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Abstract—In this paper, both non-mixing and mixing local
minima of the entropy are analyzed from the viewpoint of blind
source separation (BSS); they correspond respectively to accept-
able and spurious solutions of the BSS problem. The contribution
of this work is twofold. First, a Taylor development is used to show
that the exact output entropy cost function has a non-mixing min-
imum when this output is proportional to any of the non-Gaussian
sources, and not only when the output is proportional to the lowest
entropic source. Second, in order to prove that mixing entropy
minima exist when the source densities are strongly multimodal,
an entropy approximator is proposed. The latter has the major
advantage that an error bound can be provided. Even if this
approximator (and the associated bound) is used here in the BSS
context, it can be applied for estimating the entropy of any random
variable with multimodal density.

Index Terms—Blind source separation (BSS), entropy estima-
tion, independent component analysis, mixture distribution, multi-
modal densities.

I. INTRODUCTION

BLIND source separation (BSS) aims at recovering a vector
of independent sources from observed

mixtures . In this paper, we assume that
and , where is the -by- mixing matrix.

The sources can be recovered by finding an unmixing matrix
such that is non-mixing (i.e., with one nonzero

entry per row and per column). Such matrices can be found by
minimizing an ad hoc cost function (see [1], the books [2]–[4],
and references therein).

In practice, the minimum of these criteria is reached by adap-
tive methods such as gradient descent. Therefore, one has to
pay attention to the solutions corresponding to these minima.
In most cases, the global minimum is a solution of the BSS
problem. By contrast, the possible local minima can either cor-
respond to a desired solution (referred as non-mixing minima)
or spurious solution (referred as mixing minima) of the problem.
For example, the optimization algorithm could be trapped in
minima that do not correspond to an acceptable solution of the
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BSS problem. Therefore, it is of interest to study the possible
existence of both non-mixing and mixing local minima.

The paper deals with this issue by extending existing results
of related work. The introduction first presents the two main
approaches for source separation and details the state-of-the-art
related to the local minima of BSS criteria. Then, the objectives
and the organization of the paper is presented.

A. Symmetric and Deflation Approaches

To determine matrix , two approaches can be investigated.
The first one (called symmetric) aims at extracting all sources
simultaneously. The second approach (called deflation) extracts
the sources one by one.

• The common symmetric approach consists in minimizing
the Kullback–Leibler divergence between the joint density
and the product of the marginal densities of the recovered
sources (i.e., their mutual information), which are the com-
ponents of . This leads to the mini-
mization of (see [5]–[7])

(1)

where denotes Shannon’s differential entropy [5],
[6]

(2)

In (2), denotes the probability density function (pdf)
of . A variant of this approach applies the unmixing ma-
trix to a whitened version of the observations. In this
case, since the sources are uncorrelated and can be assumed
to have the same variance, one can constrain to be or-
thogonal [2]. The term in criterion (1) disappears
and is to be minimized over the group of orthogonal
matrices.

• The deflation approach [8] extracts the th source by com-
puting the th row of by minimizing a non-Gaus-
sianity index of subject to the constraint that is
uncorrelated to for . By taking this index to
be the negentropy [9] and assuming (without loss of gen-
erality) that the sources have the same variance, the cost
function can be written as plus a con-
stant, where and denotes the Euclidean

norm [10], [11]. Since this function is unchanged
when is multiplied by a scalar, this leads to minimizing

under the constraint for ,
, where is the Kronecker delta [12].
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B. Related Works

Although both symmetric and deflation procedures could be
analyzed in this contribution with the same tools, we focus on
the entropy , used in the deflation approach.

Several results exist regarding the entropy minima of
(the subscript “ ” has been omitted in the following, since

one signal is extracted at a time in the deflation approach). The
first kind of results discusses the existence of non-mixing local
minima of that correspond to the extraction of a single
source. The second kind of results discusses the existence of
mixing minima that correspond to spurious solutions of the BSS
problem: is still a mixture of sources despite the fact that

is a local minimum. These results are summarized below.
• Non-mixing entropy local minima

It has been shown that the global minimum of with
is reached when the output is proportional

to the source with the lowest entropy [10]. It is proven in
[9] that when a fixed-variance output is proportional to one
of the sources, then, under some technical conditions, the
cumulant-based approximation of entropy used in
FastICA [9] reaches a non-mixing local minimum. Finally,
based on the entropy power inequality [13], it is also proven
in [14] that, in the two-dimensional case, Shannon’s en-
tropy has a local minimum when the output is proportional
to a non-Gaussian source.

