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Information Theoretic versus Cumulant-Based
Contrasts for Multimodal Source Separation

Frédéric Vrins and Michel Verleysen, Senior Member, IEEE

Abstract—Recently, several authors have emphasized the exis-
tence of spurious maxima in usual contrast functions for source
separation (e.g., the likelihood and the mutual information) when
several sources have multimodal distributions. The aim of this
letter is to compare the information theoretic contrasts to cumu-
lant-based ones from the robustness to spurious maxima point of
view. Even if all of them tend to measure, in some way, the same
quantity, which is the output independence (or equivalently, the
output non-Gaussianity), it is shown that in the case of a mixture
involving two sources, the kurtosis-based contrast functions are
more robust than the information theoretic ones when the source
distributions are multimodal.

Index Terms—Blind source separation, contrast function, en-
tropy, independent component analysis, kurtosis, multimodal
sources.

I. INTRODUCTION

B LIND SOURCE SEPARATION (BSS) consists
in recovering independent source signals

from mixtures of them
. In this letter, we focus on the

linear instantaneous mixture of real sources ,
where , and denotes the mixing matrix
(with a slight abuse of notation, we will omit the temporal
variable in the following). At most, one source may have
a normal distribution. The mixing system is supposed to be
square . Without loss of generality (provided that the
sources are stationary and ergodic), it is commonly assumed
that the sources are zero-mean and have an identity covariance
matrix (i.e., they are sphered).

Most of time, the data are sphered using a prewhitening
step: , such that and .
If we furthermore constrain the estimated sources (also called
“output signals”) to be sphered, they become a rotation trans-
form of . If symbolizes the rotation matrix, the mixture
scheme can be rewritten as

(1)

where denotes the transfer matrix between the outputs and the
source signals. The aim of BSS is to obtain output signals that
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correspond to the original sources. In this case, the square matrix
solution is nonmixing (at most, one nonzero
element per row and full rank) [1]; matrix is the rotation
matrix, maximizing a so-called contrast function , i.e.,

. When independent component analysis (ICA) is
used to solve the BSS problem, is a function that measures
the independence level between the elements of [1]. In order
to avoid an exhaustive search in the whole space of orthogonal
matrices, a gradient ascent on is used most of the time, leading
to an update rule for that looks like

(2)

In (2), may denote either the Euclidean, natural, or rel-
ative gradient of with respect to , evaluated at .
Note that algebraic methods also exist for specific contrast func-
tions .

Using a gradient-based maximization supposes that the algo-
rithm will not be trapped in a spurious maximum, leading to ,
that does not correspond to a satisfactory solution for the BSS
problem ( still mixing). In [2]–[6], various authors
have noted that the usual ICA contrast functions may have such
spurious maxima if several source distributions are multimodal.
For instance, Cardoso shows this phenomenon in [6] for the like-
lihood-based contrast function and explains it as a local
matching between the distribution of and the supposed
distribution used in , even if a correct model has been
assumed for the source distributions, i.e., even if .
More recently, Vrins et al. [3], [4] have given an intuitive jus-
tification regarding the existence of spurious maxima when the
opposite of the output marginal entropies are used for the con-
trast function. This can be understood looking at the structure of
the and, more precisely, their number of modes
(see Section II for a summary of these results).

This paper aims to show that cumulant-based contrast func-
tions do not suffer from this drawback, at least if . After
analyzing the robustness of the entropic contrasts to the exis-
tence of spurious maxima, we justify the use of the kurtosis as
the contrast function to separate two multimodal sources.

II. ENTROPY SPURIOUS MINIMA

Consider a two inputs and two outputs (TITO) system (
). The transfer matrix can be modeled as in

(3)

This particular form of is due to the fact that i) both ma-
trices and are orthogonal (so that is also orthogonal)
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Fig. 1. Spurious maxima of � and � (corresponding to � 2]k�=2; (k + 1)�=2[) for (a) a pair of bimodal sources and for (b) a mixture of a bimodal and
a trimodal sources.

and ii) in dimension two, an orthogonal matrix is fully deter-
mined by a single angle. Since, in practice, is unknown, the
angle (which is a function of the elements of , , and )
is unknown, too. However, the angle may be blindly modified
through the elements of .

