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S ince the pioneering work of McCulloch and Pitts in 1943,’ many re- 
searchers have tried to realize artificial devices that emulate the 
human brain. The challenge is to obtain a computational power 

unknown to conventional von Neumann computers. These computers do 
indeed achieve great speeds in the performance of repetitive tasks, but they 
cannot solve perceptual problems that are obvious to a five-year-old child. 
The need to discover new computer architectures increases in direct propor- 
tion to the number of tasks we want to perform with artificial devices. 

Highly parallel artificial devices can emulate some of the characteristics 
of a human brain. Neural networks offer attractive solutions to most 
problems (such as image processing and optimization) in which perception 
is more important than intensive computation. We expect a number of 
important industrial applications for neural networks in the next few years. 

Simulations performed on classical computers account for most of the 
actual research in artificial neural networks in recent years. However, the 
models have become too large and complicated to be handled by conven- 
tional machines. Further, simulations do not support two main characteris- 
tics of neuromorphic systems: speed and fault tolerance. Speed loses its 
importance in simulations because they are much slower intrinsically than 
electronic devices. Moreover, simulation of fault tolerance (that is, the 
ability to handle data properly when some elements of the network are 
damaged) poses a number of difficulties. 

Since effective simulations of neural networks exceed the limits of 
conventional machines, researchers have been working on implementations 
that are more adapted to inherent neuronal properties. After a short discus- 
sion of fixed-value and digital networks, we point out the advantages of 
analog circuits for neural networks. 

Electronic implementations 
We can characterize electronic neural networks by their degree of connec- 

tivity. Hopfield’s networks* interconnect fully. A feedback process connects 
the output of each neuron to the input of each other neuron. In Rumelhart’s 
multilayer Perceptrons,’ the output of each neuron connects to all neurons 
in the next layer-but no connection occurs within a layer. In locally 
interconnected networks, neurons connect only to their nearest neighbors. 
An example of this type of network is the silicon retina implemented by 
Mead.4 
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Figure 1. Structure of an artificial neuron. The neuron 
multiplies the synaptic weights Wii by the input Ini, 
which is then summed. 
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Figure 2. Nonlinear 
and sigmoid (b). 

functions: 

In each of these three models, the functionality of 
neurons and synapses is roughly equal. A neuron per- 
forms a weighted sum of its inputs (see Figure 1). The 
result of this sum proceeds through a nonlinearity. Fig- 
ure 2 shows examples of these threshold and sigmoid 
functions. The function of a synapse is to perform an 
operation-usually a simple multiplication-between 
the output value of the connected neuron and a weight 
contained in the synapse, as we explain later. 

A learning rule generally associates with each type of 
neural network to compute the weights contained in 
each synapse. If this rule is off line, it computes weights 
separately before using the neural network in the con- 
vergence process. If the rule is on line, the weights 
adapt slightly each time a new pattern is presented to 
the network. The learning rule-as well as the kind of 
connectivity between the neurons-characterizes each 
type of neural network. 

See the accompanying box for a discussion of a 
learning rule that we adapted to VLSI implementations. 

The Learning 
Algorithm 

Researchers have reported many learning rules in 
he literature.*,‘” These rules all possess respective 
dvantages and drawbacks, but few seem really suited 
or VLSI circuits. Indeed, in such realizations, the 
umber of memory points contained in each synapse 
imits the number of possible connection values. If 
me synapse contains two memory points, only three 
lr four connection values will be permitted (for 
‘xample -1, 0, and 1). Synaptic coefficients com- 
tuted by a classical learning algorithm like the Heb- 
iian rule have a larger dynamic range. For example, 
fan arbitrary number of k patterns are stored in an n- 
lemon network using the Hebbian rule, each connec- 
ion can take as much as 2k + 1 different values. To 
idapt these algorithms to VLSI circuits with connec- 
ions corresponding to a precision of 2 bits, tie simply 
runcate the coefficients. This action causes an im- 
tortant decrease of the storage capacity of the asso- 
:iative memory. 

Here we describe a new learning rule that allows a 
;ood storage capacity of patterns with three different 
:onnection weights only. We included the restriction 
*egarding the number of connection weights in the 
algorithm, rather than truncating the values after 
:omputation. Note that the number of different con- 
section values (here three) does not relate to the 
lumber of recorded patterns. This is not true for the 
Hebbian rule, which requires 2k + 1 possible values 
per synapse. 

