(X) is the entropy of X , defined for a contin-
uous random variable as:

H(X) =�
Z

fX (zX ) log fX (zX )dzX : (2)

In this last equation, fX is the probability density
function (pdf) of X . The MI can then be rewritten as

I(X ;Y ) =
Z Z

fX ;Y (zX ;zY ) log
fX ;Y (zX ;zY )

fX (zX ) fY (zY )
dzX dzY :

(3)
In practice, neither fX , fY nor fX ;Y are known for

real-world problems; the MI has thus to be estimated.

2.2 Estimation

Plenty of methods have been proposed in the litera-
ture to estimate the MI. The great majority of them
starts by estimating the unknown pdf before plugging
these results into Equation (1) or an equivalent expres-
sion. However, the dimension of X increases at each
step of a forward feature selection procedure (or is al-
ready very high at the beginning of a backward proce-
dure) and most of these methods suffer dramatically
from the curse of dimensionality (Bellman, 1961); in-
deed they require an exponentially growing number
of samples as the dimension of X grows while the
number of available samples is in practice often very
limited. Such MI estimations do not thus seem well
suited for feature selection ends. A NN-based MI es-
timator (Kraskov et al., 2004) avoiding the pdf esti-
mation step has been used successfully in a feature
selection context (Francois et al., 2007; Rossi et al.,
2007). In the rest of this section, this estimator and
four popular other ones are introduced.

2.2.1 The Basic Histogram

The histogram is one of the oldest and simplest ways
to estimate a pdf. The basic idea is to divide the obser-
vation, prediction and joint spaces into non overlap-
ping bins of fixed size and then to count the number of
points falling in each of the bins. The entropy of X , Y
and (X ;Y ) can be estimated using the discretized ver-
sion of (2) and the estimation of the MI then naturally
follows from (1). If histograms with bins of the same
fixed size are considered, as it is the case in this paper,
the size of the bins needs to be determined. Here, the
approach by Sturges (Sturges, 1926) will be followed:
the number k of bins will be d1+ log2(N)e, where N
is the number of samples in the data set; other ap-
proaches could also be thought of (Scott, 1979).

2.2.2 The Kernel Estimator

The basic histogram suffers from many drawbacks.
Among others, it is sensitive to the choice of the ori-
gin and to the size of the bins. In order to avoid
sharp steps between the bins (and hence discontinu-
ities), one can use the kernel density estimator (KDE)
given by:
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f̂X (x) =
1

Nh

N

å
i=1

K(
x� xi

h
); (4)

where N is the number of observations in X , h is the
window width and K is the kernel function required to
integrate to one, leading f̂ to be a probability density
(Parzen, 1962); xi denotes the ith observation of the
data set X . One possible choice for K is the Gaussian
kernel, leading to the following density estimator:

f̂ (x) =
1

Nh
p

2p

N

å
i=1

exp(
�(x� xi)

2

2h2 ): (5)

In practice, the choice of the bandwidth h is funda-
mental. In this paper, the approach by Silverman
(Silverman, 1986) using a rule of thumb will be fol-
lowed. It is often used as a good trade-off between
performance and computational burden. The idea is
to choose the width minimizing the asymptotic mean
integrated square error (AMISE) between the estima-
tion and the true density, assuming the underlying dis-
tribution is Gaussian. The resulting width is:

ĥrot � s(
4

f +2
)1=( f+4) N�1=( f+4) (6)

where f is again the dimensionality of X . A large
overview of different ways to select the kernel band-
width is given in (Turlach, 1993).