• Mixing entropy local minima
As for the mutual information, simulations results in [15]
suggest that mixing local entropy minima exist in spe-
cific cases (i.e., when the source pdfs are strongly multi-
modal, which sometimes occurs in practice, for sinusoid
waveforms among others). These results, based on den-
sity estimation using the Parzen kernel method, are con-
firmed by other simulations using directly entropy estima-
tion, such as Vasicek’s one in [16] or based on the approxi-
mator analyzed in this paper in [17]. Rigorously speaking,
the above results do not constitute an absolute proof since
error bounds are not available for the approximation pro-
cedure. By contrast, a theoretical proof is given in [18], but
for a specific example only (two bimodal sources sharing
the same symmetric pdf). The existence of mixing local
entropy minima has also been shown in [19] (without de-
tailed proof) in the case of two nonsymmetric sources with
strongly multimodal pdfs.

C. Objectives and Organization of the Paper

In this paper, additional results regarding mixing and non-
mixing entropy minima are presented. Two main results will be
proven.

First, it will be shown in Section II that the exact entropy
of an output with a fixed variance has local non-mixing
minima: the entropy has a local minimum when is pro-
portional to one of the non-Gaussian sources. This is an exten-
sion of the results presented in [18] to the case of sources.
If the output is proportional to the Gaussian source (if it exists),
the entropy has a global maximum. Numerical simulations illus-
trate these results in the case, for the ease of illustration.

Second, in Section III, an entropy approximator is presented,
for which an error bound can be derived. It is suitable for
variables having multimodal densities with modes having a
low overlap, in the sense that its error bound converges to zero
when the mode overlap becomes negligible. This approximator
was mentioned in [17] and error bounds have been provided in
[19] without proof. In the BSS context, when the sources have
such densities, the use of this approximator makes it possible to
show that the marginal entropy has local mixing minima. This
approach can be applied to a wider class of source densities
than the score function-based method derived in [18]. The
results presented in this paper further extend those in [19] as
they are not restricted to the case of sources. Finally, we
provide a detailed proof of the bound formula for the entropy
approximator.

It must be stressed that the aforementioned entropy approx-
imator can be used for other applications that require entropy
estimation of multimodal densities.

II. LOCAL NON-MIXING MINIMA OF OUTPUT ENTROPY

In this section, we shall prove that , under the
constraint, reaches a local minimum at , the th row

of the identity matrix, if is non-Gaussian, or a global
maximum otherwise. Note that, as is well known, the global
minimum is reached at where .

A. Theoretic Development

The starting point is an expansion of the entropy of a random
variable slightly contaminated with another variable up
to second order in , which has been established in [20]:

(3)

In this equation, is the score function of , defined as1

, is the pdf of , denotes the derivative, and
and denote the conditional expectation and

conditional variance given , respectively.
Assume that is close from so that its th component
is close to for . Under the constraint,

and since ,
one can write

Thus, with

1In this paper, we use the score function definition presented in [7]. However,
several authors define this function with the opposite sign. The reader should
have this difference in mind.
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Therefore, applying (3) and dropping higher order terms, one
gets that equals

Since the sources are mutually independent, any nonlinear
mapping of them is uncorrelated so that ,
for . Furthermore for ,

(by integration by parts), and

where denotes the common variance of the sources.
Therefore

(4)

Note that again by integration by parts, can be
rewritten as , which is precisely Fisher’s informa-
tion [5]. In addition, by Schwarz’s inequality [5], one has

with equality if and only if is a linear function. But since
as mentioned earlier and
the left-hand side of the above inequality equals . Thus,

unless is linear (which means that is

Gaussian) in which case . One concludes

from (4) that for all sufficiently close to
if is non-Gaussian. Thus, reaches local non-mixing
minima at (since ), as long as

is non-Gaussian. If is Gaussian, then is a global
maximum since Gaussian random variables have the highest
entropy for a given variance. Equality (4) is of no use in this
case, since the second term in this equality vanishes.