We propose a new way to compute the connection 
strengths by using a linear algebra optimization 
method (known as the simplex method) to maximize 
the stability of the recorded patterns. Connections 
between neurons in Hopfield’s model therefore are 
represented by an (n x n) matrix in which element 
T.. is the value of the connection between neuron i and 
n&tron j (this algorithm allows T, to be different from 
T..). If we note V. as the Boolean state of the ith neuron 
aid 0 as the threihold value, the dynamic behavior of 
the network can be described by 

Vl(r + lit) = sign [C TljV,(f) - @] 

The network reaches a stable state when 

vi: v,(t + St) = V,lf) 

In order to program stable states into the network 
and to compute the appropriate connection strengths, 
the following procedure stores k n-bit patterns in an 
n-neuron Hopfield network. The computation of a 
single column of the weight matrix (number 1, for 
instance) illustrates the algorithm. In this computa- 
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Figure A. Input patterns for the Hebbian rule. Figure B. Input patterns for the new algorithm. 

tion, Vv is the value of the Ph bit from the J’~ pattern to 
memonze (1 I i I n, 1 Ij 5 k, Vu = 1 or Vv = -1). Tr, is 
the value of the connection between neurons r and i(1 
I r I n). S,, = f: Tr,Vrk is the input of the first neuron 
when the network output corresponds to the training 
pattern k. 

Each neuron acts as a Boolean threshold function 
whose output is 1 in the case of a positive input and 
-1 in the other cases (0 thus is set to 0). The problem 
arises in choosing the set T?, to maximize the difference 
between S,, and the threshold of the neuron. If the sign 
of S,, is forced to be the same as the one of V,,, we obtain 
the highest possible stability for bit 1 of pattern k. To 
ensure the right sign to S,,, the quantity to maximize 
actually is Z,, = S,,V,p. This has to be done simultane- 
ously for all values of k. The equation to solve by the 
simplex method is then 

maximize M where M = min (Z,& for all valuks of k. 

To avoid unbounded solutions (M + -), Tr, is 
bounded by the inequalities -1 I Tr, 5 1. 

The literature describes practical algorithms to solve 
such simplex problems.‘” 

The linear algebra theory assumes that at least n - k 
coefficients will take the maximum values -1 or +1.i5 
Experience has also shown that statistically all of the 
other coefficient values were near to - 1, 0, or +I. Hence 
this learning rule works well for such VLSI implemen- 

tations as we consider here. Simulations showed that 
the results obtained with synaptic weights restricted 
only to - 1 , 0, and + 1 are practically the same as cases 
in which continuous values exist. 

We compared the results of this rule with those of 
the Hebbian rule. We carried out experiments with 
12-bit patterns to compare the efficiency of both 
rules to discriminate several patterns. We taught the 
network three target patterns using the Hebbian rule 
and the new rule. Then we ran the network with the 
2’* possible different input patterns. Finally, we 
compared the output of the network with the closest 
target pattern. Figures A and B show the percentage 
of well-retrieved (good convergence), nonretrieved 
(false convergence), and unstable (no convergence) 
input patterns for the Hebbian rule and for the one 
presented here. In pattern-recognition problems, ob- 
servations are restricted to the left side of the dia- 
gram, that is, wbere input patterns are close to the 
recorded ones. The x axis represents the Hamming 
distance or number of different bits between these 
two patterns. We concluded that with the new learn- 
ing rule more than 95 percent of the input patterns 
were correctly retrieved and unstable patterns were 
almost nonexistent within the Hamming distance of 
2. The new learning rule, which contains a small 
number of connection weights that are independent 
from the number of memorized patterns, adapts well 
to VLSI circuits. 
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An electronic neural network consists of a set of 
elementary processors connected by simple cells (syn- 
apses) that realize the product between their inputs and 
an internal weight. The disposition of the basic cells 
(neurons and synapses) and the manner in which they 
are connected determine the type of neural network 
they occupy. 

