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Abstract—Recently, some researchers have suggested Rényi’s
entropy in its general form as a blind source separation (BSS)
objective function. This was motivated by two arguments: 1)
Shannon’s entropy, which is known to be a suitable criterion
for BSS, is a particular case of Rényi’s entropy, and 2) some
practical advantages can be obtained by choosing another specific
value for the Rényi exponent, yielding to, e.g., quadratic entropy.
Unfortunately, by doing so, there is no longer guarantee that
optimizing this generalized criterion would lead to recovering the
original sources. In this paper, we show that Rényi’s entropy in its
exact form (i.e., out of any consideration about its practical esti-
mation or computation) might lead to not recovering the sources,
depending on the source densities and on Rényi’s exponent value.
This is illustrated on specific examples. We also compare our
conclusions with previous works involving Rényi’s entropies for
blind deconvolution.

Index Terms—Blind source separation (BSS), contrast function,
independent component analysis, Rényi’s entropy, Taylor expan-
sion.

I. INTRODUCTION

S INCE the early 1980s, the blind source separation
(BSS) problem has revealed to be an important area of

signal processing. It consists in recovering unknown source
signals knowing only sensor recordings that are possibly
noisy mixtures of them [16]. In its simplest form, the BSS
model assumes that sensors record linear and instanta-
neous mixtures of -independent sources

; the mixing scheme is modeled by a real
invertible mixing matrix , so that, mathematically,

we can write where denotes
the observed vector and is the source
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vector with independent components, being the transpose
symbol. The time index has been omitted to simplify notation
because the sources are assumed to be stationary. Under several
assumptions, it is possible to recover the sources up to the
amplitude and permutation indeterminacies; they correspond to
the components of when is obtained through
the optimization of some criteria. One of them is the mutual
information that can be written in terms of Shannon’s entropies
[5]. Recently, the use of a generalized form of Shannon’s
entropy, called Rényi’s entropy, has been proposed to achieve
the blind deconvolution and BSS problems [8], [13], [14], [23],
[24]. In this last case, however, theoretical proofs ensuring
that the sources will be recovered through the maximization
of the related criteria were lacking. (The implicit conjecture
that Rényi-entropy-based criterion is a contrast function has
been corrected in a subsequent paper [9].) The analysis in
[14] also suggests that Rényi-entropy-based criterion might
not be appropriate for BSS in all circumstances. However,
it is based on numerical calculation and is mostly restricted
to Rényi’s quadratic entropy and source distributions in the
generalized Gaussian distribution family. The purpose of this
paper is to provide a general theoretical analysis that yields a
better understanding of the risk of using Rényi’s entropy in its
general form (that is, for all Rényi exponents not equal 1 or
0), at least in a totally blind scenario. Further, this work aims
at answering why and when Rényi-entropy-based objective
function may fail to yield the original sources. After a brief
discussion in the next section regarding the use of entropies
in BSS, the local maxima of the associated Rényi’s criteria
are analyzed in Section III through the first two derivatives of
the criterion. Some detailed calculation on specific examples
illustrates the above theoretical results in Section IV and shows
that, depending on the cases, the use of Rényi’s entropy as a
BSS objective function may be risky, except when the Rényi
exponent value is set equal to: 1) one and if at most one source
is Gaussian, or 2) 0 if the sources have finite supports.

II. GENERALIZED-ENTROPY-BASED CRITERIA FOR BSS

The BSS problem can be addressed by two different methods:
either the rows of are estimated one by one (deflation BSS),
or they are all estimated at once (simultaneous BSS).

• The deflation-based method tries to estimate, iteratively, an
th row of by

(1)

subject to the constraint that for
where is some suitable non-Gaussianity
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measure. A simple choice for is the absolute value of
the kurtosis. Another possible choice is the exponential of
the negentropy. For a random variable of density , its
(Shannon) entropy is defined as
and its negentropy as ,
which is the difference between the entropy of a Gaussian
variable with variance and the entropy of .