2.2.3 The B-splines Estimator

Another generalisation of the simple binning ap-
proach is given by the use of B-splines functions
(Daub et al., 2004). The idea is again to first dis-
cretize the X , Y and (X ;Y ) spaces. However, in this
approach, the data points are allowed to be assigned
to more than one bin ai simultaneously in order to
prevent the positions of the borders of the bins from
affecting too much the estimation. The weights with
which each point belongs to a bin are given by the B-
spline functions Bi;k (k being the spline order). With-
out getting too much into details, B-splines are recur-
sively defined as:

Bi;1(x) :=

(
1 if ti � x� ti+1
0 otherwise

Bi;k(x) := Bi;k�1(x)
x� ti

ti+k�1� ti
+Bi+1;k�1(x)

ti+k� x
ti+k� ti+1

(7)

where t is a knot vector defined for a number of
bins M and a spline order k = 1:::M�1 as:

ti :=

8><>:
0 if i < k
i� k+1 if k � i�M�1
M�1� k+2 if i > M�1

(8)

To estimate the density f̂x, MX weights Bi;k(xu) are
determined for each datapoint xu (where MX is the
number of bins in the X space). As the sum of the
weights corresponding to each data point is 1, the
sum of the mean values of each bin is also 1. The
weights can thus be seen as the probability of each
bin (p(ai) =

1
N å

N
u=1 Bi;k(xu)) and the entropy of the

distribution can be estimated. The process is repeated
for the Y space and for the joint (X ;Y ) space to esti-
mate the MI. The notion of B-splines can be extended
to the multivariate case from univariate splines by the
tensor produt construct. As an example, in two di-
mensions, the probability of a bin ai; j is given by
p(ai; j) =

1
N å

N
u=1 Bi;k(xu)�B j;k(yu) where x denotes

the first variable and y the second one.

2.2.4 The Adaptive Partition of the Observation
Space

Darbellay and Vajda proved (Darbellay and Vajda,
1999) that the MI can be approximated arbitrar-
ily closely in probability by calculating relative fre-
quencies on appropriate partitions. More precisely,
they use an adaptive partitioning of the observation
scheme, different from the traditional product parti-
tions, to take into account the fact that with such basic
partitions, much of the bins are not used to estimate
the MI and can be replaced by fewer bins; they proved
the weak consistency of the proposed method. Math-
ematical details can be found in (Darbellay and Vajda,
1999). In the rest of this paper, this methodology will
be denoted adaptive histogram.

2.2.5 The Nearest Neighbors-based or Kraskov
Estimator

Since the hardest part when estimating the MI is the
estimation of the underlying probability densities, an-
other alternative is simply not to estimate densities
and therefore directly estimating the MI by using NN
statistics. The intuitive idea behind Kraskov’s estima-
tor (Kraskov et al., 2004) is that if the neighbors of
a specific observation in the X space correspond to
the same neighbors in the Y space, there must be a
strong relationship between X and Y . More formally,
the estimator is based on the Kozachenko-Leonenko
estimator of entropy defined as:

Ĥ(X) =�y(K)+y(n)+ log(cd)+
d
N

N

å
n=1

log(eX (N;K))

(9)

where y is the digamma function, N the number
of samples in X , d the dimensionality of these sam-
ples, cd the volume of a d-dimensional unitary ball
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and eX (n;K), twice the distance (usually chisen as the
Euclidean distance) from the nth observation in X to
its Kth NN. Two slightly different estimators are then
derived whose most popular one is:

Î(X ;Y ) = y(N)+y(K)� 1
K
� 1

N

N

å
i=1

(y(txi)+y(tyi))

(10)

where txi is the number of points whose distance
from xi is not greater than 0:5 � e(n;K) = 0:5 �
max(eX (n;K);eY (n;K)). By avoiding the evaluation
of high-dimensional pdf, the hope is to reach better re-
sults than with the previously introduced estimators.

It is also important to note that other NN based
density estimators have been proposed in the littera-
ture, whose recent examples are (Wang et al., 2009;
Li et al., 2011). However, as they are less popular
than (Kraskov et al., 2004) for feature selection, they
are not used in the present comparison.