B. Numerical Simulations

In this subsection, three simple examples are analyzed in the
case. In this case, the unit-norm vector can be rewritten

as and is considered as a function of .
The entropy is computed through (2), in which the pdf were es-
timated from a finite sample set (1000 samples), using Parzen
density estimation [21], [22] with Gaussian kernels of standard
deviation ( denotes the number of sam-
ples and is the empirical standard deviation, enforced to be
equal to one here) and Riemannian summation instead of exact
integration.

Example 1: Assume that and have uniform densi-
ties. According to the above results, local minima exist for

. In this example, no mixing minimum can be ob-
served (Fig. 1(a)).

Example 2: Suppose now that and have uniform and
Gaussian distributions, respectively. Local minima are found for

, , and local maxima for
Fig. 1(b). Again, no spurious minimum can be observed in this
example.

Example 3: Consider two source symmetric pdfs and
that are constituted by i) two nonoverlapping uniform modes
and ii) two Gaussian modes with negligible overlap, respec-
tively. One can observe that non-mixing solutions occur for

Fig. 1(c).

In addition to an illustration of the above theoretical result,
the last example shows the existence of spurious (mixing) local
minima for . However, the figure does not consti-
tute a proof of the existence of local minima of ; the
minima visible on the figure could indeed be a consequence of
the entropy estimator (more precisely, of the pdf estimation). In
Section III, we derive an entropy estimator and an associated
error bound. This approximator is efficient for estimating the
entropy of variables having multimodal densities, in the sense
that the error bound tends to zero when the mode overlaps de-
crease. Next, thanks to this approximator, it will be theoretically
proven that mixing local minima exist for strongly multimodal
source densities.

III. ENTROPY APPROXIMATOR

In this section, we introduce the entropy approximator first
derived in [17]. The detailed proofs of the upper and lower
bounds of the entropy based on this approximator, already men-
tioned in [19] without proof, are given. Illustrative examples are
further provided. The entropy bounds will be used in Section IV
to prove that for a specific class of source distributions, the en-
tropy function can have a local minimum that does not
correspond to a row of the identity matrix. The presented ap-
proach yields more general results than those in [18], since it
is no longer constrained that the sources share a common sym-
metric pdf.

This approach relies on an entropy approximation of a multi-
modal pdf of the form

(5)

where , are (strictly positive) probabilities
summing to , and are unimodal pdfs. We focus
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Fig. 1. Evolution of H(wwwSSS) versus �. (a) Example 1: Two uniform sources. (b) Example 2: Uniform (S ) and Gaussian (S ) sources. (c) Example 3: Two
bimodal sources. The non-mixing minima are indicated by dash-dotted vertical lines, the mixing ones by dotted lines.

on the case where the supports of the can be nearly cov-
ered by disjoint subsets so that is strongly
multimodal (with modes). In this case, a good approxima-
tion to the entropy of a random variable of density can be ob-
tained; this entropy will be denoted (with abuse of notation) by

instead of where is a random variable with pdf .
Such approximation will be first derived informally (for ease of
comprehension) and then a formal development giving the error
bounds of the approximator is provided.

A. Informal Derivation of Entropy Approximator

If the random variable has a pdf of the form (5), then its en-
tropy equals

(6)

Suppose that there exists disjoint sets that nearly
cover the supports of the densities; even if the have a
finite support, the may differ from the true support of the
since these supports may be not disjoint. Then, assuming that

is small or zero for all and noting that
by convention (more rigorously:

), one gets

If we note and the
entropy of a discrete random variable taking distinct values
with probabilities , then where

(7)

B. Upper and Lower Bounds of the Entropy of a Multimodal
Distribution

The entropy approximator in the preceding subsection
is actually an upper bound for the entropy. This claim is proved
in the following; in addition, a lower bound of the entropy will
be further provided. These bounds permit to analyze how ac-
curate is the approximation ; they are explicitly
computed when all are Gaussian kernels.

1) General Results: The following lemma provides upper
and lower bounds for the entropy.

