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Abstract— Unsupervised dimensionality reduction aims at
representing high-dimensional data in lower-dimensional spaces
in a faithful way. Dimensionality reduction can be used for com-
pression or denoising purposes, but data visualization remains
one its most prominent applications. This paper attempts to
give a broad overview of the domain. Past develoments are
briefly introduced and pinned up on the time line of the last
eleven decades. Next, the principles and techniques involved in
the major methods are described. A taxonomy of the methods
is suggested, taking into account various properties. Finally, the
issue of quality assessment is briefly dealt with.

I. INTRODUCTION

The interpretation of high-dimensional data remains a
difficult task, mainly because human vision is not used to
deal with spaces whose dimensionality is higher than three.
Part of this inability stems from the curse of dimension-
ality, a convenient expression that encompasses all weird
and unexpected properties of high-dimensional spaces. If
visualization is difficult in high-dimensional space, perhaps
an (almost) equivalent representation in a lower-dimensional
space could improve the readability of data. This is precisely
the idea that underlies the field of dimensionality reduction
(DR). This domain includes various techniques that are able
to construct meaningful data representations in a space of
given dimensionality. Beside visualization, other applications
of DR are for instance data compression and denoising.
Dimensionality reduction can also preprocess data, with the
hope that a simplified representation can accelerate any
subsequent processing or improve its outcome.

Linear DR is well known, with techniques such as prin-
cipal component analysis [27] and classical metric multidi-
mensional scaling [79], [62]. On the other hand, nonlinear
dimensionality reduction [37] (NLDR) emerged later, with
nonlinear variants of multidimensional scaling [57], [32],
[59], such as Sammon’s nonlinear mapping [52]. Research
in NLDR is multidisciplinary and follows many approaches,
ranging from artificial neural networks [29], [31], [44], [15],
[42] to spectral techniques [55], [61], [48], [2], [19], [73],
[76]. If linear DR assumes that data are distributed within
or near a linear subspace, NLDR necessitates more complex
models. The most generic extension consists in assuming that
data are sampled from a smooth manifold. For this reason,
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modern NLDR is sometimes referred to as manifold learning
[53], [73]. Under this hypothesis, one seeks to re-embed the
manifold in a space of the lowest possible dimensionality,
without modifying its topological properties. In practice,
smooth manifolds are difficult to conciliate with the discrete
nature of data. In constrast, graph structures have proven to
be very useful and tight connections between NLDR and
graph embedding [18] exist. Another usual hypothesis is to
assume that data are distributed in clusters. Dimensionality
reduction methods that emphasize clusters are often closely
related to spectral clustering [5], [51], [43], [11].

Obviously, DR has to provide a low-dimensional represen-
tation that is meaningful in some sense. Regardless of the
model (manifold, graph, clusters), the general idea of DR
is to represent similar data items next to each other, while
maintaining large distances between those that are dissimilar.
In practice, the goal of DR is to preserve as well as possible
simple properties such as soft or hard neighborhoods [29],
[33], [75], similarities [23], [64], or ranks [57], [32], [45].
An even simpler and very popular solution is to preserve
pairwise distances [57], [32], [52], [15], [16], [35], [61],
[73]. This approach works indifferently with data that consist
of coordinates or pairwise distances. If not all distances
are specified, then the problem can elegantly be modeled
using a graph, in which edges are present for known entries
of the pairwise distance matrix. The edge weights can be
binary- or real-valued, depending on the nature of the data.
Some NLDR techniques exploit the sparsity of such graphs
[61], [35], [48], [1], [73] even if all pairwise distances are
available. This allows focusing on small neighborhoods [48],
[1], [73] or to approximate geodesic distances [61], [6],
[35] with weighted shortest paths. It illustrates the close
relationship between NLDR and graph embedding.

This paper is organized as follows. Section II follows the
timeline of past developments over more than a century.
Section III presents the state of the art, in the form of short
technical descriptions of major methods, starting from clas-
sical ones to recent discoveries. Next, Section IV attempts
to categorize the methods according to various criteria. The
important issue of quality assessment is dealt with in Section
V. Finally, Section VI draws the conclusions and sketches
some perspectives for the near future.