3 EXPERIMENTS

Three sets of experiments are carried out in this sec-
tion. The objective is to assess the interest of the dif-
ferent estimators for incremental feature selection al-
gorithms. The criteria of comparison and the exper-
imental setup are thus very different from the ones
used in previous papers only focused on MI estima-
tion (see e.g. (Walters-Williams and Li, 2009)). First,
a suitable estimator should be accurate, i.e. it should
reflect the true dependency between groups of fea-
tures and increases (resp. decreases) when the depen-
dance between groups of features increases (resp. de-
creases). Then it should also be able to detect uninfor-
mative features and return a value close to zero when
two independent groups of features are given. Even-
tually, a good estimator should be quite independent
from the value of its parameters or some fast heuris-
tics to fix them should be available.

From a practical point of view, the implementa-
tion by Alexander Ihler has been used for KDE1. For
the NN-based estimator, the parameter K is set to 6
unless stated otherwise. For the B-splines estimator,
the degree of the splines is set to 3 and the number of
bins to 3. These values correspond to those advised in
the respective original papers (Kraskov et al., 2004;
Daub et al., 2004).

3.1 Accuracy of the Estimators

The first set of experiments consists in comparing the
1http://www.ics.uci.edu/ ihler/code /

precision of the MI estimators as the dimension of
the data set increases. To this end, they will be used
to estimate the MI between n correlated Gaussians
X1 : : :Xn with zero mean and unit variance. This way,
the experimental results can be compared with exact
analytical expressions as the MI for n such Gaussians
is given by (Darbellay and Vajda, 1999):

I(X1: : :Xn) =�0:5� log[det(s)] (11)

where s is the covariance matrix.
All the correlation coefficients are set to the same

value r which will be chosen to be 0:1 and 0:9. The
estimation is repeated 100 times on randomly gen-
erated datasets of 1000 instances and the results are
shown for n = 1:::9. Even if this can be seen as a rela-
tively small number of dimensions, there are practical
limitations when using splines and histogram-based
estimators in higher dimensions. Indeed the gener-
alization of the B-splines-based estimator to handle
vectors of dimension d involves the tensor product of
d univariate B-splines, a vector of size Md , where M
is the number of bins. Histogram-based methods are
also limited in the same way since they require the
storage of the value of kd bins, where k is the num-
ber of bins per dimension. Nearest neighbors-based
methods are not affected by this kind of problems and
have only a less restrictive limitation regarding the
number n of data points since they require the cal-
culation of O(n2) pairwise distances. As will be seen,
the small number of dimensions used in the experi-
ments is sufficient to underline the drawbacks and ad-
vantages of the compared estimators.

Figure 1 shows that, as far as the precision is con-
cerned, Kraskov et al.’s estimator largely outperforms
its competitors for the two values of r (r = 0:1 and
r = 0:9). The estimated values are always very close
to the true ones and show small variations along the
100 repetitions. The adaptive histogram provides on
average accurate estimations up to dimension 8 and
6 for r = 0:1 and r = 0:9 respectively, with however
very strong fluctuations observed accross the experi-
ments. The B-spline estimator is also extremely ac-
curate for the five first dimensions and r = 0:1. For
r = 0:9 (and thus for higher values of MI), it severely
underestimates the true values while the aspect of the
true MI curve is preserved. This cannot be consid-
ered as a major drawback in a feature selection con-
text where we are interested by the comparison of MI
between groups of features. The results achieved by
the kernel density estimator are very poor as soon as
n exceeds 1, largely overestimating the true values for
r = 0:1 while immediately decreasing for r = 0:9. Fi-
nally, as one could expect, the basic histogram pro-
duces the worst results; the estimated values are too
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r=0.1 r=0.9

Figure 1: Boxplots of the approximation of the MI for correlated Gaussian vectors by several estimators: the basic histogram
(green), a KDE (red), an adaptive histogram (cyan), a NN-based estimator (black) and a B-splines estimator (magenta). The
solid line represents the true MI.

high to be reported on Figure 1 for r = 0:1 when the
dimension of the the data exceeds two.