Lemma 1: Let be given by (5), then

(8)

where is given by (7).
In addition, assume that

and let be disjoint subsets which approximately
cover the supports of , in the sense that
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are small. Then, we have

(9)

The proof of this lemma is given in the Appendix.
Let us consider now the case where the densities in (5)

all have the same form

(10)

where is a bounded density of finite entropy. Hence,
and the upper bound (7) becomes

(11)

Also, the lower bound of the entropy given by (9) reduces to

(12)

Let us arrange the by increasing order and take small with
respect to

(13)

where and by convention. Under this
assumption, the density (5) is strongly multimodal and in
the above lemma can be taken to be intervals centered at of
length

(14)

Then simple calculations give

where

It is clear that and both tend to as . Thus,
one gets the following corollary.

Corollary 1: Let be given by (5) with of the form (10)
and . Then is bounded above by
and converges to this bound as , being
defined in (13).

2) Explicit Calculation in the Gaussian Case: Let us focus
on the case where denotes the standard
Gaussian density: .

The upper and lower bounds of are given by (11) and
(12) with instead of ; and can now be ob-
tained explicitly

where is the complementary error function defined as
. By double integration by

parts and noting that
with , some algebraic manipulations give

One can see that as
, as it should be. Finally

Example 4: To illustrate Corollary 1, Fig. 2 plots the en-
tropy of a trimodal variable with density as in (5) with
given by (10), (for the ease of illustration), ,

, and . Such variable can be
represented as where is a discrete random vari-
able taking values in with probabilities
and is a standard Gaussian variable independent from .
The upper and lower bounds of the entropy are computed as in
Lemma 1 with the above expressions for , , and plotted on
the same figure. One can see that the lower the , the better the
approximation of by its upper and lower bounds. On the
contrary, when increases, the difference between the entropy
and its bounds tend to increase, which seems natural. These
differences however can be seen to tend toward a constant for

. This can be explained as follows. When is large,
is no longer multimodal and tends to the Gaussian density of

variance . Thus grows with as . On the other
hand, the upper bound of of also grows as .
The same is true for the lower bound of which equals

where the last term tends to as since for fixed
, , and as .

C. Entropy Bounds and Decision Theory

The entropy estimator given in (7) has actually close con-
nections with decision problems, and a tighter upper bound for

can be found in this framework. Assume that we have an
-class classification problem consisting in finding the class

label of an observation , knowing the densities and the
priors of the classes. In such kinds of classification problems,
one is often interested in quantifying the Bayes probability of
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Fig. 2. Illustration of Example 4: Evolution of H(Y ) and its bounds versus �, where Y = U + �Z , U is a discrete random variable taking values in f0; 5; 10g
with probabilities ��� = [1=4; 1=2; 1=4] and Z is a standard Gaussian variable independent from U . The lower bound converges to the upper bound as � ! 0 and
the difference between upper and lower bounds tends to 3=2+ h(���) as � !1 (note that the horizontal axis scale is logarithmic).

error . In our context, each of the pdf mode repre-
sents the density of a given class , i.e., the conditional den-
sity of given is . Furthermore, is the a priori
probability of : , and is the density of

, which can thus be seen as a “mixture density.” Defining
, it can be shown

[23], [24] that

(15)

where , which shows
that half the difference between the and is
precisely an upper bound of Bayes’ probability of error

. The error vanishes when the
modes have no overlap (the classes are separable, i.e., disjoint).

Clearly, is a tighter upper bound of
than as . On the other hand, it can be proved
that is a lower bound for [24].
However, the lower bound in Lemma 1 is tighter when is
small enough. Both bounds in this lemma are easier to deal with
in more general theoretical developments, are more related to
the multimodality of , and suffice for our purposes. There-
fore, in the following theoretical developments, the last pair of
bounds shall be used.

IV. MIXING LOCAL MINIMA IN MULTIMODAL BSS

Based on the results derived in Section III-B, it will be shown
that mixing local minima of the entropy exist in the context

of the blind separation of multimodal sources with Gaussian
modes if the mode standard deviations are small enough.

