
Hopfield’s

This survey of
the pros and
cons of analog
devices
presents a
14-neuron
test chip and
an algorithm
for fully
interconnected
networks.

Michel Verleysen
Paul G.A. Jespers

Catholic University of
Louvain

46 IEEE MICRO

S ince the pioneering work of McCulloch and Pitts in 1943,’ many re-
searchers have tried to realize artificial devices that emulate the
human brain. The challenge is to obtain a computational power

unknown to conventional von Neumann computers. These computers do
indeed achieve great speeds in the performance of repetitive tasks, but they
cannot solve perceptual problems that are obvious to a five-year-old child.
The need to discover new computer architectures increases in direct propor-
tion to the number of tasks we want to perform with artificial devices.

Highly parallel artificial devices can emulate some of the characteristics
of a human brain. Neural networks offer attractive solutions to most
problems (such as image processing and optimization) in which perception
is more important than intensive computation. We expect a number of
important industrial applications for neural networks in the next few years.

Simulations performed on classical computers account for most of the
actual research in artificial neural networks in recent years. However, the
models have become too large and complicated to be handled by conven-
tional machines. Further, simulations do not support two main characteris-
tics of neuromorphic systems: speed and fault tolerance. Speed loses its
importance in simulations because they are much slower intrinsically than
electronic devices. Moreover, simulation of fault tolerance (that is, the
ability to handle data properly when some elements of the network are
damaged) poses a number of difficulties.

Since effective simulations of neural networks exceed the limits of
conventional machines, researchers have been working on implementations
that are more adapted to inherent neuronal properties. After a short discus-
sion of fixed-value and digital networks, we point out the advantages of
analog circuits for neural networks.

Electronic implementations
We can characterize electronic neural networks by their degree of connec-

tivity. Hopfield’s networks* interconnect fully. A feedback process connects
the output of each neuron to the input of each other neuron. In Rumelhart’s
multilayer Perceptrons,’ the output of each neuron connects to all neurons
in the next layer-but no connection occurs within a layer. In locally
interconnected networks, neurons connect only to their nearest neighbors.
An example of this type of network is the silicon retina implemented by
Mead.4

0272-17X2/89/ 1200.0046$0 I .OO 0 I989 IEEE

In1

In2

Threshold function

Inn

Figure 1. Structure of an artificial neuron. The neuron
multiplies the synaptic weights Wii by the input Ini,
which is then summed.

output

4

output

4

(4 (b)

Figure 2. Nonlinear
and sigmoid (b).

functions:

In each of these three models, the functionality of
neurons and synapses is roughly equal. A neuron per-
forms a weighted sum of its inputs (see Figure 1). The
result of this sum proceeds through a nonlinearity. Fig-
ure 2 shows examples of these threshold and sigmoid
functions. The function of a synapse is to perform an
operation-usually a simple multiplication-between
the output value of the connected neuron and a weight
contained in the synapse, as we explain later.

A learning rule generally associates with each type of
neural network to compute the weights contained in
each synapse. If this rule is off line, it computes weights
separately before using the neural network in the con-
vergence process. If the rule is on line, the weights
adapt slightly each time a new pattern is presented to
the network. The learning rule-as well as the kind of
connectivity between the neurons-characterizes each
type of neural network.

See the accompanying box for a discussion of a
learning rule that we adapted to VLSI implementations.

The Learning
Algorithm

Researchers have reported many learning rules in
he literature.*,‘” These rules all possess respective
dvantages and drawbacks, but few seem really suited
or VLSI circuits. Indeed, in such realizations, the
umber of memory points contained in each synapse
imits the number of possible connection values. If
me synapse contains two memory points, only three
lr four connection values will be permitted (for
‘xample -1, 0, and 1). Synaptic coefficients com-
tuted by a classical learning algorithm like the Heb-
iian rule have a larger dynamic range. For example,
fan arbitrary number of k patterns are stored in an n-
lemon network using the Hebbian rule, each connec-
ion can take as much as 2k + 1 different values. To
idapt these algorithms to VLSI circuits with connec-
ions corresponding to a precision of 2 bits, tie simply
runcate the coefficients. This action causes an im-
tortant decrease of the storage capacity of the asso-
:iative memory.