• The simultaneous BSS tries to globally estimate matrix .
Adopting the mutual information-based criterion (which
equals up to a constant ), one
is led to the estimate

(2)

A generalized version of this criterion can be found in [20]:
is estimated as

(3)

for some functional (possessing certain properties).
Taking , the estimate (3) reduces to (2).
An “orthogonal version” of the above criterion can be de-
rived: the search for is restricted to the set
where denotes the covariance matrix of and the

th-order identity matrix. This means that is
constrained to be in the orthogonal group of degree ,
assuming without loss of generality that the independent
sources have unit variance: .

For the criterion to yield the sources (up to a permutation and
a scaling), the set of its global maximum points must coincide
with the set of monomial matrices

has a single nonzero element per row and column

If this is the case, the criterion is called a contrast function, in
the sense of Comon [3].

In [20], Pham has proved that the criterion in (3) yields a
simultaneous contrast function if is strictly positive and
is of class II superadditive in the sense of Huber [15], i.e., for
any pair of random variables and and two scalar numbers

and

(class II)
(superadditive).

Further, it can be shown that the deflation criterion
in (1) is a contrast function for deflation scheme if

with
a class II superadditive functional. In fact, can be more

general than that; it suffices that it is: 1) scale invariant (i.e.,
for any random variable and any real

number ) and 2) for any
pair of independent random variables and , to ensure that
this criterion is a contrast function [15].1

1 �G, constructed as above, is clearly scale invariant and verifies �G (X+Y ) �
[var(X) + var(Y )]=[Q (X) + Q (Y )]= � �G (X) + (1 � �) �G (Y )
where � = Q (X)=[Q (X) + Q (Y )], hence �G (X + Y ) �

max[ �G (X); �G (Y )].

The class II superadditivity of the entropy power and of
the Lebesgue measure of the support (or of the support convex
hull, i.e., the range) can be proved using the entropy power
inequality (EPI, [5]) and Brunn–Minkowski inequality (BMI,
[5], [12]), respectively.2 The log-measure of the support is also
called the Hartley entropy [25]. Shannon’s and Hartley’s en-
tropies are particular cases of Rényi’s entropy, defined as [26]

(4)

(In this paper, all densities are functions on the whole real line.)
One can check that is the
Shannon entropy and ,

being the Lebesgue measure of the support of . Hence,
from the above results, we can choose either (if

has finite entropy) or (if the sources have finite
support measure).

Rényi’s entropy is decreasing and continuous in [18]. The
major properties of Rényi’s entropy are the same as Shannon’s.
In particular, if and are two scalar numbers, is a (deter-
ministic) square matrix and is a (deterministic) vector of the
same size as that of the random vector

Consequently, is a class II functional.
It was first our hope to find a generalized form of EPI and

BMI that would ensure that with arbitrary would
also be superadditive; Indeed, if it were the case, one could
take and obtain a contrast function, as previ-
ously explained. Unfortunately, no such result could be found
(in fact, this functional is not superadditive for as
it will be seen below). Therefore, instead of trying to prove that
the Rényi-entropy-based criterion is a contrast function, we will
check if it satisfies some necessary conditions to be so. If it does
not, then it is not a contrast function (and consequently from
[20], the functional is not superadditive). In the
deflation case, a necessary condition that the criterion in (1) is
a contrast function is that attains a local maximum at
some th row of , or equivalently, for some is local
minimum, under the constraint , of . In the
simultaneous approach, a necessary condition for the criterion
in (3) to be a contrast function is that this criterion attains a local
maximum at . In Section III, we will investigate the
local maxima of the Rényi-entropy-based criterion, via a Taylor
expansion of up to the second order.

III. ON LOCAL MAXIMA OF THE CRITERION

In this section, we consider the BSS criteria involved in (1)
and (3) with and . The
first-order Taylor expansion of the entropy will be computed in
Section III-A. This result will be helpful when analyzing the sta-
tionary points of the criteria. In Section III-B, these stationary
points will be further characterized using a second-order expan-
sion around them.