We are interested in the (mixing) local minima of
on the unit sphere of . We shall
assume that the sources have a pdf of the form (5), with
being Gaussian with identical variance (but with distinct
means). Thus, as in Example 4, we may represent as

where is a discrete random variable and is
a standard Gaussian variable independent from . Further,

are assumed to be independent so that
the sources are independent as required. From this represen-
tation, where is the column vector with
components and is again a standard Gaussian variable
(since any linear combination of independent Gaussian vari-
ables is a Gaussian variable and has zero mean
and unit variance). Since is clearly a discrete random
variable, also has a multimodal distribution of the form (5)
with again the Gaussian density with variance . Note
that the number of modes is the number of distinct values

can have and the mode centers (the means of the ) are
these values; they depend on . However, as long as is small
enough with respect to the distances defined in (13) the
approximation (7) of the entropy is justified. Thus, we are led to
the approximation , where

denotes abusively the entropy of the discrete random
variable (the entropy of a discrete random variable with
probability vector is noted either or ).

The above approximation suggests that there is a relation-
ship between the local minimum points of and those
of . Therefore, we shall first focus on the local minimum
points of the entropy of before analyzing those of .
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Fig. 3. Example 5: illustration of Lemma 2. The discrete random variables U and U take values in f�p1:03+2:5;
p
1:03+2:5g; and f�1:2;�0:4; 2gwith

probabilities [0:5;0:5] and [1=2;3=8; 1=8], respectively. The entropies at the points located by the corresponding markers shown on the half-circle are given in
the legend.

A. Local Minimum Points of

The function does not depend on the values that
can take but only on the associated probabilities; these proba-
bilities remain constant as changes unless the number of dis-
tinct values that can take varies. Such number would de-
crease when an equality is attained for some distinct
column vectors and in the set of possible values of . A
deeper analysis yields the following result, which is helpful to
find the local minimum point of .

Lemma 2: Let be a discrete random vector in and be
the set of distinct values it can take. Assume that there exists

disjoint subsets of each containing at least two
elements, such that the linear subspace spanned by the vectors

,
being arbitrary elements of , is of dimension .
(Note that does not depend on the choice of , since

for any other .) Then
for and orthogonal to , there exists a neighborhood

of in and such that for
all . In the case , one has a stronger result
that for all .

The proof is given in Appendix II.

Example 5: An illustration of Lemma 2 in the case
(again for clarity) is provided in Fig. 3. We note
where the discrete variables and take the values

, with probabilities and

and the values , with probabilities
respectively. They are chosen to have the same variance, as
we need that the , , have the same
variance. But their mean can be arbitrary since does
not depend on them. In this example, each line that
links two distinct points span a one-dimensional
linear subspace, which constitutes a possible subspace , as
stated in Lemma 2. There are thus many possibilities for ,
each corresponding to a specific vector .

Two simple possibilities for are the subspaces with direc-
tion given by and . In the first case, the subsets

are built by grouping the points of laying on a same ver-
tical dashed line. There are two such subsets consisting
of with first component equal to and

, respectively. In the second case, the subsets are
built by grouping the points of laying on a same horizontal
dashed line. There are three such subsets consisting of

with second component equal to , , and , re-
spectively.

There also exist other subspaces , corresponding to “diag-
onal lines” (i.e., to solid lines in Fig. 3). This last kind of one-di-
mensional linear subspace corresponds to directions given by
two-dimensional vectors with two nonzero elements.

On the plot, the points on the half circle correspond to the
vectors of the lemma; each is orthogonal to a line joining
a pair of distinct points in , being the set of all possible
values of . The points of are displayed in the plot
together with their probabilities. The entropies are also
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Fig. 4. Example 6: pdf of wwwSSS for various angles �.

given in the plot; one can see that they are lower for
than for other points .