Obviously, all unmixing matrices corresponding to
are acceptable solutions for the BSS

problem, since they are associated to nonmixing matrices .
We will focus on and ,
where denotes the entropy of

[8]. These latter criteria can be used as a contrast function
for ICA [7] (of course, they do not involve the unknown part of
the mixing model: neither the elements of nor the unknown
sources ). The choice between these two criteria depends on if
a deflationist approach (the sources are estimated one by one) or
a symmetric one (both sources are extracted simultaneously) is
preferred. Note that the exact computation of the entropy
requires that you know the distribution of the variable

. Since, in practice, the latter is unknown, the distributions
will be estimated, for example, using the Parzen estimator [9]
with Gaussian kernels (see [4] for more details about the choice
of the kernel variance in this application). Fig. 1 shows the
evolution of and versus for
two examples ( is a well-chosen scalar, ensuring that and

are positive, for illustration purposes). In Fig. 1(a), both
source distributions are bimodal: , while
in Fig. 1(b), and (since the scale of the
axes does not matter, it has been omitted). The distributions

are built by adding Gaussian kernels of different
means (with negligible overlap). Keeping in mind that the
only maxima that are relevant from the BSS point of view are
the ones occurring at , it is obvious that
both these contrast functions have spurious maxima. A BSS
algorithm using (2) may fail in such cases.

Fig. 2. Evolution of p (y ) for several values of � (solid) associated with
Fig. 1(a) and the sphered Normal distribution (dotted).

In [4], it is explained that may vary between
and for varying be-

tween . It is emphasized that ,
when expressed as a function of , may have local minima in

; these minima coincide with the (spurious)
local minima of , i.e., the spurious local maxima of .
This can be observed by comparing Figs. 1(a) and 2. This
phenomenon is due to the fact that the distribution of a sum of
independent random variables is the convolution of the variable
distributions (see Section IV).

The analysis in this section has been extended to nearest-
neighbor approximators of entropy (spacing estimates of en-
tropy [5]) and to other definitions of entropy (like Renyi’s en-
tropy [10]): The conclusion is identical.
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Fig. 3. Evolution of � and � for (a) a pair of bimodal sources and for (b) a mixture of a bimodal and a trimodal sources.

Since, in this mixture, scheme is equivalent to the op-
posite of the mutual information and to the negentropy criteria
[11], the latter obviously suffers from the same drawback.

III. KURTOSIS-BASED CONTRAST FUNCTION

As in the previous section, similar simulations were per-
formed, now using the absolute value of the kurtosis as
the contrast function instead of Shannon’s entropy. This
fourth-order cumulant can be used in BSS applications (see
[12] and inner references). Hence, the aim of ICA is to find the

that maximizes or
(both can be used, depending on if a deflationist or a symmetric
approach is used for the separation). The results are plotted in
Fig. 3. As in the previous section, the values of corresponding
to nonmixing matrices are . We can observe that
all the local maxima of or correspond to a nonmixing
matrix .

IV. DISCUSSION

In this section, we compare the entropy- and kurtosis-based
contrast functions from the viewpoint of spurious maxima. in-
formation theoretic criteria, as well as cumulant-based ones,
map the structure of a distribution to a real number. Both these
criteria measure statistical quantities of distributions.

The distribution of is directly related to , ,
and . Indeed, multiplying a variable is equivalent to scaling

:

(4)

and the distribution that results from the sum of independent
random variables is the convolution of the variable distributions:

(5)

Comparing Figs. 1(a) and 2, it is clear that is a mea-
sure of the whole structure of (and, thus, depends on the
number of modes). By contrast, characterizes more specifi-
cally the tails of , discarding its internal structure (in the
middle range of the support of ), as is visible by comparing
Figs. 2 to 3(a).

