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Abstract—In spite of the numerous approaches that have been
derived for solving the independent component analysis (ICA)
problem, it is still interesting to develop new methods when,
among other reasons, specific a priori knowledge may help to
further improve the separation performances. In this paper, the
minimum-range approach to blind extraction of bounded source is
investigated. The relationship with other existing well-known cri-
teria is established. It is proved that the minimum-range approach
is a contrast, and that the criterion is discriminant in the sense
that it is free of spurious maxima. The practical issues are also
discussed, and a range measure estimation is proposed based on
the order statistics. An algorithm for contrast maximization over
the group of special orthogonal matrices is proposed. Simulation
results illustrate the performances of the algorithm when using
the proposed range estimation criterion.

Index Terms—Blind source separation (BSS), bounded sources,
discriminacy, independent component analysis (ICA), order statis-
tics, range estimation, Stiefel manifold.

I. INTRODUCTION

I NDEPENDENT component analysis (ICA) [1]–[3] has re-
ceived some attention for more than two decades, due to its

numerous applications in multichannel signal processing, es-
pecially in biomedical signal processing, seismic signal anal-
ysis, denoising in electric and magnetic circuits, and image
processing.

Many ICA algorithms based on various objective functions
have been derived to achieve blind source separation (BSS),
either by extracting the sources one by one (deflation ap-
proach), or by separating all the sources at once (simultaneous
approach). Among others, we can cite JADE [4], FastICA [5],
EFICA [6], Infomax [7], extended Infomax [8], RADICAL [9],
MISEP [10], or nonparametric ICA [11]. For a detailed review,
we refer the reader to the monograph by Cichocki and Amari
[12]. ICA algorithms may perform differently, depending on
the kind of sources that are involved in the mixtures. Most ICA
researchers agree that there does not exist a “super-algorithm,”
making all other ICA approaches useless; new approaches
still arise by using prior information, such as, e.g., sparsity or
nonnegativity [13], [14] or still other constrains [15].
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An important issue in adaptive techniques is the problem of
“false maxima” of the objective function. In the BSS frame-
work, this problem has been proved to exist for some specific
criteria such as, e.g., Shannon’s entropy or mutual informa-
tion [11], [16], [17]: locally maximizing these criteria is not
equivalent to recover the sources. Therefore, several criteria that
do not suffer from spurious maxima have been developed. For
example, under the whitening constraint, the local maximum
points of the square of the output kurtosis used in a deflation
scheme correspond to the extraction of the sources [18] (his-
torically, the spurious maxima problem was the motivation that
has yielded the deflation method). This is also proved for the si-
multaneous case when two sources are involved in the mixtures
[19] (the proof is not extended to a higher number of sources,
but experimental results illustrate the good behavior of the cri-
terion); the two-sources BSS problem reduces to phase estima-
tion. In the same order of idea, the limit points of geometric ICA
are shown to be the solutions of the BSS problem, at least for
two-sources and for symmetric, unimodal densities [20].

In this paper, the sources are assumed to be bounded, i.e., the
source support measure is finite. This assumption has yielded
different approaches to solve the BSS problem using simulta-
neous techniques (based on geometrical or statistical methods
[21]–[23]). More recently, deflation approaches have been
independently proposed in [24] and [25] based on information-
theory and statistical properties, respectively; both use support-
driven information: the support measure itself or the measure
of its convex hull (also known as the “range”). If the support
is not convex, support measure and range may be different; as
an example, if is a random variable with support

, then its measure equals six but its convex
hull is and the range of , which is the measure
of this convex hull, is . The wide variety of tech-
niques tailored for bounded sources stems from the following
facts: 1) bounded sources are often encountered in practice (e.g.,
digital images, communication signals, and analog electric sig-
nals varying within the range of power voltage) and 2) simple
and powerful BSS methods can be derived in this specific
context.

We focus here on a deflation method; the BSS problem is re-
ferred to as blind extraction of bounded sources (BEBS). This
work presents an extension of [25]; additionally to [24], it covers
both the complete theoretical analysis of the extreme points (in-
cluding the spurious optima) of the range-based criterion and the
practical issues related to its estimation for an arbitrary number
of sources. In [25], most of the proofs were only sketched, and
the practical aspects were not discussed. The paper is organized
as follows. First, a specific contrast for mixtures of bounded
sources is derived in Section II. Next, relationships with mutual
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information, negentropy, Renyi’s entropy, and kurtosis-based
approaches are emphasized in Section III, before proving sev-
eral properties of the criterion in Section IV. One of the main
result is the so-called discriminacy, which states that each local
maximum of the contrast function corresponds to a satisfactory
solution of the BEBS problem. In Section V, a finite-sample es-
timator of the support convex hull measure is proposed for the
contrast, based on averaged order statistic differences, i.e., aver-
aged quasi-ranges (other ICA methods also use order statistics
for density, quantile, or distribution functions estimation (see,
e.g., [23], [26], [27], and references therein). A batch algorithm
is provided in Section VI for the contrast maximization. Sim-
ulation results illustrate the good performances of the method.
The proofs are relegated to the Appendices I–V.

II. MIXTURE MODEL AND PROPOSED CONTRAST

Within the ICA framework, BSS aims at separating inde-
pendent zero-mean source signals
from linear instantaneous mixtures of them

(1)

where is the so-called mixing matrix of order , thus as-
sumed to be square and nonsingular. The source signals are sup-
posed to be white [1]: the source covariance matrix is obviously
diagonal because of the independence assumption, and the mag-
nitude of the th source can be divided by without
changing the mixture model given in (1), provided that the th
column of is multiplied by the same scaling coefficient. Then,
the target of BSS is now to recover independent unit-variance
signals. It is also assumed in the following that the source den-
sities are constant in time (so that shall be omitted in the
equations).