Here we describe a new learning rule that allows a
;ood storage capacity of patterns with three different
:onnection weights only. We included the restriction
*egarding the number of connection weights in the
algorithm, rather than truncating the values after
:omputation. Note that the number of different con-
section values (here three) does not relate to the
lumber of recorded patterns. This is not true for the
Hebbian rule, which requires 2k + 1 possible values
per synapse.

We propose a new way to compute the connection
strengths by using a linear algebra optimization
method (known as the simplex method) to maximize
the stability of the recorded patterns. Connections
between neurons in Hopfield’s model therefore are
represented by an (n x n) matrix in which element
T.. is the value of the connection between neuron i and
n&tron j (this algorithm allows T, to be different from
T..). If we note V. as the Boolean state of the ith neuron
aid 0 as the threihold value, the dynamic behavior of
the network can be described by

Vl(r + lit) = sign [C TljV,(f) - @]

The network reaches a stable state when

vi: v,(t + St) = V,lf)

In order to program stable states into the network
and to compute the appropriate connection strengths,
the following procedure stores k n-bit patterns in an
n-neuron Hopfield network. The computation of a
single column of the weight matrix (number 1, for
instance) illustrates the algorithm. In this computa-

December 1989 47

loo-

10

-- 0% y-f w =
0 12 3 4 5 6 7 8 9 0 12 3 4

&SF
5 6 7 8 9

Hamming distance Hamming distance

-

X False convergence 0 Good convergence + No convergence

Figure A. Input patterns for the Hebbian rule. Figure B. Input patterns for the new algorithm.

tion, Vv is the value of the Ph bit from the J’~ pattern to
memonze (1 I i I n, 1 Ij 5 k, Vu = 1 or Vv = -1). Tr, is
the value of the connection between neurons r and i(1
I r I n). S,, = f: Tr,Vrk is the input of the first neuron
when the network output corresponds to the training
pattern k.

Each neuron acts as a Boolean threshold function
whose output is 1 in the case of a positive input and
-1 in the other cases (0 thus is set to 0). The problem
arises in choosing the set T?, to maximize the difference
between S,, and the threshold of the neuron. If the sign
of S,, is forced to be the same as the one of V,,, we obtain
the highest possible stability for bit 1 of pattern k. To
ensure the right sign to S,,, the quantity to maximize
actually is Z,, = S,,V,p. This has to be done simultane-
ously for all values of k. The equation to solve by the
simplex method is then

maximize M where M = min (Z,& for all valuks of k.

To avoid unbounded solutions (M + -), Tr, is
bounded by the inequalities -1 I Tr, 5 1.

The literature describes practical algorithms to solve
such simplex problems.‘”

The linear algebra theory assumes that at least n - k
coefficients will take the maximum values -1 or +1.i5
Experience has also shown that statistically all of the
other coefficient values were near to - 1, 0, or +I. Hence
this learning rule works well for such VLSI implemen-

tations as we consider here. Simulations showed that
the results obtained with synaptic weights restricted
only to - 1 , 0, and + 1 are practically the same as cases
in which continuous values exist.

We compared the results of this rule with those of
the Hebbian rule. We carried out experiments with
12-bit patterns to compare the efficiency of both
rules to discriminate several patterns. We taught the
network three target patterns using the Hebbian rule
and the new rule. Then we ran the network with the
2’* possible different input patterns. Finally, we
compared the output of the network with the closest
target pattern. Figures A and B show the percentage
of well-retrieved (good convergence), nonretrieved
(false convergence), and unstable (no convergence)
input patterns for the Hebbian rule and for the one
presented here. In pattern-recognition problems, ob-
servations are restricted to the left side of the dia-
gram, that is, wbere input patterns are close to the
recorded ones. The x axis represents the Hamming
distance or number of different bits between these
two patterns. We concluded that with the new learn-
ing rule more than 95 percent of the input patterns
were correctly retrieved and unstable patterns were
almost nonexistent within the Hamming distance of
2. The new learning rule, which contains a small
number of connection weights that are independent
from the number of memorized patterns, adapts well
to VLSI circuits.