Here we discuss only Hopfield’s fully interconnected 
networks. We have two reasons. Although Hopfield’s 
networks generally need more neurons than other types 
of neural networks for the same functionality, this 
architecture is suitable for pattern recognition, which 
only requires a small number of neurons for practical 
applications. Secondly, fully interconnected networks 
have the most regular structure, which makes them 
particularly suited for VLSI implementations. How- 
ever, most of the neural network architectures-and 
particularly the fully or locally interconnected net- 
works and multilevel Perceptrons we mentioned-have 
one common important feature. The neurons and syn- 
apses must be as small as possible to allow the integra- 
tion of a great number of them on a chip. Further, the 
design of the cells must allow many synapses to con- 
nect to the same neuron without electrical problems. 
Since the design goals are roughly equal for different 
types of neural networks, the solutions presented here 
not only pertain to Hopfield’s networks but can easily 
adapt to other architectures. This flexibility is particu- 
larly true for the analog techniques that implement 
synapses and neurons. 

The first-and simplest-idea for implementing 
neural networks uses resistors as synapses (shown in 
Figure 3). 

A functional neuron realizes the function: 

y = f 
( ) 

XT,,V, + I, 
I 

where VI is the output of neuron i, T, is the weight of the 
synapse connecting neurons i and j, Ii is the input of 
neuron i, and f is the nonlinear transfer function of the 
neuron (as in a threshold or sigmoid function). 

The value of each coupling resistor is given by 

R, = ‘IT,, 

In the synapses, the output voltage of each neuron 
thus converts to an input current for another neuron i: 

Neurons sum all currents derived from the synapses 
connected to neuron i and the input current. The neuron 
must thus be a nonlinear conductance that converts its 
input current into an output voltage: 

V, = f 

Synaptic connection 

Figure 3. Resistor array. 

The main problem with this kind of implementation is 
that resistors are not commonly used in standard com- 
plementary metal-oxide semiconductor (CMOS) tech- 
nology. They usually occupy a large area on chip, 
which makes it impossible to implement networks with 
a huge number of interconnections. Further, program- 
ming the network requires variable resistors, which is 
very difficult to achieve. 

Howard et a1.5 provide a possible solution to these 
problems. They implemented a resistor array by depos- 
iting amorphous silicon by electron-beam evaporation 
onto a patterned polyimide layer. The density of inte- 
gration corresponds to about 6.106 resistors (300 
kiloohms) per square centimeter, which makes it suited 
for large arrays of synapses. Other technologies can 
also serve to implement fixed-value resistors. How- 
ever, such technologies do not allow programmability 
of synapses since the connection values have to be 
chosen during the fabrication process. This sort of 
fixed-weight realization must thus be restricted to op- 
timization problems in which the weights must not be 
changed. This circuit is not suitable for a pattern- 
recognition system, in which the weights depend upon 
patterns to store data in the network. 

If the network must be programmed (that is, if the 
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Figure 4. Capacitive memory points. 

connection weights must be adjusted after the design), 
designers can use digital circuits to realize neurons and 
synapses. However, only a small number of digital 
cells-generally much larger than their analog counter- 
parts-can fit on a chip. Digital computation, on the 
other hand, easily achieves precision. Moreover, when 
speed is not critical, temporal multiplexing can replace 
some of the spatial complexity. In this case, digital 
neural networks can be very efficient. However, when 
speed is important-and a great number of neurons and 
synapses must be used-we feel analog techniques are 
more appropriate. 

Analog VLSI networks 
As discussed, fully interconnected networks (or any 

type of networks with a large number of connections) 
are very difficult to realize with digital VLSI technol- 
ogy. Analog networks, although more suitable for 
neural networks, do pose some electrical problems that 
can occur with large systems. For example, one must 
design a neuron cell more carefully when it connects to 
100 synapses than when it connects to only 10. 

Memory points. The first challenge analog neural 
networks offer is the selection of memory points to 

store the synaptic weights. Before attempting to solve 
this problem, designers must know the precision re- 
quired for the synaptic weights. A neural network that 
needs a precision corresponding to only 1 or 2 bits will 
be designed totally differently from a neural network 
with an 8- or 12-bit precision. In the first case we do not 
consider the size of a memory point to be important, but 
in the second case we reduce this size as much as 
possible. 

Of course, digital memory points are the simplest to 
use. By digital here we mean that only logic values can 
be stored in such memories and that we need n identical 
cells to store one n-bit synaptic weight. Designers 
generally use static memory points, but dynamic ones 
also exist in some implementations. Designers do not 
often use dynamic memory points because neural net- 
works are generally asynchronous. Computations- 
and memory-point access-can thus occur at any time. 
The design of a refreshment system would enhance the 
complexity of the system. However, since most of the 
actual chips used in neural networks consist of proto- 
types and test chips, their maximally simplified design 
generally avoids dynamic memory points with complex 
refreshment logic. 