ICA aims at finding a separating (also called unmixing) ma-
trix such that the independence between the outputs
is maximized with .

A. Whiteness and Stiefel Manifold

Most ICA approaches assume prewhitening, that is
(where is the identity matrix of order

). If it is not the case, we can simply premultiply the mixtures
by a whitening matrix : implying that the mixing
matrix is now . Matrix can easily be obtained by
eigenvalue decomposition of the mixtures covariance matrix
[1].

If is white, can be assumed to be in the group of
the orthogonal matrices. Clearly, since we are searching
for uncorrelated sources, any satisfactory unmixing matrix
should satisfy , where denotes the th row of
and is the Kronecker delta.

Because whiteness is preserved only under orthogonal trans-
formations, one can restrict the search to the set of unmixing
matrices . The orthogonal group of order forms
a -dimensional subspace of , called Stiefel
manifold [2], [28].1 More specifically, since one can only iden-

1In this paper, we reduce the Stiefel manifold to the group of orthogonal ma-
trices, even if it holds more generally for rectangular matrices, too.

tify up to a left multiplication by the product of gain and
permutation matrices [2], we can also freely assume that

, the group of orthogonal matrices with
without adding further indeterminacies.

The set of target unmixing matrices (corresponding to satis-
factory solution of the BSS problem) can be defined as

, where and can be any diagonal and
permutation nonsingular matrices in , respectively. Note
that obviously . For convenience, we define

the global transfer matrix as .

B. Deflation Criterion for BEBS

A particular contrast for BEBS can be built. Let us denote
the support of , that is the set where the

probability density function (pdf) of is strictly positive, and
denotes the smallest convex set including . We define

the range of a random variable as

(2)

where is the (Lebesgue) measure of sets, which is the in-
terval length in the one-dimensional (1-D) case. Then, we shall
prove in Section IV that the following criterion is a contrast for
BEBS:

(3)

If the criterion is maximized subject to
constant, the denominator can be omitted.

Though the contrast property of will be rigorously
proved in Section IV, we now show how the last criterion can
be obtained.

Let us first observe that is a simple interval, and thus
, for all . Furthermore, one has

(4)

where , in which
and are independent random variables. Hence, noting by

the element of matrix

(5)

where and the absolute value is
element-wise.

It can be intuitively understood by looking at (5) that
is a contrast for deflation-based ICA. Indeed, this criterion can
be written as (3) and is thus not sensitive to the scale of ;
if we constrain , the criterion is maximized when

is proportional to a source with the smallest range. In prac-
tice, the range must be estimated from a finite number of sam-
ples, so that one is led to maximize a finite-sample approxi-
mation of . For example, a simple approximation



VRINS et al.: MINIMUM-RANGE APPROACH TO BEBS 811

Fig. 1. Minimum range criterion: evolution of R(Y ) with respect to �. The
1000 samples unit-variance source signals are a sine wave (S ) and a random
signal with uniform distribution (S ); the convex source supports have mea-
sures equal to R(S ) = 2

p
2 and R(S ) = 2

p
3, respectively.

of would be the empirical range of , defined as
. Further, in order

that, generally speaking, the estimated range of a sum equals
the sum of the estimated ranges, it is needed that some spe-
cific sample points are observed. For instance, each of the
sources have to reach simultaneously their maximum value at
a same time , and likewise for the minimum, it must exist
a time index such that each of the source reaches its min-
imum value at . In this case,

. This is clearly
the case if the sources are independent when the sample set is
large enough.

C. Contrast Interpretation

The geometrical interpretation of the minimum output
range used in a deflation approach to ICA is straightforward.
Assuming that sources have already been recovered,
a th source can be extracted by searching direction or-
thogonal to the subspace spanned by such that
the projection of the output pdf onto has a minimum
range with unit variance. Fig. 1 shows the output range of

as a function of the transfer angle
. Section III will be dedicated to establishing the relationships

between the range and Renyi’s entropy, as well as with the
kurtosis. In the remaining part of the paper, several properties
will be shown, proving rigorously the previous intuitive result,
as well as the so-called discriminacy property of . Next,
an optimization algorithm will be provided for this contrast,
which is not continuously differentiable everywhere.

III. RELATIONSHIP TO OTHER ICA APPROACHES

Most often, in order to make converge from an initial point
in to , a so-called contrast function is maxi-
mized by an adaptive method, reflecting the statistical inde-

pendence between the . One of the most known contrast func-
tion is

(6)

where is Shannon’s entropy.
Maximizing yields . Observe that the
term vanishes if is constrained at each step to belong to any
subset of .

A. Symmetric Approach to Minimum Range ICA

Several years ago, Pham proposed to replace the functional
by the range [23]; he proved that if the sources are

bounded, then is a contrast for
the simultaneous separation of the sources.

The relationship between this simultaneous criterion and the
, is now obvious: Pham’s criterion corre-

sponds to summing the log of the , when the criterion
is optimized over or one of its subsets.

It is explained in [23] that maximizing
amounts at looking

for a “hyper-parallelepiped” with smallest volume enclosing
the support .

B. Relationship to Renyi’s Entropy

The -order Renyi’s entropy, is defined as [29], [30]

for
for

(7)
Note that the integration set in the previous integrals is the
support of . Obviously, [31].
This was also pointed out in the BSS framework by Cruces and
Duran [24].