48 IEEE MICRO

An electronic neural network consists of a set of
elementary processors connected by simple cells (syn-
apses) that realize the product between their inputs and
an internal weight. The disposition of the basic cells
(neurons and synapses) and the manner in which they
are connected determine the type of neural network
they occupy.

Here we discuss only Hopfield’s fully interconnected
networks. We have two reasons. Although Hopfield’s
networks generally need more neurons than other types
of neural networks for the same functionality, this
architecture is suitable for pattern recognition, which
only requires a small number of neurons for practical
applications. Secondly, fully interconnected networks
have the most regular structure, which makes them
particularly suited for VLSI implementations. How-
ever, most of the neural network architectures-and
particularly the fully or locally interconnected net-
works and multilevel Perceptrons we mentioned-have
one common important feature. The neurons and syn-
apses must be as small as possible to allow the integra-
tion of a great number of them on a chip. Further, the
design of the cells must allow many synapses to con-
nect to the same neuron without electrical problems.
Since the design goals are roughly equal for different
types of neural networks, the solutions presented here
not only pertain to Hopfield’s networks but can easily
adapt to other architectures. This flexibility is particu-
larly true for the analog techniques that implement
synapses and neurons.

The first-and simplest-idea for implementing
neural networks uses resistors as synapses (shown in
Figure 3).

A functional neuron realizes the function:

y = f
()

XT,,V, + I,
I

where VI is the output of neuron i, T, is the weight of the
synapse connecting neurons i and j, Ii is the input of
neuron i, and f is the nonlinear transfer function of the
neuron (as in a threshold or sigmoid function).

The value of each coupling resistor is given by

R, = ‘IT,,

In the synapses, the output voltage of each neuron
thus converts to an input current for another neuron i:

Neurons sum all currents derived from the synapses
connected to neuron i and the input current. The neuron
must thus be a nonlinear conductance that converts its
input current into an output voltage:

V, = f

Synaptic connection

Figure 3. Resistor array.

The main problem with this kind of implementation is
that resistors are not commonly used in standard com-
plementary metal-oxide semiconductor (CMOS) tech-
nology. They usually occupy a large area on chip,
which makes it impossible to implement networks with
a huge number of interconnections. Further, program-
ming the network requires variable resistors, which is
very difficult to achieve.

Howard et a1.5 provide a possible solution to these
problems. They implemented a resistor array by depos-
iting amorphous silicon by electron-beam evaporation
onto a patterned polyimide layer. The density of inte-
gration corresponds to about 6.106 resistors (300
kiloohms) per square centimeter, which makes it suited
for large arrays of synapses. Other technologies can
also serve to implement fixed-value resistors. How-
ever, such technologies do not allow programmability
of synapses since the connection values have to be
chosen during the fabrication process. This sort of
fixed-weight realization must thus be restricted to op-
timization problems in which the weights must not be
changed. This circuit is not suitable for a pattern-
recognition system, in which the weights depend upon
patterns to store data in the network.

If the network must be programmed (that is, if the

December 1989 49

Analog network

Storage
capacitor

\

TCP TCM

TP 1 TI 1 TM

7: :‘I :.
I

1 :
ky 1.