3.2 Mutual Information between
Independent Variables

In a feature selection context, a suitable estimator
should assign a value close to zero to the MI between
independent (groups of) variables. More precisely,
one has to make sure that a large (greatly above zero)
value of MI is not the result of a weakness or a bias
of the estimator but does correspond to a dependence
between the variables. Moreover, as the MI is not
bounded to a known interval (as [�1;1] for the corre-
lation coefficient), the relevance of each feature sub-
set cannot be directly assessed based only on the value
of the MI. A solution is to establish the relevance of
a feature subset by looking if the MI between this
subset and the outptut vector is significantly larger
than the MI between this subset and a randomly per-
muted version of the output. It is thus important in
practice to study how the MI between the actual data
points and a randomly permuted objective vector is
estimated. In theory, the MI estimated in this way
should be 0 as no more relationship exists between
the observations and the permuted outputs.

Experiments have been carried out on one artifi-
cial and two real-world data sets. The artificial prob-
lem is derived from Friedman (Friedman, 1991) and is
often used as a benchmark for feature selection algo-
rithms. It consists of 10 input variables Xi uniformly
distributed over [0;1] and an output variable Y given
by Y = 10sin(X1X2)+20(X3�0:5)2+10X4+5X5+e

where e is a Gaussian noise with zero mean and unit
variance. The sample size is 1000 and 100 data sets
are randomly generated. As can be deducted easily,

only the five first features are relevant to predict Y .
The first real data set is the well known Delve cen-

sus data set, available from the University of Toronto2

for which the 2048 first entries of the training set are
kept. The dimension of the data set is 104. The sec-
ond real data set is the Nitrogen data set3, containing
only 141 spectra discretized at 1050 different wave-
lengths. The goal is to predict the Nitrogen content of
a grass sample. As pre-processing, each spectrum is
represented using its coordinates in a B-splines basis,
in order to reduce the amount of features to a reason-
able number of 105 ((Rossi et al., 2005)). For each
data set, a forward feature selection procedure using
the NN-based estimator is conducted (since it per-
formed the best in the previous section) and is halted
when nine features have been selected. The MI is then
estimated as well as the MI with the permuted output
for 100 random permutations of the output and for
each of the nine subsets of features of increasing di-
mension. The performance of the estimators is thus
compared on the same sets of relevant features.

In Figure 2, it can be seen that for the three prob-
lems, the NN-based estimator used with permuted
output produces values very close to 0, even when
working with few samples as for the Nitrogen data set
(the variance is however larger in this case). This sat-
isfactory observation is in good agreement with pre-
vious results found in (Kraskov et al., 2004) where
the authors conjectured the fact that equation (10) is
exact for independent variables, without proof of this
result. Let us also notice two undesirable facts about
the estimator. First it sometimes produces slightly
negative values. Even if this has no theoretical jus-
tification (Cover and Thomas, 1991), this can easily

2http://www.idrc-chambersburg.org/index.html
3http://kerouac.pharm.uky.edu/asrg/cnirs/

ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods

180



(a) (b) (c)

Figure 2: Estimated MI between a group of features and the output (circles) and boxplots of the estimated MI between the
same features and a permuted output for the NN-based estimator: (a) Delve dataset, (b) Nitrogen dataset , (c) Artificial dataset.

(a) (b) (c)

Figure 3: Estimated MI between a group of features and the output (circles) and boxplots of the estimated MI between the
same features and a permuted output for the B-splines density estimator: (a) Delve dataset, (b) Nitrogen dataset , (c) Artificial
dataset.

be dealt with in practice, by setting negative values
to 0. Secondly, it can be seen that the MI decreases
after the addition of some variables. Once again, this
phenomenon is not theoretically founded (Cover and
Thomas, 1991) even if it has often been used as a stop-
ping criterion in greedy feature selection algorithms.