II. HISTORICAL BACKGROUND

The analysis of high-dimensional data is certainly not a
new concern. The first major breakthrough occurred more
than a hundred years ago, in 1901, with the first publications
about principal component analysis [46], [26] (PCA), also
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known as the Karhunen-Loève transform [28], [41]. PCA can
be understood in several ways. From a statistical standpoint,
it decorrelates variables and allows the selection of those
that bear most of the data variance. As an optimization
technique, PCA performs a total-least-squares (TLS) linear
regression. PCA is also the first spectral DR method, as it
projects data along the leading eigenvectors of the sample
covariance matrix. Starting from the late 1930s until the early
1950s, several psychometrists extended PCA into classical
metric multidimensional scaling [79], [62] (MDS). They gave
an alternative way to compute the projections along the
principal components, starting from either a Gram matrix
or a matrix of pairwise Euclidean distances, instead of the
sample covariance.

The 1960s saw the advent of nonmetric MDS [57], [32], in
which spectral techniques were replaced with more generic
optimization procedures, in order to deal with more com-
plicated cost functions called ‘strain’ or ‘stress’. Nonmetric
MDS was the first nonlinear DR method and extended
the principle of distance preservation to the use of non-
Euclidean metrics. Among several variants, Sammon’s non-
linear mapping (NLM) [52] is still very popular. Sammon’s
NLM is a noticible milestone, as it put forward the idea
that distance preservation should give more weight to short
distances than to long ones. In the late 1980s and early
1990s, with the exception of principal curves [21], most
developments in DR were inspired by brain studies (see
e.g. [71]) and the boom of artificial neural networks [25],
[50], [7]. The most emblematic and popular method in this
stream is undoubtedly Kohonon’s self-organizing feature map
[29], [47], [30] (SOM), a hybrid method mixing NLDR and
vector quantization. Auto-association by means of deep feed-
forward networks with a so-called bottleneck layer [31], [44],
[63], [17] was an elegant way to achieve NLDR by mini-
mizing TLS error such as in PCA. However, the difficulty
to train deep networks with backpropagation prevented their
immediate adoption. Artificial neural networks also influ-
enced new developments in topographic mapping [8], [58]
and in distance preservation, such as variants of Sammon’s
NLM [42], [13] and curvilinear component analysis [15],
[16], [22]. The latter method innovated by its ability to tear
manifold when needed, which can be very handy to represent
manifolds that are spherical or with loops.

The seminal work of Schölkopf et al. [56] about kernel
PCA in 1996 set the trend for the next ten years, with a
regain of interest in spectral DR methods [54]. Their idea
was to apply the kernel trick to classical metric MDS, in
such a way that principal components are computed in a so-
called feature space. The application of the kernel leads to a
Gram matrix in a space of nonlinearly mapped coordinates,
without having to define explicitly the transformation. In a
memorable issue of Science in December 2000, Isomap [61]
was published as another extension of classical metric MDS,
in which Euclidean distances where replaced with geodesic
distances approximated by the length of shortest paths in a
K-nearest-neighbors graph. Stress-based variants of MDS,

such as CCA and NLM, utilize the same metric [34], [35].
In the very same issue of Science appeared the first spectral
DR method that exploits the (nontrivial) trailing eigenvectors
of a sparse matrix, namely locally linear embedding [48]
(LLE). LLE minimizes a sum of local reconstruction errors:
each datum is approximated by a linear combination of its
neighbors in the high-dimensional space and the obtained
coefficients are then used to compute its low-dimensional
coordinates. Many spectral methods were published in the
early and mid 2000s, such as Laplacian eigenmaps [1],
Hessian LLE [19], coordination of local models [49], [69],
[60], [10], [70], maximum variance embedding [72], [73],
and diffusion maps [43], to cite only a few of them.

For a couple of years, there has been a resurgence of
soft-computing in the field of NLDR. Although spectral
methods come with the guarantee of finding the global
optimum of their associated cost function, other more generic
optimization procedures such as gradient descent can deal
with a broader range of functions. State-of-the-art nonspec-
tral methods are for instance local MDS [66] and auto-
associative networks [24] with improved learning techniques
especially tailored for so-called deep architectures [3]. An-
other very promising line of investigation is the preservation
of similarities, instead of dissimilarities (that is, distances).
Stochastic neighbor embedding [23] and its variants [64],
[68] raised the interest towards similarity-based methods. In
constrast to distances, similarities naturally emphasize local
neighborhood relationships, as they rapidly decrease when
data items are far from each other. With a proper choice of
the similarity function, this new class of methods proves to
be efficient and close to the natural criteria used to assess
the quality of DR methods.