2Interestingly, some relationships between the above inequalities have been
pointed out [4].
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A. First-Order Analysis

We start by computing the first-order approximation of the
Rényi’s entropy of , a random variable contaminated
by a small random variable of the form , where is a random
column vector and is a small row vector (in terms of its Eu-
clidean norm ).3 Let be the density of . It will be shown
in the Appendix that the Rényi’s entropy of admits the
first-order Taylor expansion4

(5)
where

(6)

which we call the th score function. Note that for , the
th score function is simply the score function and (5) reduces to

the well-known first-order expansion of the Shannon’s entropy
provided in [22]. It is of interest to note that

(7)

The first equality follows directly from the definition (6) of
and the second equality is obtained through integration by parts.

The above result will be useful for analyzing the stationary
points of the Rényi-entropy-based criteria for BSS. We consider
below the deflation and simultaneous approaches separately.

1) Deflation Approach: Put so that
. For a small increment of , one

gets from (5)

(8)
Further, the constraint translates to , that
is, the incremented vector must satisfy . This
yields . Thus, if , where
denotes the th row , then , and from (8) and
noting that for and 0 otherwise
[by (7) and the independence of the sources], one gets

(9)

Thus, admits, on the set ,
a stationary point at , , where

denotes the th row of . Because
is scale invariant, as a function of

without constraint, it admits a stationary point at any multiple
of a row of .

3In this section, no assumption about the possible dependence between Y and
Z is required.

4In this paper, we adopt the following convention regarding the expectations
to simplify the notations: the expectation of a function of variables is always
taken according to each of the variables involved in the function.

2) Simultaneous Approach: The simultaneous criterion as-
sociated to is

(10)

It follows that for a small matrix

(11)
Recall that

, where denotes the trace operator.
On the other hand, let be the general element of

where we have put and . Thus,
applying (8), one gets

In the sequel, we consider the particular case where is
a matrix with a single nonzero entry per row and column, that
is, , or equivalently, of the form where is a
permutation matrix and is a diagonal matrix. Then, is of
the form for some permutation of
and some real numbers ; this yields

and . Then, using the independence of the
sources and (7), the above expansion becomes

Combining the above results, one gets finally that
. This shows that any

matrix of the form (that is, any point of ) is a sta-
tionary point of the criterion . For the orthogonal version
of this criterion, is constrained to satisfy . It
can still be of the form but with the diagonal matrix

having diagonal elements . The matrix must be such
that also satisfy the constraint, which is equivalent to

being an orthogonal matrix. Then, the above expansion
for remains valid under these constraints, showing
that is still a stationary point of the orthogonal version
of the criterion.

B. Second-Order Analysis

It is shown in the above section that admits a sta-
tionary point at any multiple of a row of and ad-
mits a stationary point at any point in . At this step, however,
we are not able to further characterize these points: Do they cor-
respond to a local maximum or a minimum or saddle points? To
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answer this question, we have to extend the Taylor expansion of
the criterion up to the second order around these specific points.

As in Section III-A, we start by expanding , but
unlike in that section, we will limit ourselves to the case where

is independent of , which is enough for our purpose and
allows a much simpler calculation. It is shown in the Appendix
that

(12)

where

(13)
In (13), the last equality comes from the integration by parts.
We call the th Fisher information of . Observe that

can also be rewritten as ; however, the
right-hand side of (13) makes it easier to see that .
For , is no other than Fisher’s information of

[5].
We use the above result to analyze the second-order prop-

erties of the Rényi-entropy-based criteria for BSS. As we did
when analyzing their stationary points, we will consider the de-
flation and the simultaneous approaches separately.

1) Deflation Approach: We will extend the entropy expan-
sion in (8) up to the second order around . From (12),
one gets

Note that and
, and further, the unit norm constraint yields

. Therefore

The above result shows that a necessary condition for the
function to admit a local maximum at over the
set is that and a sufficient
condition is that this inequality is strict. Because the sources
have been assumed to have unit variance, one can write these
conditions as and ,
which are then independent of the source variance.

From the above results, we conclude the following.
Theorem 1: The criterion

is not a
(deflation) contrast function if where

.

2) Note: The above result applies to the first step of the defla-
tion approach where the source with the highest has to be ex-

tracted. If one applies successively the deflation approach to ex-
tract all sources, then the method will fail if
for only a single index (in fact, it fails to extract the source of
this index).