The preceding lemma only provides a mean to find a local
minimum point of the function , but does not prove the
existence of such a point, since the existence of was only as-
sumed in the lemma. Nevertheless, in the case where the com-
ponents of are independent and can take at least two distinct
values, subset ensuring the existence of can be built as fol-
lows. Let be any index in and be
the possible value of , the th component of . One can take

to be the set of such that its th com-
ponents equal to . Then it is clear that the corresponding
subspace consists of all vectors orthogonal to the th row of
the identity matrix (hence is of dimension ) and that
the associated vector is simply this row or it opposite. By
Lemma 2, this point would be a local minimum point of

. But, as explained above, it is a non-mixing point while
we are interested in the mixing point, i.e., not proportional to
a row of the identity matrix. However, the above construction
can be extended by looking for a set of vectors
in , such that the vectors , span
any linear subspace of dimension of . If such a set
can be found, then is simply this linear subspace by taking

and . In addition, if do
not all have the same th component, for some , then the cor-
responding is a mixing local minimum point. In view of the
fact that there are at least points in to choose from for the

and that the last construction procedure meant not to find all
local minimum points of , chances are that there exists
both non-mixing and mixing local minimum points of .
In the case this is really the case: it suffices to take two
distinct points and in , then by the precediing lemma,
the vector orthogonal to is a local minimum point of

. If one chooses and such that both components of
are nonzero, the associated orthogonal vector is not

proportional to any row of the identity matrix; it is a mixing local

minimum point of . Note that in the particular
case, the aforementioned method identifies all local minimum
points of . Indeed, for any , either there exists a
pair of distinct vectors in such that
or there exists no such pair. In the first case, is a local min-
imum point and in the second case, one has .
Since there is only a finite number of the differences ,
for distinct in , there can be only a finite number of local
minimum points of , and for all other points take
the maximum value .

B. Local Minimum Points of

This subsection shows that the local minima points of
can be related to those of .

Lemma 3: Define , , as
described at the beginning of Section IV-B2 and be a vector
satisfying the assumption of Lemma 2 ( being the vector with
component ). Then for sufficiently small, admits a
local minimum point converging to as .

The proof of this lemma is relegated to the Appendix.

Example 6: Thanks to the entropy approximator, we shall il-
lustrate the existence of the local minima of in the fol-
lowing example, so that vectors satisfying
can be written as . We take
and , where are independent discrete
random variables taking the values , with prob-
abilities and , with probabilities
respectively, and , are standard Gaussian variables. The
parameter is set to . Thus, can be represented
as where and is a stan-
dard Gaussian variable independent from . Fig. 4 plots the
pdf of for various angles . It can be seen that the modality
(i.e., the number of modes) changes with . Fig. 5 shows the
entropy of together with its upper and lower bounds, for



1038 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 3, MARCH 2007

Fig. 5. Example 6: Upper bound (dashed line), lower bound (dots), and entropy estimation of Y using finite Riemannian sum (solid). It can be seen that the upper
and lower bounds of the entropy converge to each other when the density becomes strongly multimodal (see the corresponding plots in Fig. 4).

. In addition to non-mixing local minima at
, mixing local minima exist when ,

where , i.e., when
, or .

One can observe that the upper bound is a constant function ex-
cept for a finite number of angles for which we observe negative
peaks (see Lemma 2). For these angles, the pdf is strongly mul-
timodal, and the upper and lower bounds are very close, though
not clearly visible on the figure. This results from a discontinuity
of the lower bound at these angles, due to the superimposition
of several modes at these angles.

V. COMPLEMENTARY OBSERVATIONS

This section provides two observations that can be drawn re-
garding the impact of the mode variance on the existence of
local minima and the symmetry of the entropy with respect to .

A. Impact of “Mode Variance”

In the example of Fig. 6, the discrete variables and in
the expression of and are taken as in Example 5. One can
observe that the mixing minima of the entropy tends to disap-
pear when the mode variance increases. This is a direct conse-
quence of the fact that the mode overlaps increase. When in-
creases, the source densities become more and more Gaussian
and the versus curve tends to be more and more flat,
approaching the constant function . The upper
and lower bounds have only been plotted for the , for
visibility purposes. Again, at angles corresponding to the upper
bound negative peaks, the error bound is very tight, as explained
in Example 6.

B. Note on Symmetry of

In the above graphs plotting the entropy (and its bounds)
versus , some symmetry can be observed. First, if we note

, observe that
whatever are the source pdfs; this is a direct consequence of
the fact the entropy is not sign sensitive. Second, if one of
the source densities is symmetric, i.e., if there exists
such that for all , then

. Third, if the two sources share the same
pdf, then . Finally, if the two sources
can be expressed as in Lemma 3, then the vectors for which

(as obtained in Lemma 2) are symmetric in
the sense that their angles are pairwise opposite. This means
that for small enough, if a local minimum of appears
at , then another local minimum point will exist near
(and thus near , ). The above symmetry property
can be seen from Fig. 3 and can be proved formally as follows.
From Lemma 2, must be orthogonal to for some
pair of distinct vectors in the set of all possible values of .
Define ( ) to be the vector with first coordinate the
same as that of and second coordinate the same as that of

. Then it can be seen that the vector orthogonal to has
an angle opposite to the angle of , yielding the desired result.