I 1 Coarse welight change I
I I
I I I I I
I I I I I

7: ::I :
I ”

F I
.I

‘7 : :I:.
‘I’

1.
7 1
"1

1 fine weibht chang;
I I I
I I I

: :I

i==

: I:.:

: : :I:

I. 5
‘I’

$2
I I I I I

Weight decay

Figure 4. Capacitive memory points.

connection weights must be adjusted after the design),
designers can use digital circuits to realize neurons and
synapses. However, only a small number of digital
cells-generally much larger than their analog counter-
parts-can fit on a chip. Digital computation, on the
other hand, easily achieves precision. Moreover, when
speed is not critical, temporal multiplexing can replace
some of the spatial complexity. In this case, digital
neural networks can be very efficient. However, when
speed is important-and a great number of neurons and
synapses must be used-we feel analog techniques are
more appropriate.

Analog VLSI networks
As discussed, fully interconnected networks (or any

type of networks with a large number of connections)
are very difficult to realize with digital VLSI technol-
ogy. Analog networks, although more suitable for
neural networks, do pose some electrical problems that
can occur with large systems. For example, one must
design a neuron cell more carefully when it connects to
100 synapses than when it connects to only 10.

Memory points. The first challenge analog neural
networks offer is the selection of memory points to

store the synaptic weights. Before attempting to solve
this problem, designers must know the precision re-
quired for the synaptic weights. A neural network that
needs a precision corresponding to only 1 or 2 bits will
be designed totally differently from a neural network
with an 8- or 12-bit precision. In the first case we do not
consider the size of a memory point to be important, but
in the second case we reduce this size as much as
possible.

Of course, digital memory points are the simplest to
use. By digital here we mean that only logic values can
be stored in such memories and that we need n identical
cells to store one n-bit synaptic weight. Designers
generally use static memory points, but dynamic ones
also exist in some implementations. Designers do not
often use dynamic memory points because neural net-
works are generally asynchronous. Computations-
and memory-point access-can thus occur at any time.
The design of a refreshment system would enhance the
complexity of the system. However, since most of the
actual chips used in neural networks consist of proto-
types and test chips, their maximally simplified design
generally avoids dynamic memory points with complex
refreshment logic.

Designers can use analog memory points for net-
works that need more than a l-bit precision. Analog
memory points can occur in a capacitor that stores an
analog synaptic weight. The value of this capacitor is
then multiplied in the synapse by the output of the
connected neuron. An ideal capacitor would store an
exact weight with an infinite precision. In a VLSI chip,
we must of course cope with technological limitations.
Every capacitor has a leakage current, and the system
must refresh its value periodically. The designer must
thus try to accord this circuit to the following rule.
During the various cycles necessary to the convergence
of the neural network, the percentage of the charge loss
of the capacitor must be small. Its values before and
after the convergence should be exact at the precision
needed for the network. We review several techniques
to achieve this goal. They rely either on technological
improvements to reduce the leakage currents of the ca-
pacitors or on a specific design to compensate for such
currents.

Standard MOS devices can hardly achieve accurate
capacitors with reduced leakages. Special technolog-
ical processes like Flotox6 (in which the floating-gate
structures implement capacitors with a retention time
of several days) can solve this problem. However, this
solution contains the drawback that standard CMOS
technology cannot support these supplementary tech-
nological steps without an important cost increase.

Another way to obtain high-precision capacitors is to
adjust their design so that leakage currents have no
effect on the behavior of the circuit. Since synaptic
weights are generally positive or negative, using two
capacitors can avoid such an effect.’ The difference
between their charges determines the value of the

50 IEEE MICRO

connection. The difference between the leakage cur-
rents then determines the charge loss, which is a much
better solution than having only one capacitor. Added
transistors and small variable capacitors provide weight
adjustments (see Figure 4). This solution can combine
with high-precision capacitors that have reduced leak-
age currents to obtain accurate synaptic weights. With
this precision, the system proposed by Schwartz,
Howard, and Hubbard’ can obtain a resolution of 10
bits.