3) Simultaneous Approach: We now derive a necessary and
sufficient condition for the criterion to attain a local max-
imum at point , where is a permutation matrix
and is a diagonal matrix.

Let denote the th component of , then the th com-
ponent of can be written as ,
where is the general element of . For of the above form,

for some permutation of and
some nonzero real numbers . Thus, the are inde-
pendent and the expansion (12) yields

Note that
. It follows from the above results and

the expansion of that

The second sum in the above right-hand side is a quadratic form
associated with the symmetric block diagonal matrix, with
blocks

(14)

that is

Thus, in order for the criterion to reach a local max-
imum at point (i.e., ), it is necessary
that the matrices in (14) are positive semidefinite and it is
sufficient that they are positive definite. However, is posi-
tive definite if and only if all of its eigenvalues are strictly pos-
itive. This is equivalent to and . Be-
cause is a positive quantity, the necessary condition for
the criterion to attain a local maximum at is

. The sufficient con-
dition is that the above inequality is strict.

In the case where the sources have the same distribution as
that of some random variable , the above necessary condi-
tion reduces to . The sufficient condition is

.
Hence, the following theorem has been proved.
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Theorem 2: The criterion is not a contrast function
if there exists a pair of indices such that the
inequality holds true.

As a corollary, a simplified version of this theorem may be
found by assuming that all the sources share the same density.

Corollary 1: The criterion is not a contrast function if
the sources share the same distribution as that of some random
variable and .

Theorems 1 and 2 give sufficient conditions ensuring that the
above deflation and simultaneous criteria are not contrast func-
tions: maximizing them will not lead to obtaining the sources
if these conditions hold. It is shown in the next section that
these conditions can hold true for densities close to (but dif-
ferent from) the Gaussian density and for any values of Rényi’s
exponent and for the specific densities and values of this ex-
ponent.

IV. DETAILED RESULTS FOR SPECIFIC SOURCE DENSITIES

Consider the case where the sources admit a common density
belonging to the family of the generalized Laplace (or Gaussian)
distribution

(15)

where is a positive parameter, is a positive scale parameter,
and is the normalizing constant. Then, the th score function
of the random variable with density reduces to

(16)
for . In particular, . Further

(17)

where is a random variable with density
. Because

, one has

(18)

which is independent of the scale parameter as it should
be. In particular, for , which corresponds to
and being Gaussian (with ), one has

. This is, of course, expected
because one cannot separate Gaussian sources.

From the above result, ,
where is the Fisher information of , and

, which we also denote by
to emphasize its dependence on . We know by using the

Cramér–Rao inequality that with equality
if and only if is Gaussian, that is, , hence admits a
global minimum equal to 1 at . Thus, for all

. It follows that if and only if

in the case (19)

in the case (20)

These results are summarized in Theorem 3.
Theorem 3: For a source density of the form

, if , the criteria are not contrast
functions for , and if , the criteria are not
contrast functions for . Furthermore, for any
given distinct from 1 and 0, there exists a source density of
the form for some for which the contrast
properties are not met by the criteria.

Proof: The first part of the theorem results from the above
development. To prove that a generalized Laplacian density-
based counterexample can be found, whatever is, consider the
function . It takes the value 1
at 2 and its logarithmic derivative is ,
which takes the value at 2 (because is minimum
at 2, hence ). Thus, for , this function is in-
creasing in a neighborhood of 2, hence there exists an for
which . Similarly, for , this function is
decreasing in a neighborhood of 2, hence there exists an
for which . This concludes the proof of the
theorem.

The function can be computed explicitly. From the defini-
tion of the gamma function , one has

(21)

and, therefore

(22)

Applying the above theorem to bilateral exponential sources,
which correspond to , one has , hence the
criteria are not contrast functions for . For ,
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Fig. 1. Functions g(a) (solid) and g(a) (dashed); the specific values
at a = 4 and a = 1 are pointed out.