If we consider a modified zero-Renyi’s entropy such
that the integration domain in (7) is extended to the convex hull
of the support of , then [24], [32].

Then, minimizing with respect to is equivalent
to finding the vector such that the volume of the convex hull
of , i.e. , is minimum.

C. Relationship to Absolute Kurtosis

The expression of the output minimum range criterion in (5)
is similar to the output absolute kurtosis , another con-
trast for ICA. Recall that the kurtosis of any zero-mean and
unit-variance random variable can be written as [1]

(8)

where

(9)

In both (5) and (9), the criteria can be decomposed as the dot
product between a vector of positive functions of the mixing
weights and a vector of mappings of the source densities. Both
the range and the kurtosis have the form

(10)
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Fig. 2. Kurtosis and output range landscapes. The real functions �(Y ) (dot)
and 2 � R(Y ) (solid) are plotted on the kc k 1-D manifold, that is on the
unit circle. The maximum values are obtained for c 2 f�e ;�e g. In the
horizontal plane Z = 0, the highest isolevel curves of the contrasts having
nonempty intersection with the circle constraint (dash) are plotted. This inter-
section reduces to the set f�e ;�e g.

where and
.

For the range criterion, is the absolute value function
and is the source range , as shown by (5). For

the kurtosis criterion, is the fourth power and is the
source kurtosis. Note that to deal simultaneously with both neg-
ative-kurtosis and positive-kurtosis sources, the absolute value
of is often considered in BSS application. As the range is
always positive, both absolute kurtosis-based and range-based
contrast functions share the form .

For illustration purposes, suppose that , both source
kurtoses and ranges equal to one, and . Clearly, we can
set . Noting that , we have

and . The first criterion
is always greater than one (with equality if and only if

) and the second is always lower than one (with
equality if and only if ).

The optimization landscapes of kurtosis and output range are
similar. It is shown in Fig. 2 that the largest level curves of

and intersect the constraint when
, where the canonical vectors are defined as

. Basically, these two isolevel curves of the kurtosis
and output range contrast functions correspond to the fourth
power of the four-norm and the one-norm of subject to the
second-norm is kept unitary if all or all ,
respectively.

IV. DEFLATION CONTRAST PROPERTIES

Fig. 1 suggests three properties, at least in the case.
First, reaches its global minimum when , where

is the source with the lowest range. Second, a local min-
imum is obtained for when , . Third,
no local minimum exists if . This section
presents the formal derivation of the aforementioned properties
of for the general case, which were first sketched
in [25].

In the following, we will work directly on ,
where for simplifying as much as possible the fol-
lowing developments and notations (note that proving results
in the transfer matrix space rather than in the unmixing matrix
space does not matter here, as explained in Remark 1). Conse-
quently, by looking at (5), it is obvious that whatever is ,

is not sensitive to the sign of the elements of the
vector argument. It will be shown (see ) that has no im-
pact on , too. Hence, the study of can be restricted
to the study of with vectors , where

s.t.

Observe that is nothing else than the set of -dimensional
vectors of Euclidean norm equal to with positive entries. It
can be interpreted as the intersection of with the surface
of the -dimensional hypersphere centered at the origin with
radius .

Remark 1: (Accessibility from to ) Fortunately, under the
only constraint that is fixed (implying by
orthogonality of ), one can freely adjust the , even if such
updates must be done by making varying. In order to extract
the th source, one has to update . However, since
the columns of form an orthonormal basis in , any
row vector can be obtained by choosing an appropriate ,
which is orthogonal to . Hence, all propositions
and theorems given below remain valid despite the fact that the
transfer matrix elements must be updated through . Therefore,
if is a contrast, then so is .

A. Contrast Properties

The properties of a deflation contrast can be extended from
the properties of a simultaneous contrast according to Comon
[3]. In the remainder of this paper, we suppose that the following
assumption holds, without loss of generality:

• : Source ordering. The sources are bounded and they are
ordered by decreasing values of the contrast, that is

.
It is assumed that the first sources have the same range,

.
The mapping is a deflation contrast if it satisfies
the three following properties.

• : Scaling invariance. for all .
• : Global maximum. The global maximum of ,

, is obtained when one of the first sources is recovered,
i.e., for .

• : Complete extraction. Assuming that the first
sources have already been extracted, the global maximum
of subject to and for all
is obtained for .

We will further show that is a discriminant contrast, i.e., all
the local maxima of the contrast are relevant for source separa-
tion as follows.
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• : Discriminacy property. The set of local maximum
points of , reduces to .

This is an interesting property, also shared by the sum of the
output squared kurtosis contrast under the whitening constraint
[18]. It gives confidence in solutions obtained by using gra-
dient–ascent methods since there is no spurious maximum in
the contrast function.

The four aforementioned properties – will be proved in
Sections IV-B–IV-E.

B. Scaling Invariance:

Obviously, when constraining , the scaling
problem is avoided. Without the constraint, the
contrast becomes , which does not
depend of the magnitude of . This proves .

C. Global Maximum:

Theorem 1, proved in Appendix I, shows that if , then
the global maximum of corresponds to the extraction of
one of the sources with the lowest range. This point is
also mentioned in [24].

Theorem 1 (Global Maximum): Suppose that holds. Then,
one gets

Theorem 1 guarantees that satisfies . The possible exis-
tence of local maxima is addressed in Sections IV-D and IV-E.