In Figure 4, long transistors TCP and TCM provide
for charge transfer. TP, TM, and TI (narrow transistors)
isolate the charge-transfer transistors from each other
and from the storage nodes. These transistors provide
ideal switching. Using different sequences in turning
on the switches provides coarse or fine weight changes.
For example, one achieves weight decay by first turn-
ing on all transistors except TI. When the two sides of
the charge-transfer string have equilibrated with their
respective storage nodes, the connections between the
storage nodes (TM and TP) turn off, and the two
charge-transfer transistors TCP and TCM exchange
charges by turning on transistor TI. When TCM and
TCP have equilibrated their charges, TI turns off again.
The charges held by TCM and TCP inject back into the
storage capacitors. The resulting change in the stored
weight is AV = - (V+ - VJ*Ceff/Cox, which corre-
sponds to multiplying the weight by a factor a < 1.
Figure 4 illustrates coarse and fine weight changes and
weight decay.

Although it is a seductive solution for analog synap-
tic weights, reducing the number of memory points for
a required precision corresponding to several bits is not
the best answer. Using only one digital memory point is
optimum. Of course, this approach offers less precision
and decreases global performance. However, one can
use algorithms that cope with this restriction to pro-
gram the network.* Such algorithms require only two or
three different synaptic weights, and performance does
not decrease the way it does in networks in which
continuous synaptic weights are used.

Analog architectures. Once the type of memory
points has been chosen, we can design the synapse. The
synapse realizes the logical function between the value
of the neuron that connects to it and an internal weight
stored in the memory points. We first examine the case
in which the output value of the neuron can take two
different values and the synaptic weight can take three.
The logical function that occurs between the neuron
output value (+1 or -1) and the synaptic weight (+l, 0,
or -1) is either AND or XOR (we expect both of these
functions to become 0 when the synaptic weight is 0).
However, simulations have illustrated that the XOR
function is generally preferable in Hopfield’s networks
because it increases storage capacity.’ The circuit we
show implements a XOR function, but we can easily
transpose it to an AND function.

Synapse j

Synapse k

-4

--I
Neuron i

Figure 5. Synapse architecture.

Since three different synaptic weights are allowed,
either one analog memory point or two digital memory
points are necessary. We prefer the latter solution
because of the reduced precision. The architecture that
follows’o is based on the principle of current summa-
tion. Synapses consist of programmable current
sources, and the neuron sums all synaptic currents. The
neuron is an amplifier that realizes the nonlinear trans-
fer function (sigmoid, threshold, etc.). One solution
consists of summing all synaptic currents on the input
line of the neuron.” If the synapse is excitatory (a
positive result of the XOR function), the current flows
to this input line. If the synapse is inhibitory (a negative
result), the current flows from the input line (shown in
Figure 5).

If the neuron realizes a pure threshold function, with
the threshold equal to 0, it must discriminate whether
the total current on its input line is positive or negative.
A simple amplifier can achieve this result. The major
drawback of this architecture lies in the following. In
standard CMOS technology, the currents that flow
through the P- and N-channel types of transistors are
very different. Adjusting the size of the transistors
(usually a factor of 2.5 to 3 between the two types of
transistors) achieves compensation. However, we do
not know the exact ratio before the technological pro-
cesses occur, and the currents flowing to or from the
input line differ slightly. When the number of synapses
connected to the same neuron increases, the system
sums these differences. The total mismatching can
exceed that of one synaptic current, and the neuron can

December 1989 51

Analog network

Out neuron j Mem2

$L-;-r;

Neuron i + Neuron i -

Figure 6. Artificial synapse.

VDD

I
Neuron i +

I
Neuron i -

Figure 7. Current flow in an artificial neuron.

thus switch to a wrong state if the input current is close
to the threshold. A solution to this problemI consists of
summing all excitatory currents on one input line and
all inhibitory currents on another. When the design
employs the same type of transistors on each line of a
two-line system, the mismatching problem disappears.