III. DIMENSIONALITY REDUCTION METHODS

Let us denote Ξ = [ξi]1≤i≤N the data set in the original
space of representation. The goal of dimensionality reduction
methods is to represent the data in a lower-dimensional
space, by keeping some of the original properties of the
data. Often, it is assumed that the ξi lie on a manifold
(possibly corrupted by noise), in which case the goal is
to preserve some properties of the manifold. The numerous
dimensionality reduction methods differ by the properties of
the data or the manifold they try to preserve. In the following,
the data in the low-dimensional space will be denoted by
X = [xi]1≤i≤N . The set X is the set of free parameters of
the method, which are to be optimized.

A. Variance preservation

Principal component analysis [46], [26], [27] is a lin-
ear method, which aims at preserving a maximal fraction
of the data set variance. Defining the covariance matrices
in the original and low-dimensional spaces by CΞΞ =
1
N (Ξ − 1

NΞ11T )T (Ξ − 1
NΞ11T ) and CXX = 1

N (X −
1
NX11T )T (X − 1

NX11T ) respectively, PCA looks for the
global optimum of

min
X
‖CΞΞ −CXX‖22 , (1)
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where ‖A‖2 =
√

tr(ATA) denotes the Frobenius norm.
The linear data transformation combines translations and a
rotation, and can thus be written as X = V(Ξ− 1

NΞ11T ).
Given a target dimensionality P , the global minimum of (1)
is attained when the columns of V correspond to the leading
P eigenvectors of CΞΞ.

B. From inner product preservation to distance preservation

Classical metric multidimensional scaling [79], [62] is
the dual method to PCA: instead of involving the sample
covariance matrix, it utilizes the Gram matrices of inner
products GΞΞ = (Ξ − 1

NΞ11T )T (Ξ − 1
NΞ11T ) and

GXX = (X − 1
NX11T )T (X − 1

NX11T ). MDS uses a
spectral decomposition to find the global optimum of

min
X
‖GΞΞ −GXX‖22 . (2)

The low-dimensional coordinates in X consists of the leading
P eigenvectors of GΞΞ, after transposition and scaling by the
square root of their associated eigenvalues. It can be shown
that PCA and classical metric MDS are equivalent, in the
sense that they lead to the same value of X. In contrast
to PCA, classical metric MDS works indifferently with
coordinates, inner products, or pairwise Euclidean distances,
thanks to double centering [62]. If ∆ = [δij ]1≤i,j≤N denotes
the matrix of squared Euclidean distances, left and right
multiplications with centering matrix H = I − 1

N 1T1 lead
to the centered Gram matrix:

−1
2
H∆H = −1

2
H(diag(Ξ)T1− 2ΞTΞ + 1T diag(Ξ))H

= −1
2
H(−2ΞTΞ)H

= (Ξ− 1
N

Ξ11T )T (Ξ− 1
N

Ξ11T ) = GΞΞ .

Starting from the second equality shows that double centering
can also be applied to ΞTΞ.

The formulation of MDS in terms of distances instead
of inner products allows a much more intuitive geometri-
cal interpretation. At the expense of replacing the spectral
decomposition in classical metric MDS with more general
optimization tools such as gradient descent, the cost function
that formalizes distance preservation can be refined in many
ways. For example, the minimization of Torgerson’s strain
function ‖GΞΞ −GXX‖22 can be replaced with

min
X

∑
i<j

wij(δ2ij − d2
ij)

2 , (3)

where the distances are denoted by δij = ‖ξi − ξj‖2 and
dij = ‖xi − xj‖2. The multiplication of each term of the
sum with a weighting factor wij gives an appreciable flexi-
bility. For instance, one can favor the preservation of small
distances, following the intuition that local neighborhood
relationships convey more information than loose, remote
connections. From a manifold standpoint, neglecting large
distances is supposed to allow the data cloud to unfold and to
make its embedding easier in a low-dimensional space. The
importance given to small distance can also be reinforced by

using non-squared distances, which leads to the minimization
of the so-called stress function:

min
X

∑
i<j

wij(δij − dij)2 . (4)

The stress function is the basis of many nonlinear variants
of classical metric MDS, such as Sammon’s NLM [52].
In this method, wij is defined to be equal to 1/δij and
the stress is minimized by a pseudo-Newton optimization
procedure. Curvilinear component analysis [16] follows a
similar approach, with the noticible difference that wij =
f(dij/σ), where f : R+ → R+ is a decreasing function of
its argument and σ is a neighborhood width. Although at first
glance it looks very similar to Sammon’s NLM, CCA shows
a completely different behavior, due to the dependence of the
weights upon the distances in the low-dimensional space.
This pecularity gives CCA the ability to tear manifolds,
which is very handy to embed spherical manifolds or to break
and unfold loops in manifolds [36].