D. Complete Extraction:

Because of , one can restrict the analysis of to
even though the mathematical developments can be easily

extended to other values of .
Theorem 2 (Subset of Local Maximum Points): Function

, subject to , admits a local maximum for ,
.

Consider two vectors , , and let us introduce
the associate contrast difference defined as

(11)

The proof, detailed in Appendix II, shows that for any
sufficiently close (but different) from , then

.
Corollary 1 (Complete Extraction): Function ,
, satisfies .

By Theorem 2, we know that subject to
reaches a local maximum if . Then, assuming
that the first sources have already been extracted, a th
source can be found by updating where

. Next, discarding the first sources and
setting , Theorem 1 is used to prove that the
global maximum of and equals now and
is reached for , .

E. Discriminacy Property:

The previous sections prove that satisfy
, , and . In this section, an additional property of

this contrast is proved. It will be shown that the set of local
maximum points of subject to coincides with

. Since the proof is quite involved, the method-
ology is first sketched in Section IV-E1. Then, the detailed
results will be given in Section IV-E2.

1) Methodology: To prove some results of Section IV-E2, we
will compute where are “close”
vectors, i.e., where is an infinitesimal vector in the sense that

can be chosen as close as possible to zero.
More precisely, we will focus on and we restrict

to be of the form

(12)

for two given distincts and . In (12), and
denote infinitesimal scalar numbers, satisfying

. It is shown in Lemma 1 that for all , all dis-
tinct indexes and sufficiently small , then such
can be found, yielding and . Next, The-
orem 3 shows that for all , it always exists ,
such that if , provided that

. Finally, considering several established re-
sults, Corollary 2 states that holds.

2) Detailed Results:
Lemma 1: For all vectors and two distinct indexes

and , it exists two infinitesimal scalar numbers
and such that for all , and .

For a given infinitesimal

(13)

and

(14)

The proof is straightforward and is given in Appendix III.
Theorem 3: For all , there exist two

distinct indexes and such that
. For such indexes, consider the infinitesimal vectors and

defined as

where is given by in (13) and is given by
the same equation with replaced by . By Lemma 1,

. The associated contrast variations are
noted

Then, if , either or .
The proof is relegated in Appendix IV.
Corollary 2 (Discriminant Contrast Property): Function is

a discriminant contrast in the sense that, under the whitening
constraint, if and only if locally maximizes .
By Theorem 1, it is known that the global maximum of
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is reached for , where is defined in .
Theorem 2 indicates that admits a local maximum when

. Therefore, using , a local maximum of
exists when . Finally, by Theorem 3, no local

maximum exists for (i.e., when ,
), which proves the corollary.

According to the discriminacy property, if is
maximized locally (e.g., by gradient–ascent), then the th output

must be proportional to one of the .
Remark 2: (Restriction of to ) When

proving the previous results, it is not always constrained that
the must satisfy another condition than . However,
in order to avoid extracting twice the same source, the can
be always kept orthonormal: we could, e.g., constrain to be-
long either to or to . Hence, a natural question
arises: Do still hold under the additional constraint
that must belong to or to ? Clearly, is ful-
filled, as well as , since the global maximum point is also
included in . This can be extended
to the local maximum points of if

. Indeed, since a manifold is a topological space which
is locally Euclidean, for all , the restriction of the
neighborhood of to the manifold induced by is a subset
of the neighborhood of in the whole space (recall that

). This is also true for , since
is a connected subgroup of and because it is a

Lie group [33]; hence, it is also a smooth manifold [34].2

The only result that still has to be proved is , i.e., no local
maximum point exists on the contrast restricted to for

. To prove that, we assume that
sources have been recovered, and, thus, we consider a matrix

which is arbitrary except that, without loss of gen-
erality, its first rows correspond to the extraction of the
first sources and that the th output is not yet a source:

. We will prove that, for such a matrix,
it always exists a direction belonging to such that the con-
trast can be increased if is updated by an infinitesimal way in
that direction. Clearly, because of the orthogonality constraint of

(and thus of ) and the extraction of the first sources,
by hypothesis, the first entries of are zero and must
remain so. Any update that modifies only the last en-
tries of will thus preserves the orthogonality constraint, up to
an orthogonalization of the last rows of . In particular,
by taking , the updates or

considered in Theorem 3 satisfy the unit-norm
contraint (by Lemma 1) and the orthogonality with the

previous rows: , for all . Hence, one can
always perform these updates without violating the constraints,
and Theorem 3 ensures that the contrast function is increased in
at least one of the analyzed situations.

Therefore, all the properties of analyzed in sub-
ject to still hold when one restricts to be in the lower
dimensional subset or . The
last restrictions avoid to extract twice the same source.

2Note that we can talk about the restriction to O(K) of a neighborhood of
B 2 O(K). Indeed, even ifO(K) is a disconnected group, the last is built from
two connected components: the special orthogonal groupSO(K) (detB = 1)
including rotation matrices and the set O(K) n SO(K) including improper
rotation matrices (detB = �1).

V. PRACTICAL ISSUES

In practice, the output ranges are unknown. Indeed, from (5),
the contrast depends on the . Therefore, the range has to
be computed from the sample set, and a careful and reliable es-
timation of is necessary to guarantee that the estimated range
will satisfy the properties of the exact range quantity. Range es-
timation (also called endpoint estimation problem) is known to
be a difficult task; it has been extensively studied in statistics and
econometrics. However, most of the proposed methods require
resampling or other computationally intensive techniques, in-
volving tricky tuning of parameters. Moreover, specific assump-
tions on the density tails are usually needed. Such estimators do
not really match the ICA requirements, since they are quite slow
and nonblind. In addition, in the ICA context, it must be stressed
that the output pdf (i.e., the one for which we have to estimate
the range) varies due to the iterative updates of the demixing
matrix rows .