Designers can use analog memory points for net- 
works that need more than a l-bit precision. Analog 
memory points can occur in a capacitor that stores an 
analog synaptic weight. The value of this capacitor is 
then multiplied in the synapse by the output of the 
connected neuron. An ideal capacitor would store an 
exact weight with an infinite precision. In a VLSI chip, 
we must of course cope with technological limitations. 
Every capacitor has a leakage current, and the system 
must refresh its value periodically. The designer must 
thus try to accord this circuit to the following rule. 
During the various cycles necessary to the convergence 
of the neural network, the percentage of the charge loss 
of the capacitor must be small. Its values before and 
after the convergence should be exact at the precision 
needed for the network. We review several techniques 
to achieve this goal. They rely either on technological 
improvements to reduce the leakage currents of the ca- 
pacitors or on a specific design to compensate for such 
currents. 

Standard MOS devices can hardly achieve accurate 
capacitors with reduced leakages. Special technolog- 
ical processes like Flotox6 (in which the floating-gate 
structures implement capacitors with a retention time 
of several days) can solve this problem. However, this 
solution contains the drawback that standard CMOS 
technology cannot support these supplementary tech- 
nological steps without an important cost increase. 

Another way to obtain high-precision capacitors is to 
adjust their design so that leakage currents have no 
effect on the behavior of the circuit. Since synaptic 
weights are generally positive or negative, using two 
capacitors can avoid such an effect.’ The difference 
between their charges determines the value of the 
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connection. The difference between the leakage cur- 
rents then determines the charge loss, which is a much 
better solution than having only one capacitor. Added 
transistors and small variable capacitors provide weight 
adjustments (see Figure 4). This solution can combine 
with high-precision capacitors that have reduced leak- 
age currents to obtain accurate synaptic weights. With 
this precision, the system proposed by Schwartz, 
Howard, and Hubbard’ can obtain a resolution of 10 
bits. 

In Figure 4, long transistors TCP and TCM provide 
for charge transfer. TP, TM, and TI (narrow transistors) 
isolate the charge-transfer transistors from each other 
and from the storage nodes. These transistors provide 
ideal switching. Using different sequences in turning 
on the switches provides coarse or fine weight changes. 
For example, one achieves weight decay by first turn- 
ing on all transistors except TI. When the two sides of 
the charge-transfer string have equilibrated with their 
respective storage nodes, the connections between the 
storage nodes (TM and TP) turn off, and the two 
charge-transfer transistors TCP and TCM exchange 
charges by turning on transistor TI. When TCM and 
TCP have equilibrated their charges, TI turns off again. 
The charges held by TCM and TCP inject back into the 
storage capacitors. The resulting change in the stored 
weight is AV = - (V+ - VJ*Ceff/Cox, which corre- 
sponds to multiplying the weight by a factor a < 1. 
Figure 4 illustrates coarse and fine weight changes and 
weight decay. 

Although it is a seductive solution for analog synap- 
tic weights, reducing the number of memory points for 
a required precision corresponding to several bits is not 
the best answer. Using only one digital memory point is 
optimum. Of course, this approach offers less precision 
and decreases global performance. However, one can 
use algorithms that cope with this restriction to pro- 
gram the network.* Such algorithms require only two or 
three different synaptic weights, and performance does 
not decrease the way it does in networks in which 
continuous synaptic weights are used. 

Analog architectures. Once the type of memory 
points has been chosen, we can design the synapse. The 
synapse realizes the logical function between the value 
of the neuron that connects to it and an internal weight 
stored in the memory points. We first examine the case 
in which the output value of the neuron can take two 
different values and the synaptic weight can take three. 
The logical function that occurs between the neuron 
output value (+1 or -1) and the synaptic weight (+l, 0, 
or -1) is either AND or XOR (we expect both of these 
functions to become 0 when the synaptic weight is 0). 
However, simulations have illustrated that the XOR 
function is generally preferable in Hopfield’s networks 
because it increases storage capacity.’ The circuit we 
show implements a XOR function, but we can easily 
transpose it to an AND function. 

Synapse j 

Synapse k 

-4 

--I 
Neuron i 

Figure 5. Synapse architecture. 