VI. CONCLUSION

In this paper, new results regarding both non-mixing and
mixing entropy local minima have been derived in the context
of the blind separation of sources. First, it is shown that a
local entropy minimum exists when the output is proportional
to one of the non-Gaussian source. Second, it is shown that
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Fig. 6. Entropy of wwwSSS (estimated using finite Riemannian sum) versus � for S = U + �Z , S = U + �Z , where U and U are taken from Example 5
(and Fig. 3) and the four random variables are all independent. The parameter � is set to 0:5 (solid), 0:25 (dashed-dotted), and 0:5 (dotted). The upper and lower
bounds have been added for the � = 0:05 case only, for visibility purposes. It can be seen that the upper and lower bounds of the entropy converge to each other
when the density becomes strongly multimodal.

mixing entropy minima may exist when the source densities are
strongly multimodal (i.e., multimodal with sufficiently small
overlap); therefore, spurious BSS solutions can be obtained
when minimizing this entropic criterion. Some attention must
be paid to the obtained solutions when they are found by
adaptive gradient minimization.

To prove the existence of mixing entropy minima, a theoret-
ical framework using an entropy approximator and its associ-
ated error bounds has been provided. Even if this approximator
is considered here in the context of BSS, its use can be extended
to other applications involving entropy estimation.

APPENDIX

PROOFS OF LEMMAS

Proof of Lemma 1: We have from (6) that
where

(16)

Since all , the last right-hand side is bounded above by
, yielding the

inequality (8).
A more elegant derivation of this inequality can be obtained

from the entropy properties. Indeed, the density given in (5) can
be interpreted as the marginal density of an augmented model

where is a discrete variable with values
with probabilities and has a conditional density
given equal to . The joint entropy of (the

“continuous-discrete” pair of random variables) equals
where is the discrete entropy

of and is the conditional
entropy of given . But
(where is the conditional entropy of given ) and
thus equals which is always nonnegative
because is a discrete variable.

Yet another way to prove the above inequality is to exploit its
connection to the decision problem discussed in Section III-C.
Indeed, (15) yields immediately .

To prove the second result, noting that , the

term can be bounded above by

if
otherwise.

(17)

Therefore, with

(18)

one gets
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But since are disjoint

and . Therefore, the right-hand side of
the above equality is bounded above by . It follows
that is bounded below by

After some manipulations, the above expression reduces to
the lower bound for given in the lemma

Proof of Lemma 2: By construction, for each ,
take the same values for . On the other hand, by

grouping the vectors which produce the same value of
into subsets of , one gets a partition of into

subsets , such that each con-
tains at least two elements and takes the same values for

and the values associated with different and the
, are all distinct. Obviously and each of the

must be contained in one of the . There-
fore, the space must be contained in the space spanned by
the vectors ,
being arbitrary elements of . But the last space is or-
thogonal to by construction and thus cannot have dimension
greater than , hence it must coincide with .

Putting for for short and
, one has

For a given pair , of distinct vectors in , if
then it remains so when is changed to provided that the
change is sufficiently small. But if then this
equality may break no matter how small the change. In fact, if

is not proportional to , it is not orthogonal to , hence,
for at least one pair of distinct points in

some , meaning that takes at least two distinct values in
. Thus, there exists a neighborhood of of in such

that for all , each subset be partitioned into
subsets ( can be ) such that

takes the same value on , and the values of on
the subsets and on each point of are distinct. Further,
there exists at least one index for which . For such
an index

The last term can be seen to be a strictly positive number, as
for . Note that this

term does not depend directly on but only indirectly via the
set , , , and there is
only a finite number of possible such sets. Therefore,

for some for all .
In the case , the space reduces to a line and thus

the differences for distinct , in , for all , are
proportional to this line. Thus, if is not proportional to ,
and hence not orthogonal to this line, take distinct values
on each of the sets , and if is close enough to ,
these values are also distinct for different sets and distinct from
the values of on , which are distinct themselves. Thus,
for such , .