In this paper, we will focus on range estimation approaches
using order statistics, even though it is possible to consider other
kinds of estimators. The simplest way for estimating the range of
a random variable based on a finite sequence of observations
of size : is to compute the observed
range, that is .

This statistical quantity can be rewritten using the order
statistic notations. Let us suppose that is an ordered
version of , where the elements are ordered by in-
creasing values, that is with

. Then, we have

The main problem of this estimator is that it is highly sensitive
to noise and outliers. Even though the samples are not set to the
fourth power as when dealing with the kurtosis, there is no reg-
ularization induced by the interior points: only the two observed
extreme values are taken into account. Therefore, another esti-
mator can be used

where , . However, similarly to
, is based only on two sample points, and has

obviously a higher bias than . Hence, we suggest the fol-
lowing estimator using sample points:

with this estimator of the range, the finite sample approximation
of contrast becomes

s.t. (15)

In order to study the behavior of , let us analyze some prop-
erties of the estimator.

A. Some Properties of

To analyze the theoretical behavior of , we should
consider as a realization of the random variable

with density . Hence, we should deal with
. The density can be
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TABLE I
FIVE UNIT-VARIANCE RANDOM VARIABLES: THEIR PDF, SUPPORT, AND RANGE (NOTE: f (�) = 0 IF � 62 
(X)). THE PDF AND CDF ARE PLOTTED

IN FIG. 3 WHERE THE SUPPORTS ARE SCALED TO BE INCLUDED IN (0,1)

Fig. 3. Densities and cdf of five sources with equal support (here: [0,1]).

found through the order statistics density computed
from the parent pdf and cumulative density function (cdf).

The density of could then be obtained by inte-
grating the joint density of the quasi-ranges with ad hoc integra-
tion limits. However, this approach is of low use in practice since
most often, no analytical expression can be found for .

A simple way to circumvent this problem is to use numerical
simulations and to work with the , the th largest realiza-
tion of from a sample of size , rather than with the random
variable that depends on . Let us consider five unit-vari-
ance random variables , , , , and having, respectively,
uniform , linear , triangular , -shape , and
“biuniform” densities (see Table I; the pdf, with support
convex hulls mapped to [0,1] here for ease of readability, are
plotted in Fig. 3).

The empirical expectations of the error of the range estimator
and the variance of the estimator are plotted for the aforemen-
tioned random variables in Fig. 4. Observe that the lower the
is, the lower the error since the last criterion
is positive and because for all

. The error rate increases with at a rate depending
on the density. Though not visible in Fig. 4, it can reasonably
be understood that for fixed , is an asymptotically
unbiased estimator of with increasing , whatever is the
distribution of , provided that the extreme values of the sup-
port are not isolated points (the probability to observe a point in
the neighborhood of the extreme points must be nonzero). How-
ever, the convergence rate depends on .

Fig. 4. Empirical expectations of the range estimation error and the variances
of hR (X)i for N = 500 and 1000 trials for the variables given in Table I
scaled to unit variance: U ( ), T (o), L (�), V (no marker) and BU (�).

B. On the Choice of

In practice, the value of “ given ” for estimator
has to be carefully chosen. On one hand, for increasing , there
is no need to take a large value for since the sample points
tend to fill the distribution range (this is the methodology pro-
posed by Devroye and Wise [35]). On the other hand, even if
the estimation error increases with , a large could help can-
celing a possible additive noise effect. As shown in Fig. 4, in
such a case, the range of a unit-variance triangular variable
estimated using can be lower than the one of a uni-
form variable , i.e., , even if we obvi-
ously have . This could be a crucial problem in
the ICA application. Indeed, assume and both and

are uniform sources. Then, there exists a threshold such
that by choosing (from simulation results, 100
was observed for 500), the global maximum of
will be found for such that since
is a unit-variance triangular signal. In other words, the sources
are not recovered at all. This is a consequence of the following
facts: 1) the range of variables with smoothly decreasing tails
are much more difficult to estimate than densities taking high
values near the boundaries and 2) the pdf of summed variables
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is the convolution of the densities of the added variables, so that
the tails of the output pdf tends to be less sharp than the source
tails.

Therefore, we need some guidelines for choosing the largest
possible value for (for regularization purposes) but limiting
the error on the range estimation by a threshold , at least in
probability. The following empirical law is proposed for se-
lecting a default value for (see Appendix V, for more details):

(16)

where denotes the nearest integer to .
When is large enough, and if is not too large, the range

estimation is reliable and is close from . In this
favorable context, both criteria share the same behavior with re-
spect to the transfer matrix, including the discriminant contrast
function property.

VI. MAXIMIZATION OF THE CONTRAST

The contrast is not everywhere differentiable, due to the
absolute values. Hence, gradient-based ICA algorithms cannot
be used for maximizing it; the desired solutions are not sta-
tionary points of these algorithms. On the other hand, since we
can focus on unmixing matrices , one can proceed
to a geodesic optimization of on the Stiefel manifold. Be-
cause of the Lie group structure of [33], for any pair
of matrices and in , . Therefore, a
geodesic optimization can be obtained by factorizing as a
product of Givens rotation matrices and by up-
dating the angle according to

Recall that the Givens matrix is a rotation matrix equal to
the identity except entries and

. With such matrices and
if the initial value of is in , then, at each step,
belongs to the connected subgroup of [33].