The B-splines estimator (Figure 3) also performs
well on the Delve data set. However, the results on
the two other data sets contrast with this behaviour;
as far as the artificial data set is concerned, the eight
and nine first features have a higher MI with the per-
muted output than the first three with the actual out-
put. This can also be understood as the eight and nine
first permuted features having a higher MI with the
output than the three first original features have. This
is of course a very undesirable fact in the context of
feature selection. Indeed, it is obvious that permuted
features do not carry any information about Y while
the first three original ones actually do.

The adaptative histogram (Figure 4), produces
highly negative values for the Delve and the Nitro-
gen data sets. Even if the same trick as the one used
for the Kraskov estimator could also be applied here
(setting the negative values to 0), things does not be-

have so well. First, the absolute values of the negative
results are very large, traducing instabilities of the al-
gorithm as the dimension increases. Next, for the Ni-
trogen data set, the first third and fourth features have
a higher MI with the permuted output than the first
eight and nine have with the actual output. For the
artificial data set, the first nine features have a higher
MI with the permuted output than the first six have
with the true output.

The KDE (Figure 5) also returns values highly
above 0 with the permuted output; on the artificial
data set, the MI between the features and the actual
or the permuted output becomes equal as the dimen-
sion increases. However, no confusion is possible for
the two real-world data sets.

Eventually, the histogram (Figure 7) shows dra-
matically incorrect results, with almost equal values
for the MI between any subset of features and the per-
muted or the actual output; things are however better
for the Delve Census data set.

3.3 Choice of the Parameters

The last experiment is about the choice of the param-
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(a) (b) (c)

Figure 4: Estimated MI between a group of features and the output (circles) and boxplots of the estimated MI between
the same features and a permuted output for the adaptive histogram estimator: (a) Delve dataset, (b) Nitrogen dataset , (c)
Artificial dataset.

(a) (b) (c)

Figure 5: Estimated MI between a group of features and the output (circles) and boxplots of the estimated MI between the
same features and a permuted output for the kernel density estimator: (a) Delve dataset, (b) Nitrogen dataset , (c) Artificial
dataset.

Figure 6: Estimated MI with the kernel density estimator for different values of the kernel width: (a) Delve dataset, (b)
Nitrogen dataset , (c) Artificial dataset.

eters in the estimators. As already mentioned, the ba-
sic histogram, the KDE, the B-splines approach and
the NN-based estimator all have at least one parame-
ter to fix, which can be fundamental for the quality of
the estimations. Since the performances of the basic
histogram in high-dimensional spaces are obviously
dramatic, this estimator is not studied in more details.

To compare the different estimators, the same data
sets are used as in the previous section and the MI
estimations are shown for dimension 2 to 5. Once
again this limitation is due to the time and space-

consuming generalization of the B-splines approach
in high-dimensional spaces. Moreover, the choice of
the parameter is less related to feature selection.

3.3.1 The Kernel Density Estimator

For the KDE, the parameter to be fixed is the width
of the kernel. As an alternative to the rule of thumb
used so far (see Equation (6)), two other methods
are considered. The first one is the very popular
Least Squares Cross-Validation (LSCV) introduced
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(a) (b) (c)

Figure 7: Estimated MI between a group of features and the output (circles) and boxplots of the estimated MI between the
same features and a permuted output for the histogram based estimator: (a) Delve dataset, (b) Nitrogen dataset , (c) Artificial
dataset.

by Rudemo and Bowman (Bowman, 1984) (Rudemo,
1982) whose goal is to estimate the minimizer of the
Integrated Square Error. The second one is the Plug-
In method proposed by Hall, Sheater Jones and Mar-
ron (Hall et al., 1991). Figure 6 shows the extreme
sensitivity of the KDE to the width of the kernel since
the results obtained with both bandwidth determina-
tion strategies are totally different for the three data
sets. Moreover, as illustrated in Figure 8 which shows
the estimation of the MI for correlated Gaussians and
r = 0:9, none of the methods used to set the kernel
width clearly outperforms the other ones.