, and thus, the criteria are not contrast
functions for , in particular, for (which corre-
sponds to the quadratic Rényi entropy). The functions and

are illustrated in Fig. 1. The plot of confirms
the theoretical result that admits a global minimum equal to 1
at . The plot of indicates the range of values
of for which the criteria are not contrast functions.

As a numerical illustration, we consider the case of two unit-
variance sources sharing the same density given in (15). To
fulfill the constraint, we set .
We compute numerically the Rényi’s entropy (solid
curves) as a function of the transfer angle for the two values
of and plot the results on Fig. 2(a) and (b) (see below for the
calculation method).

Remark 1 (Some Details Regarding the Numerical Calcula-
tion): is computed numerically as shown in
the equation at the bottom of the page, where the symbol
denotes the Riemannian approximation of the exact integral
(the step is taken equal to 0.002 and the grid size is chosen
large enough to ensure that the integration error is limited to

, .
Similarly, the variance deviation error is also maintained below

). The exact theoretical expressions of and have
been used and the convolution operation (denoted by the “ ”
symbol) is performed via the MatLabconv command.

Remark 2: Fig. 2(a) and (b) seems to indicate that even if
the kind of the extremum points change with (maximum or
minimum), their location does not change when varies. This is
not the case in general. It has been shown that a stationary point

always exists when , whatever is. Simple calculation
yields, noting

From (8), this leads to

Consequently, admits a stationary point at if

In general, depends on .
As the last example, consider the case where the sources

admit a common density if , ,
otherwise. Then

(23)

and5

if

if

Thus, if and only if and
. However, for , the last inequality is equivalent

to . Therefore,
if and only if . We conclude

that for the case of two triangular sources, the criteria are not
contrast functions if . This is shown in Fig. 3 in the
simultaneous case. Note that even if we know that the criterion is
not a contrast function for in this interval because a necessary
condition is not met, there is no guarantee that it would be a
contrast function for values of outside this interval: the global
maximum may be reached at some mixing point, even if we
know that the nonmixing points maximize the criterion locally
(see in Fig. 3).

5The triangular density is piecewise differentiable and continuous. Even if
its derivative has the jumps at some isolated points, (25) is still valid if such
points are excluded and (27) still holds if the second derivative and convergence
is understood in the sense of the distributions (or generalized functions). One
can actually prove that (12) is still valid for r > 1, provided that the r-Fisher
information is defined by the second right-hand side of (13).

if

otherwise
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Fig. 2. Evolution of H (w S) (solid lines, criterion to be minimized)
and H (Y =max(sin(�); cos(�))) (dashed lines, see Section V) where
p = p = p is given by (15); the curves are shown for r = 0:2
(top), r = 1 (middle) and r = 5 (bottom). (Recall that H is decreasing
with r.) The contrast property of �H (Y ) (criterion to be maximized)
depends on r and a; on the contrary, because of the addition of an extra term,
H [Y =max(j sin �j; j cos �j)]= H (Y ) � logmax(j sin �j; j cos �j) is
always minimized at 0, �=2, �, whatever r and a are.

V. DISCUSSION AND COMPARISON WITH EXISTING RESULTS

The general form of the Rényi’s entropy has been proposed
for BSS [8], [13], [14], [24]. In the linear instantaneous case,
however, only the entropies with exponent [7], [19], [29],
[30] or [3], [6], [21] have been proved to yield a contrast
function. Close relationship with Shannon’s and Hartley’s en-
tropies was the motivations for the use of the Rényi’s entropy
with . The quadratic case was also motivated
by computational convenience and some other reasons given in
[14]. In the above referenced papers, simulations suggest that
maximizing Rényi-entropy-based criteria may be suitable for
BSS. However, they involve only specific values of (mostly

) and specific source densities, whereas our approach re-
lies on a wider theoretical analysis. Our results complete the
above empirical studies and show that using the Rényi’s entropy
for source separation in a blind context runs the risk of finding
the mixture, because the Rényi’s entropy may not lead to a con-
trast function in general.