Proof of Lemma 3: The proof of this lemma is quite in-
volved in the case, therefore, we will first give the proof
for the case which is much simpler, and then proceed
by extending it to . As already shown in the beginning of
Section IV, where is a standard Gaussian
distribution. Thus, the density of is of the form (5) with

, being the possible
values of , and being the standard Gaussian density.
For , one has by Lemma 1

On the other hand, we have seen in the proof of Lemma 2
that for in some neighborhood of and distinct from

, the ( denoting the set of possible values of )
are all distinct (in the case). Thus, the maps
map different points to different . However, when
approaches , some of the tend to coincide and thus some
of the defined in (13) approach zero. To avoid this, we restrict

to where is any open neighborhood of strictly
included in . Then for all for some

(which depends on ). Thus by Corollary 1,
can be made arbitrarily close to for all

by taking small enough. But
, therefore, for all ,

for small enough.
One can always choose to be a close set in ; hence it is

compact. Since the function is continuous,
it must admit a minimum, which by the above result must be
in and thus is not on the boundary of . This shows that
this minimum is a local minimum. Finally, as one can choose

arbitrarily small, the above result shows that the above local
minimum converges to as .

Consider now the case . The difficulty is that it is
no longer true that for in some neighborhood of and
distinct from , the are all distinct. Indeed, by
construction of , there exists pairs ,

, of distinct vectors in such that the differences are
linearly independent and , . For
not proportional to , at least one (but not necessary all) of the
above equalities will break. Therefore, all the may
be not distinct, even if is restricted to . But the set of

for which this property is not true anymore is the union of a
finite number of linear subspaces of dimension of and
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thus is not dense in . Therefore, for most of the ,
the are all distinct.

The pdf of can be written as

(19)

but some of the can be arbitrarily close to each other.
In this case, it is of interest to group the corresponding terms in
(19) together. Thus, we rewrite as

where is a partition of . This pdf is still of the form
(5) with

The partition can and should be chosen so that

is bounded below by some given positive number. To this end,
note that, as shown in the proof of Lemma 2, is associated
with a partition of such that take the same
value for all , and the values associated
with different and the , are all distinct. Thus,

for some for all and ,
do not belong to a same , .
We take , where denotes the number

of elements of and the remaining
to be disjoint sets containing only a single element of .

Then the partition

satisfies , . The above partition is not
fine enough in order to apply Lemma 1 and to obtain the de-
sired lower bound of . The application of this lemma with

defined as above, would yield a lower
bound involving . By construction,

while we would need a strict inequality. By
using a finer partition, one would get a higher value of .
We thus refine the partition by splitting one of the
sets into two subsets. The splitting rule
is as follows: for each arrange the in ascending
order and look for the maximum gap between two consecutive
values. The set that produces the largest gap will be split and
the splitting is done at the gap. For , this maximum
gap can be bounded below by a positive number (noting that
there is only a finite number of elements in each ); hence for
the refined partition, . Of course, the parti-
tion constructed this way depends on , but there can be only
a finite number of possible partitions. Hence, one can find a fi-
nite number of subsets which cover , each
of which is associated with a partition of such that the corre-
sponding is bounded below by for all in this

subset. In the following, we shall restrict to one such subset,
say, and we denote by the associated partition.2

We now apply Lemma 1 with the sets defined by

Then we have, writing in place of for short

In each term in the sum in that last right-hand side, one applies
the bound

which yields

Therefore, putting
and noting that , one gets

Since , , the last inequality
shows that for any

for small enough. On the other hand, since

Multiplying both members of the above inequality by
and summing up with respect to , one gets

. Therefore

But by construction (see the proof of Lem-
ma 2); therefore, taking , one sees that for

small enough for all .
Since this is true for all , we conclude as before that

admits a local minimum in .

2Note that the partition obtained after the split obviously counts one more
element than the corresponding partition before the split. However, the same
symbol N is used for both partitions to simplify the notation.
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