A lot of different methods for maximizing our nondifferen-
tiable contrast on have been tried, using, among others,
discrete-gradient approximations based on a second-order
Taylor expansion. Unfortunately, they lead to disappointing re-
sults, mainly because of the difficulty to obtain a good estimate
of the derivative of the contrast function. Moreover, these algo-
rithms involve several additional parameters that are tedious to
adjust, such as the finite difference in the computation of the
discrete derivative. On the contrary, a very simple algorithm,
first sketched in [36], gave the best separation results. It is
recalled in Section VI-A and its performances on bounded
sources are presented in Section VI-C.

A. Algorithm

The algorithm assumes that the observed mixtures are
whitened, and proceeds to a contrast maximization by always
keeping . The proposed algorithm is able to
maximize any continuous but not necessarily differentiable
componentwise contrast. In the present case, we focus on

given by (15).

Fig. 5. Pseudocode for the deflation ICA algorithm for nondifferentiable con-
trast functions (comments begin with a triangle) [36]. The mixture vectorX is
used in the evaluation of C.

The maximization procedure considers the unmixing matrix
as a set of orthonormal vectors and is based on pairwise an-
gular variations of these vectors (Jacobi-like rotations). In order
to remain meaningful, the optimization procedure of the con-
trast function relies on the two following assumptions. First, the
contrast function should be continuous. Second, it should also
be discriminant. On the other hand, it is not assumed that the
contrast function is differentiable with respect to . Therefore,
the contrast function may be a piecewise linear function (dis-
continuous derivative), just like .

Under the aforementioned assumptions, the simple algorithm
in Fig. 5 may be used to compute each row of . As it can be
seen, the algorithm keeps orthogonal. The only parameters of
the algorithm are and , which are, respectively, the number
of iterations and an exponentially decaying learning rate. Usu-
ally, with the default values given in Fig. 5, the algorithm has
converged after ten or 20 iterations . By con-
struction, the algorithm is monotonic: the contrast is either de-
creased or kept constant.

B. Discriminacy and Jacobi Updates

In Remark 2, it is explained that under the or
constraint, at least one direction always exists that

allows one to increase the contrast function, provided that
. However, even if Jacobi updates may yield any
if is initialized to a point in , as, e.g., ,

the corresponding trajectories are not arbitrary on the associated
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Fig. 6. 12-bins histograms of PI for each extracted source, for 100 trials,N =
2000, and m = m (N) = 37. The analyzed algorithms are AVOSICA (A),
JADE (J), and FastICA (F). The global PI is the averaged PI computed from the
individual source PIs for a given trial.

manifold: only updates of the form
are made possible. Therefore, along Jacobi trajectories, a con-
trast can seem to have a local maximum at a given point, even
if this contrast can be increased along another trajectory of the
restriction of to (just think about a toy contrast
including a saddle point). However, the probability to get stuck
in such a false local maximum point is very low, except for
“pathological” contrast functions: many directions are already
explored using Jacobi rotations. This hypothetical problem is
just emphasized for the sake of completeness.

C. Simulations

Several range estimators and optimization algorithms have
been tried; AVeraged Order Statistics ICA (AVOSICA), which
is the optimization scheme obtained from the combination of
the contrast with the algorithm of Fig. 5, gave the best
performances. Therefore, we shall compare AVOSICA to JADE
and FastICA (with Gaussian nonlinearity, because of its robust-
ness [1] and because it gave the best results among all the avail-
able nonlinearities in the FastICA package).

The algorithms have been tested on the extraction of five
bounded and white sources (with different densities) from five
mixtures. The pdf and cdf of these sources (mapped to the [0,1]
interval) are illustrated in Fig. 3. The mixing matrix is built from
25 coefficients drawn from a uniform distribution on (0,1).

Fig. 6 compares the histograms of the performance index (PI)
for each extracted source in the noise-free case for 2000
and ; the lower is the PI, the better is the sep-
aration. Recall that after having solved the permutation inde-
termination (which is possible on toy examples), the PI crite-
rion of the th source reduces to PI .
Clearly, the lower is the highest bin coordinate, the better is the
method in average, and a narrow spectrum indicates a low vari-
ance among the obtained results. Then, for an ideal separation
method, a single bin of height equal to the number of trials,
located close to zero, would be observed. We can observe in

TABLE II
100-TRIALS EMPIRICAL MEANS AND VARIANCES OF GLOBAL PI OF SEVERAL

ICA ALGORITHMS (GLOBAL PI IS THE AVERAGED PI COMPUTED FROM THE

INDIVIDUAL SOURCE PIs FOR A GIVEN TRIAL); m = m (N). GAUSSIAN

NOISE WITH STANDARD DEVIATION � HAS BEEN ADDED TO THE

WHITENED MIXTURES (SO THAT FOR A GIVEN � , THE MIXTURE

SNRs EQUAL �10 log� ; THEY DO NOT VARY BETWEEN

TRIALS, AND DO NOT DEPEND ON THE MIXING WEIGHTS).
THE NUMBERS BETWEEN PARENTHESES REFLECT THE

VARIANCE; THE PERFORMANCES OF THE WINNER

ALGORITHM ARE IN BOLDFACE

Fig. 6 that AVOSICA gives the most interesting results, in com-
parison to JADE and FastICA, especially for the separation of
sources with linear and triangular pdf. Table II summarizes the
average global PI of ICA algorithms for various noise levels.
Since we deal with PI, the performance results are analyzed
from the mixing matrix recovery point of view; the source de-
noising task is not considered here. The global PI, for a given
trial, is obtained by computing the mean of the extracted sources
PI. The good results of AVOSICA can be observed, despite the
fact that the value of has not been chosen to optimize the re-
sults, i.e., we always have taken given by (40). It
must be stressed that the value of the parameter is not critical
when chosen around . JADE is a very good alternative
when the dimensionality of the source space is low. The com-
putational time of FastICA is its main advantage.