Rényi’s entropy was also proposed for the blind deconvolu-
tion problem [2], [10], [11]. The justification provided in the
referenced papers relies on the following inequality. For inde-
pendent random variables with the same distribu-
tion as some random variable

(24)

with equality if and only if all but one of the are zero.
The requirement that have the same distribution is
natural in the deconvolution context because the represent
the (stationary) source at different sample points. The variable

then represents the output of the deconvo-
lution filter. The above inequality thus shows that the source

Fig. 3. Evolution of estimated Rényi’s criterion�H (Y )�H (Y ) (to
be maximized) as a function of the transfer angle � where the two sources share
the same triangular density. The criterion with r = 2:5 and r = 5 is not a
contrast function because there is no local maximum at the nonmixing points
and because the local maximum is not global, respectively.

can be recovered (deconvolved) up to a delay by minimizing
under the constraint.

One may try to apply the above argument to build a deflation
contrast function for BSS in the case where the sources have the
same distribution, which would apparently contradict our result.
However, the above argument relies on changing the constraint

into , which is, strictly
speaking, not really a true constraint because it depends on the
unknown mixing matrix . Note that the constraint

is a true constraint because it is equivalent to
, which involves only the output of the separation

system (in the deflation approach).
To illustrate the difference between minimizing ,

where , under the constraint and
under the constraint , note that these mini-
mizations are equivalent to minimizing without the constraint

in the first case and

in the second case. One can see that equals

plus the term , which
reaches its (global) minimum (equal to zero) at and only at any
nonmixing point (that is, a point for which all its coordinates
except one are zero).6 Therefore, even if does not admit
a minimum at some nonmixing point, the addition of this term,

6To show that w =max w reaches its minimum at and only
at a nonmixing point, observe that w equals max w for at least an
i, hence w � max w with equality if and only if w = 0 for
all except one index i
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which does admit, could make this point a global minimum
point of the sum (this is actually what happens). To illustrate
further, consider the two-source case. Minimizing
under the constraint is the same as minimizing

, where , with respect to .
Minimizing under the constraint
is the same as minimizing
with respect to . Because

, it is seen that changing
the constraint to is
equivalent to adding a term , which
is minimized at and only at , which explains
how a “noncontrast” function can be transformed into a
“contrast” function by changing the constraint. Fig. 2 illus-
trates this phenomenon by plotting both (solid) and

(dashed). The difference
between the two curves represents the extra term, which was
used to transform a “noncontrast” function to a “contrast”
function. However, this term is artificial in the same way as the
constraint is, because both depend on the
unknown mixing matrix.

Note that in the deconvolution case, Bercher and Vignat [2]
circumvented the problem that is not a
true constraint by fixing instead the value of the first coefficient
of the deconvolution filter. This is equivalent to fixing the value
of the first coefficient (instead of the maximum absolute values
of all coefficients) of the global filter. This approach is, however,
very specific to the deconvolution problem and not generalizable
to the BSS case. Further, it suffers from the “nonrobustness”
problem if the product of these first coefficients is small [2].

VI. CONCLUSION

Shannon’s entropy has been proved to be a suitable func-
tional to build contrast functions for BSS when at most one of
the independent sources is Gaussian, and Hartley’s one when
the sources have finite support. Considering then the extended
forms of Shannon’s and Hartley’s entropies, namely, Rényi’s
entropies, is thus appealing: for example, choosing
simplifies the computation of the entropy when the densities
are estimated via Parzen window with Gaussian kernels [10].
Therefore, some authors have proposed to use the generalized
Rényi’s information measure, in particular, the quadratic en-
tropy, to achieve BSS.

In this paper, a Taylor expansion of the Rényi’s entropy has
been performed and a sufficient condition that Rényi’s entropy
(with exponent not in ) is not a contrast function has been
given. Our results show that whatever the Rényi exponent

is, there always exists a non-Gaussian density such that
the -Rényi-entropy-based criterion is not a contrast function
if the sources follow this density. Note that at points corre-
sponding to satisfactory solution, it is shown that the criterion
reaches a stationary point, but one does not know if they are
maxima, minima, or even saddle points. This is a much harder
situation than the one occurring with the kurtosis in the defla-
tion approach, where the point corresponding to satisfactory so-
lution is either a (global) minimum point or a maximum point,
depending on the sub/super-Gaussianity of the sources, that is,