Each synapse is a programmable current source that With increasing numbers of synapses connected to
controls a differential pair (see Figure 6). Three con- the same neuron, voltage drops V + and V - across T3

Because of the use of current mirrors, some asymme-
tries exist in this circuit. Impedances of T3 and T4 are
different, and the same is true even for T8 and T9.
Nevertheless, since we designed the circuit to produce
saturated outputs, asymmetries inside the neuron are
not important, provided that the output switches from
one logic voltage to the other when the two input
currents are equal. The design works well since the two
transistors of each current mirror (T3/T4 and TS/T9)
have exactly the same behavior when the currents they
drive are equal.

-- 4
Neuron i+

Figure 8. Feedback loop.

nection values occur in each synapse. If the memory
point meml = 1, current flows to one of the two lines
with the sign of the connection determined by the
product of mem2 and the output of the neuron con-
nected to the synapse. If meml = 0, no connection
exists between neurons i and j nor does current flow to
the excitatory and inhibitory lines.

Depending on the state of the XOR function, the
current can flow either from the line i + or from the line
i -. In the neuron, the comparison of the two total
currents on the lines i + and i - must occur. The differ-
ential amplifier shown in Figure 7 performs this task.
The current mirror formed by transistors T3 and T4
functions as a load for the two currents on lines i + and
i -. The voltage drops across these two transistors are
thus monotonic, increasing functions of the currents.
The amplifier then compares these voltage drops in the
differential input reflector formed by transistors T5 to
T9. Because of the two-stage architecture of the neu-
ron, the gain may be very large. A 5V output occurs if
the current in neuron i - is greater than that of neuron
i+. The output becomes OV in the opposite case.

52 IEEE MICRO

1.0
t 0.5t .,. .\. : .\, I

01 ” ” Ic-’ ”
I

0 50 100 150 200 250 300 350 400 450 512

Numberofsynapses(p)

Figure 9. Output of an artifical neuron.

and T4 tend to increase. Because V + and V - are in fact
the drain voltages of transistors Tl and T2 (see Figure
6), we must avoid saturation of the synaptic transistors.
We introduced a feedback loop to keep the Out voltage
V* of the synapses (see Figure 8) fixed to V,,,. While
no high gain is needed for the feedback loop, the
amplifier in Figure 8 can consist of one transistor.

Experimental results. Figure 9 shows the output
characteristic of one neuron. For this simulation, 5 12
active synapses connect to the neuron. The x axis
represents the number of synapses (p) connected to the
positive input line of the neuron. The other synapses
(5 12-p) connect to the negative input line. The diagram
shows that the neuron output always becomes saturated
when a sufficient difference exists between the two
inputs. This voltage thus can feed directly back to
synapse inputs through the connection network.

With a smaller difference between the two inputs, the
neuron output voltage varies between OV and 5V. This
situation is incompatible with the synapse structure,
which needs a digital input. We therefore inserted a
buffer to provide a binary output between the neuron
output and the synapse inputs.

We measured the output voltage of the neuron (be-
fore the buffer) with an increasing number of active,
connected synapses to determine the buffer character-
istics and the maximum number of synapses allowed in
the network. Figure 10 shows the experimental results
with and without the feedback loop described previ-
ously. We used a single transistor feedback loop in the
experiment. The x axis represents the N number of syn-
apses connected to the neuron while the y axis repre-
sents the neuron output voltage. We performed this
analysis under worst case conditions, that is, when

;;, 2.5
5 2.0
O 1.5

2 4 a 16 32 64 126 256 512

(4
Number of synapses(n)

5.0
4.5
4.0

g 3.5
B 3.0
5 2.5

2 4 8 16 32 64 128 256 512
Number of synapses(n)

04

Curve1 i+>i- Curve2 i->i+

Figure 10. Neuron output without feedback loop (a)
and with feedback loop (b). Curve 1 represents the
output with a predominance of excitatory current;
curve 2 is the opposite case.

n/2 - 1 synapses are excitatory and n/2 + 1 are inhib-
itory (i - > i +), or the opposite (i + > i -). Figure 10
shows that the dynamic output range decreases with an
increasing number of synapses. This phenomenon re-
sults from the common-mode voltage of the neuron am-
plifier. If the two input currents increase simultane-
ously, the amplifier gain decreases and the output loses
saturation. It seems obvious that the difference between
the two curves must be large enough to correctly turn
the buffer on or off (a difference of 1V is acceptable).
The feedback loop can provide a larger number of
synapses (more than 500).