Remark 3 (Complexity of the Algorithms): Depending on
how the lowest and highest out values are computed, the
complexity of AVOSICA is either
with a complete sort operation or
with a partial sort. In these complexities, is the number of
iterations in each of the deflation stages. Computing the
output , needed before each update, requires operations.
By comparison, the FastICA algorithm has a complexity of

(the three terms in the rightmost factor
correspond, respectively, to the computation of the output, of
the kurtosis, and the Gram–Schmidt orthonormalization). Of
course, as FastICA involves a fixed-point optimization scheme,

is usually much lower than in AVOSICA. Finally, JADE has
a complexity of , where the two terms corre-
spond, respectively, to the computation of all cross cumulants
and to the approximate joint diagonalization.

VII. DISCUSSION

Section VI emphasizes the good performances of the method
for the noise-free and low-noise bounded source separation
cases. In spite of these interesting results, we have to mention
that range estimation techniques have poor performances when
the finite sample sequence has few points near the scatter plot
corners. For instance, some problems could be encountered in
practice when dealing with bounded sources for which only
small samples are available if the source densities have long
flat tails. If we suppose and if we look at the joint
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scatter plot of sources sharing the same density with long
flat tails, a four-branches star would be observed, with axes
colinear to the source axes. However, in spite of the theoretical
results obtained from , the axes along which the estimated
range width projection is minimum are no more the
source axes but rather the diagonal directions

, so that the method totally fails [37]. The
problem is due to the fact that few points are observed into the
corner of the joint pdf. For such kind of sources, the proposed
method is not really adapted, because more sophisticated range
estimators are needed (other techniques, such as, e.g., the one
proposed in [20], have to be preferred in this specific case).

Finally, in addition to the separation performance im-
provement when dealing with bounded sources, the proposed
approach has three major advantages. First, the method can
be extended to separate correlated signals, provided that some
sample points can be observed in the corners of the joint scatter
plot [37]. For instance, two correlated images can be separated
with largely higher separation performances than when using
usual ICA algorithms. Note that the unmixing matrix has to be
postprocessed because the source uncorrelation assumption is
not valid here; the orthogonality constraint between the rows
of the unmixing matrix can be relaxed (for more details about
this, we refer to [37]). Second, when the sources densities are
strongly bimodal, it is known that usual ICA algorithms based
on the minimum mutual information or maximum negentropy
approaches lead to spurious solution [17], [41]. The proposed
method is proved to be free of spurious maxima, as shown
by the discriminant contrast property. Third, it should be
stressed that the method is very robust to the dimensionality
of the source space; a variant of AVOSICA has been tested on
the MLSP 2006 competition benchmark (evaluation of ICA
algorithms for large-scale, ill-conditioned, and noisy mixtures).
It has outperformed the results of all other algorithms that were
tested in the competition (see [38], for more details).

VIII. CONCLUSION

In this paper, a new objective function for source separation
is proposed, based on the output ranges. The contrast properties
of the criterion have been proved, and the discriminacy property
ensures that no spurious solution can be obtained, provided that
the range width is estimated in a satisfactory way. The method is
related to the state of the art and some relationships with other
well-known approaches to ICA have been drawn. In practice,
the range estimation is a difficult task, but it is shown that a
simple batch algorithm based on averaged order-statistic differ-
ences can be used for the separation of various kinds of sources
(i.e., with various bounded densities). A default value has been
proposed for the number of order statistics that has to be taken
into account when robustness is needed.

APPENDIX I
PROOF OF THEOREM 1

The proof of Theorem 1 will be based on Propositions 1 and
2, and assumes with

.
The first proposition will show that if a vector has a

nonzero entry at any place , then does not correspond

to a global maximum point of . The second proposition shows
that among all the remaining vectors candidate to be a global
maximum point (thus satisfying necessarily for

), none can be a global maximum provided that it is
proportional to the basis vector (the absolute value of
the coefficient is given by the norm constraint).

Proposition 1: Let us define a vector respecting
for any . Consider vector defined by

with
for all

(17)

Then, and : i.e.,

Proof: It is trivial to show that . On the other hand,
we have and

(18)

Hence, it results from the definition of that
and thus .

Proposition 2: For any vector satisfying
for all , then , with
equality if and only if

Proof: If for all , then, because , it
must exist such that . On the other hand, for any

, we know that . Hence, by definition
of

(19)

Let us define by for ,
and . Then, it is straightforward

to show that , and that with equality if
and only if . To prove the last claim, remark that

(20)

with equality only when . Hence, by iterating this
result setting , if such a vector has at least two strictly
positive elements, then , with . On
the other hand, it is easy to see that if a vector respecting

and has a single nonzero
entry, then .

By iterating Proposition 1, for any vector such that
it exists with it exists another vector

, respecting for all satis-
fying . On the other hand, Proposition 2 shows
that among all those vectors, only can
maximize globally function subjected to .