3.3.2 The B-splines Estimator

Two parameters have to be determined in this ap-
proach: the degree of the splines and the number of
bins. We fix the degree of the splines to three (as sug-
gested in the original paper) and only focus on the
number of bins per dimension as this parameter has
been shown to influence much more the output (Daub
et al., 2004); it will be taken between 2 and 5. Even if
these values can seem surprisingly small, only three
bins are used in (Daub et al., 2004).

The results presented in Figure 9 show that the es-
timated MI increases with the number of bins. These
conclusions are consistent with those found in (Daub
et al., 2004) for the one-dimensional case. However,
even if the estimator is extremely sensitive to the num-
ber of bins, the relative values of the MI between the
output and different groups of features is preserved,
and so is the relative significance of the feature sub-
sets. The sensitivity of the estimator is thus not a
drawback for feature selection.

3.3.3 The Nearest Neighbors-based Algorithm

The only parameter to fix in the NN-based estimator is
the number of neighbors K. Kraskov et al. suggest a
value of 6, arguing it leads to a good trade-off between

Figure 8: Estimated MI for correlated Gaussians with a ker-
nel density estimator whose kernel’s width has been deter-
mined by three different procedures.

the variance and the bias of the estimator (Kraskov
et al., 2004). Here, K is considered between 4 and 8.

Figure 10 shows very little sensitivity of the esti-
mator in terms of absolute differences between esti-
mations and thus a small sensitivity of the estimator
to the number of neighbors used. However the results
on the Delve data set indicate that even a small vari-
ation in the values of the estimated MI can lead to a
different ranking of the features subsets in terms of
relevance. As an example, in this data set, when us-
ing K = 4 or K = 5 neighbors, the subset of the five
first features is less informative for the output than
the subset of the four first features, while the oppo-
site conclusion (which is in theory true) can be drawn
when using 6, 7 or 8 neighbors. This is something
that must be taken care of when performing feature
selection because it could lead to the selection of irrel-
evant (or less relevant than other) features. One idea
to overcome this issue is to average the estimations
obtained within a reasonable range of values of K. In
(Gomez-Verdejo et al., 2009), this principle is applied
to feature selection using a version of the Kraskov es-
timator adapted for classification problems. Another
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Figure 9: Estimated MI with the B-splines estimator for different values of bins per dimension: (a) Delve dataset, (b) Nitrogen
dataset , (c) Artificial dataset.

Figure 10: Estimated MI with the NN-based estimator for different values of the parameter k: (a) Delve dataset, (b) Nitrogen
dataset , (c) Artificial dataset.

idea is to choose the value of K using the permutation
test and resampling techniques (Francois et al., 2007).

4 CONCLUSIONS AND
DISCUSSIONS

In this paper several popular approaches to the estima-
tion of multi-dimensional MI are compared through
three important criteria for feature selection: the ac-
curacy, the consistency with an independence hypoth-
esis and the sensitivity to the values of the parame-
ter(s). The conclusion is the superiority of the NN-
based algorithm which is by far the most accurate and
the most consistent with an independent hypothesis
(i.e. it returns values very close to 0 when estimating
the MI between independent variables) on the three
data sets used for comparison. The B-splines esti-
mator presents interesting properties as well but can
hardly be used when dimension becomes higher than
9 or 10, because of the exponential number of values
to compute; the NN-based estimator is not affected by
this major drawback, since it only requires the com-
putation of the distances between each pair of points
of the data set in the input, output and joint input-
output spaces. By avoiding the hazardous evaluation
of high-dimensional pdf, it is able to produce very ro-

bust results as the dimension of the data increases. It
is also the less sensitive to the value of its single pa-
rameter, the number of neighbors K. However, as it
has been seen, the choice of this parameter cannot be
made at random since slight variations in the estima-
tion of the MI can lead to a different ranking of the
features subset relevance. Two approaches have been
reported to deal with this issue, both producing satis-
factory results. Being aware of all these facts, it thus
appears to be a good choice to use the Kraskov esti-
mator, or its counterpart for classification, to achieve
MI-based multivariate filter feature selection.
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