In this circuit, the single synaptic current equals 10
microamps. To achieve this state requires that the syn-
aptic transistor connected to meml be long (the width/
length ratio of the transistor W/L = 0.1) and that the
transistor connected to mem2 be minimal (W/L = 1.5).
Such a current is acceptable in a neural network with a

December 1989 53

Analog network

Figure 11. Microphotograph of the test chip contain-
ing 14 neurons and 196 synapses.

restricted number of neurons as illustrated later. In
larger networks, one must reduce the current for power-
density reasons. For example, the power dissipated by
a 128-neuron network with synaptic currents equal to 1
milliamp approximates 100 mW. One can implement
such a circuit in a 64-sq-mm chip with a CMOS 2-
micrometer, double-metal technology (the power den-
sity is about 1 mW/sq mm).

Speed properties constitute one of the most interest-
ing features of neural networks. Experience has shown
that a change in a synapse value introduces a change in
the correspondent neuron value, which is fed back into
the synapse in about 40 nanoseconds. Practically, this
means that it takes about 150-200 ns for a 128-neuron
network to converge to a stable state. In general, about
five iterations are necessary to retrieve the pattern
stored in the network from the input pattern.

We implemented a small test chip to verify the
performances of synaptic currents and neuron response
time. This chip contains 14 neurons and 196 synapses.
To make the circuit fully programmable and to exploit
its learning capability, we embedded two memory
points in each synapse. Figure 11 shows a microphoto-
graph of the complete chip.

W e expect the research in VLSI technology for
neural networks to lead to the development of
practical applications using small networks

within the next few years. Such applications concern

vision, speech and image processing, character recog-
nition, or other tasks in which a small amount of data is
handled simultaneously. We have pointed out the ad-
vantages and drawbacks of some types of VLSI analog
neural networks and have shown how a larger number
of neurons can connect through the use of analog
summing of products. Researchers in this field will
obviously try to integrate larger networks for use in
more complex applications. One solution to the small
size of the current artificial neural networks is to cas-
cade chips. However, the number of cells in a fully
interconnected neural network grows with the square of
the number of neurons. The number of chips necessary
for this type of implementation rapidly overwhelms the
imagination. The solution to the integration of large
networks is thus to reduce the size of the basic cells (the
neurons and synapses), even despite a loss of precision.

Classical learning algorithms, like the Hebbian rule,
become inefficient when the dynamics of the synaptic
weights are restricted to some discrete values. One can
avoid this problem by using learning rules similar to the
one presented here. This algorithm helps program a
fully interconnected network into a content-
addressable memory and shows an increased storage
capacity in comparison with that of other learning
rules.

While a lot of work remains to be done towards the
integration of large neural networks, the analog tech-
niques we have presented here prove that networks with
several hundreds of fully interconnected neurons are
not unrealistic ?l! .%1c

References
1. W.S. McCulloch and W. Pitts, “A Logical Calculus of the

Ideas Immanent in Nervous Activity,” Bull. Mafh. Bio-
physics, Vol. 5, 1943, pp. 113-133.

2. J.J. Hopfield, “Neural Networks and Physical Systems
with Emergent Collective Computational Abilities,”
Proc. Nat’1 Academy Sci., Vol. 79, Apr. 1982, pp. 2,554-
2,558.

3. D. Rumelhart et al., Parallel Distributedprocessing; Vol
1: Foundations, MIT Press, Cambridge, Mass., 1986.

4. M. Sivilotti, M. Mahowald, and C. Mead, “Real-Time
Visual Computations Using Analog CMOS Processing
Arrays,” Proc. 1987 Stanford Conf. Advanced Research
VLSI, P. Losleben, ed., MIT Press, 1987.