APPENDIX II
PROOF OF THEOREM 2

Proof: Suppose that is a vector close to , in the
sense that where is an infinitesimal vector.
Obviously, and , for . We note



VRINS et al.: MINIMUM-RANGE APPROACH TO BEBS 819

where is an infinitesimal scalar. By the
constraint, it shows that

(21)

On the other hand, by (11)

(22)
Hence, Theorem 2 will be proven if

(23)

Let us denote the norm of subject to vector by

(24)

By (21), . Hence, by using Theorem 1 with
and

, then , where .
In other words, the following inequality holds:

(25)

Then, having (23) in mind, a sufficient condition to prove The-
orem 2 is to check that the following inequality holds for any
sufficiently small :

with (26)

By transitivity, the previous inequality holds when

(27)

Hence, if holds for any
sufficiently small , then (23) is fulfilled.

The last inequality is satisfied for all
. This result concludes the proof:

for all sufficiently small .

APPENDIX III
PROOF OF LEMMA 1

Proof: Let us fix the distinct indexes and
the infinitesimal scalar . Note that in some pathological cases,
the sign of cannot be arbitrarily chosen; otherwise, the

may be not satisfied (for example, if , then
we must obviously take and ). The
constraint yields

(28)

Both roots of (28) will lead to the same absolute value of
, for all . We focus on the single root of (28)

satisfying ( ), which gives (13).
With this value of , observe that as

(observe that there is no restriction to make tending to zero
since is a connected set). This results from the fact that
defines the surface of the -dimensional sphere centered at the
origin with radius in , i.e., a continuous manifold in .

Finally, by definition of , the th entry of equals the
th entry of except if , which gives the

given in the Lemma.

APPENDIX IV
PROOF OF THEOREM 3

Proof: We freely assume . If , the Theorem
is obviously trivially proven. Consider then the unique alterna-
tive ; we will show that in this case, .

Combination of (13) and (14) with ,
, and , a strictly positive infinitesimal scalar, give

(29)

Then

(30)
On the other hand

i.e.,

Hence, by (30)

yielding

(31)

Then, using Taylor development

(32)
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where and denote terms tending to zero faster than
and , respectively. Hence, for sufficiently small and

, one gets

(33)

Then, by letting and
, we have for small enough

(34)
By (34) and using inequality (31), it comes that for sufficiently
small

APPENDIX V
EMPIRICAL RULE FOR CHOOSING A DEFAULT VALUE OF

We want to find such that for all , the estima-
tion error is small (say less than ) with a high probability (say
higher than )

(35)

where is a probability threshold. The main problem
of this approach is that if is a constant, we are not able to
find an expression for that is useful and blind, that
is distribution-free in the sense that it does not depends on

. For instance, the probability in (35) can be written as
, which depends on . Thus, the

point is to include the density dependency into the error term
[39]. Let us approximate the range measure by using quantile
differences, and define the error term as

(36)

where and is the quantile function
defined as the inverse of the cdf: . Note that

is positive and tends to 0 for increasing and decreasing ,
whatever is the density of , but at a various rate. For example,
with and , we have and

(see Fig. 3).
Observe that defining , any lower bound of

can be used in the right-hand side of (35)

(37)

where the inequality results from the fact that
with probability one.

On the other hand, using the confidence interval for quantiles
[40], noting that and
setting in (36),

for all with

(38)

and, consequently, using inequality (37) and given by (36)

(39)

with . The last in-
equality can be understood as follows: if is chosen close
enough to one, nearly covers the true range, with a
probability higher than . Note that has to be
chosen close enough to one, so that is small; otherwise,
the bound in (39) is no more related to range estimation
quality. The terms close enough to one depends on the cdf .
In practice, however, if no information on the source densities is
available, can be a priori fixed to, e.g., 0.95 and . We
take as the largest value of ensuring that
is greater than a fixed threshold close but smaller than one
(typically, we search for such that ),
for fixed and . This choice guarantees that the
left-hand side probability in (39) is also greater than the afore-
mentioned threshold for all . The single parameter
has thus been replaced by two parameters, but the proposed
approach has two advantages. First, the new parameters have a
concrete interpretation; is related to the range estimation and
the bound tells us the confidence that we can have in the
range estimation. Second, in practice, and can be fixed,
so that a direct relation between and is found, which can
be used to set a default value for .

In Fig. 7, we plot the maximum value of , i.e., , so
that the quantity equals various fixed values
(indicated on the related curve) with respect to . Null values
for indicate that it does not exist such that

is greater or equal to the associated threshold
for fixed . In other words, by transitivity of the inequality,
each couple located under these curves ensures that the
left-hand side probability in (39) is greater than the previous
threshold. Observe that for sufficiently large , small , and
for a given , tends to one.

To avoid numerical problems, we suggest the use of loga-
rithms when computing the binomial coefficients, i.e.,

. If one desires to
speed up the method, the following empirical law is proposed
for selecting a default value for ; we can take

(40)
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Fig. 7. Selected iso-L (q;m ;N) curves for q = 0.95 in the m versus
N plane; L = 0.1 (dashed–dotted), L = 0.5 (dashed), and L = 0.95
(solid). The curve m given by (40) versus N has been also plotted (dotted).
The “triangular” dark area indicates the set of points (m;N) for which
L (0:95;m;N) = 0 (useless bound: m must be out of this zone to ensure
L (0:95;m;N) >0).

where denotes the nearest integer to . This choice corre-
spond to the dotted “step-like” curve in Fig. 7. Note that since

decreases with for fixed and increases with
for fixed , 0.95 for 210.
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