Since three different synaptic weights are allowed, 
either one analog memory point or two digital memory 
points are necessary. We prefer the latter solution 
because of the reduced precision. The architecture that 
follows’o is based on the principle of current summa- 
tion. Synapses consist of programmable current 
sources, and the neuron sums all synaptic currents. The 
neuron is an amplifier that realizes the nonlinear trans- 
fer function (sigmoid, threshold, etc.). One solution 
consists of summing all synaptic currents on the input 
line of the neuron.” If the synapse is excitatory (a 
positive result of the XOR function), the current flows 
to this input line. If the synapse is inhibitory (a negative 
result), the current flows from the input line (shown in 
Figure 5). 

If the neuron realizes a pure threshold function, with 
the threshold equal to 0, it must discriminate whether 
the total current on its input line is positive or negative. 
A simple amplifier can achieve this result. The major 
drawback of this architecture lies in the following. In 
standard CMOS technology, the currents that flow 
through the P- and N-channel types of transistors are 
very different. Adjusting the size of the transistors 
(usually a factor of 2.5 to 3 between the two types of 
transistors) achieves compensation. However, we do 
not know the exact ratio before the technological pro- 
cesses occur, and the currents flowing to or from the 
input line differ slightly. When the number of synapses 
connected to the same neuron increases, the system 
sums these differences. The total mismatching can 
exceed that of one synaptic current, and the neuron can 
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Figure 6. Artificial synapse. 
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Figure 7. Current flow in an artificial neuron. 

thus switch to a wrong state if the input current is close 
to the threshold. A solution to this problemI consists of 
summing all excitatory currents on one input line and 
all inhibitory currents on another. When the design 
employs the same type of transistors on each line of a 
two-line system, the mismatching problem disappears. 

Each synapse is a programmable current source that With increasing numbers of synapses connected to 
controls a differential pair (see Figure 6). Three con- the same neuron, voltage drops V + and V - across T3 

Because of the use of current mirrors, some asymme- 
tries exist in this circuit. Impedances of T3 and T4 are 
different, and the same is true even for T8 and T9. 
Nevertheless, since we designed the circuit to produce 
saturated outputs, asymmetries inside the neuron are 
not important, provided that the output switches from 
one logic voltage to the other when the two input 
currents are equal. The design works well since the two 
transistors of each current mirror (T3/T4 and TS/T9) 
have exactly the same behavior when the currents they 
drive are equal. 

-- 4 
Neuron i+ 

Figure 8. Feedback loop. 

nection values occur in each synapse. If the memory 
point meml = 1, current flows to one of the two lines 
with the sign of the connection determined by the 
product of mem2 and the output of the neuron con- 
nected to the synapse. If meml = 0, no connection 
exists between neurons i and j nor does current flow to 
the excitatory and inhibitory lines. 

Depending on the state of the XOR function, the 
current can flow either from the line i + or from the line 
i -. In the neuron, the comparison of the two total 
currents on the lines i + and i - must occur. The differ- 
ential amplifier shown in Figure 7 performs this task. 
The current mirror formed by transistors T3 and T4 
functions as a load for the two currents on lines i + and 
i -. The voltage drops across these two transistors are 
thus monotonic, increasing functions of the currents. 
The amplifier then compares these voltage drops in the 
differential input reflector formed by transistors T5 to 
T9. Because of the two-stage architecture of the neu- 
ron, the gain may be very large. A 5V output occurs if 
the current in neuron i - is greater than that of neuron 
i+. The output becomes OV in the opposite case. 
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Figure 9. Output of an artifical neuron. 

and T4 tend to increase. Because V + and V - are in fact 
the drain voltages of transistors Tl and T2 (see Figure 
6), we must avoid saturation of the synaptic transistors. 
We introduced a feedback loop to keep the Out voltage 
V* of the synapses (see Figure 8) fixed to V,,,. While 
no high gain is needed for the feedback loop, the 
amplifier in Figure 8 can consist of one transistor. 

Experimental results. Figure 9 shows the output 
characteristic of one neuron. For this simulation, 5 12 
active synapses connect to the neuron. The x axis 
represents the number of synapses (p) connected to the 
positive input line of the neuron. The other synapses 
(5 12-p) connect to the negative input line. The diagram 
shows that the neuron output always becomes saturated 
when a sufficient difference exists between the two 
inputs. This voltage thus can feed directly back to 
synapse inputs through the connection network. 