on the sign of the kurtosis. In this case, the kurtosis criterion can
be replaced by the absolute kurtosis (or any increasing function
of it), which is then a contrast function. This is not applicable
to Rényi-entropy-based criterion because one cannot infer the
nature of the stationary point (local maxima, minima of saddle
points) from the value of the criterion at this point. One may try
to estimate the th Fisher information and check the condition
of Theorem 2, but this condition only implies that the above sta-
tionary point is not a local maxima point: it can still be a saddle
or local (but not global) minima point so that changing the sign
of the criterion does not really help. Another possibility is to
estimate the “good choice” of from the data, but this implies
that there exists a simple rule relating such “good choice” to the
nature of the sources (sur/sub Gaussian, for example), which,
to our best knowledge, does not seem to exist. Another problem
with the above approaches is that the source characteristics have
to be estimated from the extracted sources, but if the criterion
is not a contrast function, these extracted sources may be still a
mixture, hence the estimates would be wrong.

This means that using the general form of the Rényi’s entropy
may be risky. The Rényi’s exponent (Shannon’s entropy)
and (support measure) cases seem thus to have a very
specific behavior in the context of BSS. As mentioned in the
Introduction, only Shannon’s and Hartley’s entropies possess
the superadditivity property (because this property would imply
the contrast function property of the corresponding BSS crite-
rion). Interestingly, other authors, in somewhat different con-
texts, have proved that these two entropies indeed possess spe-
cific properties, not shared by the other entropies belonging to
the Rényi’s family [1], [4], [27].

APPENDIX

A. First-Order Taylor Expansion of Rényi’s Entropy

We provide here the first-order Taylor expansion of the Rényi
entropy, a random contaminated by a small random variable
of the form where is a small row vector and is a column
random vector. It is proved in [22, Lemmas 1 and 3] that under
appropriate conditions, the density of admits the
continuous partial derivatives with respect to the components of

, with the vector of the derivatives satisfying

(25)

where is the conditional expectation of given
and is the density of . On the other hand, assuming

that one can interchange the order of differentiation and integra-
tion

(26)

Such interchange can be justified (via the Fubini theorem [28])
if exists and is bounded for
all small enough.7 If, moreover, the function under this in-
tegral sign can be bounded for all small enough by an inte-

7Such condition can be fulfilled if the joint density of Y and Z and its partial
derivative with respect to the first argument go to 0 sufficiently fast at infinity.
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grable function, then by the Lebesgue dominated convergence
theorem, (25) and (26) yield

which equals by inte-
gration by parts, denoting the derivative. It then follows from
the definition of Rényi’s entropy given in (4) that ,
as a function of , is continuously differentiable with the vector
of the derivative satisfying

This yields the expansion given in (5).

B. Second-Order Taylor Expansion of Rényi’s Entropy

We compute here the second-order expansion of
in the case where is independent of . For convenient, we will
assume that has zero mean. This does not affect the generality
because is unchanged when one subtracts its
mean. Then, by (25) and the fact that

. Hence

and

both tend to as .8

From the results of [22], admits (under appro-
priate assumptions) the second partial derivatives with respect
to the components of , with the matrix of the derivatives

satisfying

(27)

where denotes the second derivative. On the other hand, taking
the partial derivatives of both sides of (26) and assuming again
that one can interchange the order of differentiation and integra-
tion, one gets

Again, such interchange can be justified if the in-
tegrals and

exist and are bounded for
all small enough. If, moreover, the functions under these

8Actually, the convergence to 0 of @H(Y + hZ)=@h does not require that
Z has zero mean because the Rényi’s entropy is translation invariant.

integral signs can be bounded for all small enough by some
integrable functions, then again by the Lebesgue dominated
convergence theorem, one gets

because .
Finally

and because tends to as , by (4), the
same holds for the last term in the above right-hand side and

Noting that is also the covariance matrix of , one gets
the second-order Taylor expansion given in (12). As both sides
of (12) remain unchanged when one adds a constant vector to ,
this formula is still valid for the noncentered random variables

(but independent of ).
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