This property of the kurtosis , which can be used as a
non-Gaussianity measure of [11], has been emphasized
by Friedman: projection indexes based on standardized cu-
mulants heavily emphasize the departure from normality in the
tails of distribution. For example, a distribution with only
slightly heavier than normal tails receives a much higher index
value than a highly clustered projection (i.e., distribution) [13].
This analysis (particularized to the kurtosis) has been translated
for the ICA problem in [14].

The previous considerations are illustrated in Figs. 2, 3(a),
and 4. In this experience, can be seen approximately as
a measure of where the tails of cross the tails of the
Gaussian distribution of zero mean and unit variance. In
other words, if we suppose that for
and for (with ), then the lower
and , the higher [the link between the kurtosis and

can be seen by comparing Figs. 3(a) and 4]. The and
are indicated by circles in Fig. 2. Note that or

have similar behavior versus . Moreover, as visible in Fig. 4,
and [since, by (3),

]. Hence, the lower the ,
the higher .

The key point here is to observe that the evolution of
is largely influenced by and . On the contrary, the
evolution of versus (or, more precisely, the shape of this
function) mainly depends on the transfer coefficients (i.e., of );
the number of modes has no influence on the number of
extrema of the kurtosis. Even if the source distributions stretch
or distort the shape of (expressed as a function of ), this
shape remains similar for both unimodal or multimodal source
distributions.
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Fig. 4. Evolution of y (solid) and jy j (dotted) versus � for the examples
given in Fig. 3(a) (markers “o”) and (b) (no marker).

Let us define , , and similarly to , , and
, respectively). Consequently, starting from to

, increases from , reaches a (possibly
locally) maximum value, and decreases to . This is exactly
the same scheme as for unimodal source separation, and it
ensures that all locally maximum values of (i.e., the
minimum values of ), which can be detected blindly knowing
only , are attained for , corresponding
to a nonmixing transfer matrix . As a consequence, using
gradient-based maximization of or does not lead to spu-
rious solutions. In addition, it is known that algebraic methods
can also be used to maximize the last contrast function [15],
avoiding spurious solutions, too. On the contrary, entropy-based
contrast functions are maximized by gradient-based methods;
it is shown in this paper that spurious maxima may appear in
this case.

V. CONCLUSION

In the ICA community, despite its extreme simplicity, the
kurtosis-based contrast functions are criticized for their low ro-
bustness to outliers. However, this behavior may constitute an
advantage in some situations, as in the problem exposed here:
It allows the characterization of the tails of a distribution, dis-
carding the internal structure (in the middle range of the support
of the variable). This is exactly what is desired when the goal
is to separate multimodal sources, since the tails of do
not depend on , but rather only on the source distribution
tails and the transfer coefficients (elements of ), i.e., of .

It should be emphasized that this reasoning requires that a
whitening process precedes the ICA step and that the output
signals are normalized to have a unitary variance.

The reasoning held in this paper cannot be easily generalized
to all multiple inputs multiple outputs (MIMO) systems. Indeed,

the key point in TITO systems is that we have only one degree
of freedom for : the angle . In (with ) systems, for
a fixed value of an element of a row of , it remains de-
grees of freedom to adjust the others of the same row, due to the
constraint . Consequently, local maxima for
may appear for each value of the fixed coefficient. By contrast,
the generalization to two input multiple outputs (TIMO) sys-
tems is direct if a principal component analysis is first applied
on the mixtures , to project them on a two-dimensional space,
implying that remains a 2 2 matrix, and (3) still holds.

Nevertheless, this paper shows that contrast functions for
multimodal gradient-based source separation exist that prevent
the existence of spurious maxima (at least for ), avoiding
this well-known drawback when information theoretic contrasts
are used.
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