With a smaller difference between the two inputs, the 
neuron output voltage varies between OV and 5V. This 
situation is incompatible with the synapse structure, 
which needs a digital input. We therefore inserted a 
buffer to provide a binary output between the neuron 
output and the synapse inputs. 

We measured the output voltage of the neuron (be- 
fore the buffer) with an increasing number of active, 
connected synapses to determine the buffer character- 
istics and the maximum number of synapses allowed in 
the network. Figure 10 shows the experimental results 
with and without the feedback loop described previ- 
ously. We used a single transistor feedback loop in the 
experiment. The x axis represents the N number of syn- 
apses connected to the neuron while the y axis repre- 
sents the neuron output voltage. We performed this 
analysis under worst case conditions, that is, when 
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Figure 10. Neuron output without feedback loop (a) 
and with feedback loop (b). Curve 1 represents the 
output with a predominance of excitatory current; 
curve 2 is the opposite case. 

n/2 - 1 synapses are excitatory and n/2 + 1 are inhib- 
itory (i - > i +), or the opposite (i + > i -). Figure 10 
shows that the dynamic output range decreases with an 
increasing number of synapses. This phenomenon re- 
sults from the common-mode voltage of the neuron am- 
plifier. If the two input currents increase simultane- 
ously, the amplifier gain decreases and the output loses 
saturation. It seems obvious that the difference between 
the two curves must be large enough to correctly turn 
the buffer on or off (a difference of 1V is acceptable). 
The feedback loop can provide a larger number of 
synapses (more than 500). 

In this circuit, the single synaptic current equals 10 
microamps. To achieve this state requires that the syn- 
aptic transistor connected to meml be long (the width/ 
length ratio of the transistor W/L = 0.1) and that the 
transistor connected to mem2 be minimal (W/L = 1.5). 
Such a current is acceptable in a neural network with a 
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Figure 11. Microphotograph of the test chip contain- 
ing 14 neurons and 196 synapses. 

restricted number of neurons as illustrated later. In 
larger networks, one must reduce the current for power- 
density reasons. For example, the power dissipated by 
a 128-neuron network with synaptic currents equal to 1 
milliamp approximates 100 mW. One can implement 
such a circuit in a 64-sq-mm chip with a CMOS 2- 
micrometer, double-metal technology (the power den- 
sity is about 1 mW/sq mm). 

Speed properties constitute one of the most interest- 
ing features of neural networks. Experience has shown 
that a change in a synapse value introduces a change in 
the correspondent neuron value, which is fed back into 
the synapse in about 40 nanoseconds. Practically, this 
means that it takes about 150-200 ns for a 128-neuron 
network to converge to a stable state. In general, about 
five iterations are necessary to retrieve the pattern 
stored in the network from the input pattern. 

We implemented a small test chip to verify the 
performances of synaptic currents and neuron response 
time. This chip contains 14 neurons and 196 synapses. 
To make the circuit fully programmable and to exploit 
its learning capability, we embedded two memory 
points in each synapse. Figure 11 shows a microphoto- 
graph of the complete chip. 

W e expect the research in VLSI technology for 
neural networks to lead to the development of 
practical applications using small networks 

within the next few years. Such applications concern 

vision, speech and image processing, character recog- 
nition, or other tasks in which a small amount of data is 
handled simultaneously. We have pointed out the ad- 
vantages and drawbacks of some types of VLSI analog 
neural networks and have shown how a larger number 
of neurons can connect through the use of analog 
summing of products. Researchers in this field will 
obviously try to integrate larger networks for use in 
more complex applications. One solution to the small 
size of the current artificial neural networks is to cas- 
cade chips. However, the number of cells in a fully 
interconnected neural network grows with the square of 
the number of neurons. The number of chips necessary 
for this type of implementation rapidly overwhelms the 
imagination. The solution to the integration of large 
networks is thus to reduce the size of the basic cells (the 
neurons and synapses), even despite a loss of precision. 

Classical learning algorithms, like the Hebbian rule, 
become inefficient when the dynamics of the synaptic 
weights are restricted to some discrete values. One can 
avoid this problem by using learning rules similar to the 
one presented here. This algorithm helps program a 
fully interconnected network into a content- 
addressable memory and shows an increased storage 
capacity in comparison with that of other learning 
rules. 

While a lot of work remains to be done towards the 
integration of large neural networks, the analog tech- 
niques we have presented here prove that networks with 
several hundreds of fully interconnected neurons are 
not unrealistic ?l! .%1c 
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