5. R. Howard et al., “An Associative Memory Based on an
Electronic Neural Network Architecture,” IEEE Trans.
on Electron Devices, Vol. ED-34, No. 7, July 1987, pp.
1,553-1,556.

6. C. Bleiker, Behavior and Characterization of EEPROM
Cells with Floating-gate Structure (in German), PhD
thesis, EidgenossischenTechnical School, Zurich, 1987.

7. D. Schwartz, R. Howard, and W. Hubbard, “A Program-

54 IEEE MICRO

mable Analog Neural Network Chip,” IEEE J. Solid-
State Circuits, Vol. 24, No. 2, Apr. 1989, pp. 313-319.

8. B. Sirletti et al., “An Algorithm for Pattern Recognition
with VLSI Neural Networks,” Proc. IEEE First Int’l
Neural Network Society, IEEE Press, Piscataway, N.J.,
1987.

9. J.J. Hopfield, “Neurons with Graded Response Have
Collective Computational Properties Like Those of Two-
State Neurons,” Proc. Nat’1 Academy Sci., Vol. 8 1, May
1984, pp. 3,088-3,092.

10. M. Verleysen, B. Sirletti, and P. Jespers, “A Large VLSI
Fully Interconnected Neural Network,” Proc. 1988 Symp.
VLSI Circuits, IEEE Press, 1988, pp. 27-28.

11. H.P. Graf and P. de Vegvar, “A CMOS Associative Mem-

ory Chip Based on Neural Networks,” Proc. 1987 IEEE
Int’l Conf. Solid-State Circuits , IEEE Press, 1987, pp.
304-305.

12. M. Verleysen, B. Sirletti, and P. Jespers, “A New VLSI
Architecture for Neural Associative Memories,” Neural
Networks from Models to Applications, L. Personnaz and
G. Dreyfus (eds.), IDSET, Paris, pp. 692-700.

13. L. Personnaz, Study of Formal Neural Networks: Con-
ception, Properties, and Applications (in French), PhD
thesis, Pierre and Marie Curie University, Paris, 1986.

14. L. Lasdon, Optimization Theory for Large Systems, The
Macmillan Publishing Co., Inc., London, 1970.

15. D. Pierre, Optimization Theory with Applications, John
Wiley & Sons, Inc., New York, 1969, pp. 200-204.

Michel Verleysen is studying for his PhD
in the field of neural networks on a Bel-
gian IRSIA (Institute for the Encourage-
ment of Scientific Research in Industry
and Agriculture) fellowship at the
Microelectronics Laboratory of the

Catholic University of Louvain. His research activities and
interests include VLSI realization of neural networks,
content-addressable memories, and analog integrated circuits
and systems.

Verleysen received the engineering degree from the Catho-
lit University of Louvain, Belgium. He is a member of the
IEEE.

Paul G.A. Jespers heads the Microelec-
tronics Laboratory at the Catholic Univer-
sity of Louvain, where he teaches in the
Department of Electrical Engineering. He
has been a visiting professor at Stanford
University in California. His current inter-

est is in MOS integrated circuits and systems.
Jespers received the engineering degree from the Free

University of Brussels and the PhD degree from the Catholic
University of Louvain. He is vice-chair of the Steering
Committee of the European Solid-State Circuits Conference.
He was appointed IEEE Regional Director of Region 8 from
197 1 to 1972 and is a fellow of the IEEE and a member of the
International Neural Network Society.

Readers may address questions about this article to Michel Verleysen at the Catholic University of Louvain, Microelectron-
ics Laboratory, 3 Place du Levant, 1348 Louvain-la-Neuve, Belgium.

Reader Interest Survey

Indicate your interest in this article by circling the appropriate number on the Reader Service Card.

Low 159 Medium 160 High 161

December 1989 55