More fundamentally, NLDR can be prone to two types
of errors: tearing errors (or extrusions) occur when close
neighbors are represented far from each other, whereas flat-
tening errors (or intrusions) indicate that remote data items
erroneously become close neighbors. (See Section V for
more details.) Within this framework, NLM can be shown to
tolerate flattening errors, whereas CCA is a variant of MDS
that allows tearing errors. These antagonist behaviors are
combined in hybrid methods such as Venna’s local multidi-
mensional scaling [67], [66], where the weights in the stress
function are given by wij = λf(dij/σ) + (1 − λ)f(δij/σ).
Parameter λ controls the balance between the two types of
errors.

Another breakthrough in NLDR has been to replace the
standard Euclidean norms and distances by other metrics.
The most famous example is undoubtedly Isomap [61],
which amounts to applying classical metric MDS to a matrix
of pairwise geodesic distances. If data are assumed to be sam-
pled from a manifold, geodesic distances are actually mea-
sured along the underlying manifold. This metric facilitates
the preservation of distances for manifolds that are isometric
to a subset of some Euclidean space (the length of straight
lines drawn on a sheet of paper is invariant, regardless
of the sheet curvature). In practice, geodesic distances are
approximated by computing the length of shortest paths in
a Euclidean graph corresponding to K-ary neighborhoods or
ε-balls [6]. Geodesic distances have been used in Sammon’s
mapping [77] as well as in CCA [35].

In contrast to geodesic versions of NLM and CCA that
involve gradient descents, Isomap keeps using a spectral
decomposition to compute the embedding coordinates, just
like classical metric MDS. This ensures that Isomap finds
the global optimum of its cost function. On the other hand,
the approximation of geodesic distances leads after double
centering to a Gram matrix that is not guaranteed to be
positive semidefinite. This issue is addressed in maximum
variance unfolding (MVU) [72], [74], [73]. The idea of
MVU is to unfold the data cloud by preserving the distances
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between neighboring points and maximizing all other longer
distances. Knowing that geodesic distances are larger or
equal to distances as the crow flies, MVU goes one step
further than Isomap. Formally, MVU solves

max
X

∑
i<j

‖xi − xj‖22 , (5)

subject to 1TX = 0 and ‖xi − xj‖2 = δij if ξi and
ξj are neighbors. In practice, MVU converts the Euclidean
distances into the corresponding inner products and then
modifies the resulting Gram matrix by means of semidefinite
programming before applying classical metric MDS on it.

C. Distance preservation in feature spaces

Although they rely on classical metric MDS, methods such
as Isomap and MVU achieve a nonlinear transformation of
the data coordinates. This ability stems from their use of a
modified Gram matrix. A pioneering method in this direction
is kernel PCA. The idea is to ‘kernelize’ classical metric
MDS, by means of the so-called kernel trick. Mercer kernels
are symmetric functions of two arguments that can be rewrit-
ten in the form of an inner product. For any Mercer’s kernelk,
the theory allows us to write k(ξi, ξi) = 〈Φ(ξi),Φ(ξj)〉,
where 〈·, ·〉 denotes an inner product in a so-called feature
space. The beauty of the kernel trick is that k implicitly
defines the mapping function Φ. In other words, there is no
need to map the data into the feature space and to explicitly
compute the inner products. Instead, the Gram matrix in the
feature space can be built directly by applying the kernel k on
pairs of vectors drawn from data set Ξ. The main concern
about kernel PCA is the choice of an appropriate kernel,
which at same time fulfills Mercer’s theorem conditions and
proves to be good at reducing the data dimensionality. In
this respect, methods like Isomap and MVU often perform
better than kernel PCA, because the kernel is determined in
a data-driven way, either by computing geodesic distances or
thanks to semidefinite programming. The kernel that leads to
the modified Gram matrix is not known in analytical form
but it is geometrically relevant.

Laplacian eigenmaps [2] is another DR method that can
be seen as working in a feature space. The idea of Laplacian
eigenmaps is to minimize small distances, while constraining
the data covariance. Formally, Laplacian eigenmaps use a
spectral decomposition to solve

min
X

∑
i<j

wij‖xi − xj‖22 , (6)

subject to 1TX = 0, CXX = I, and wij > 0 if and
only if ξi and ξj are neighbors. (K-ary neighborhoods or
ε-balls can be used such as in Isomap.) The low-dimensional
coordinates in X are given by the scaled and transposed
trailing nontrivial eigenvectors of the Laplacian matrix, de-
fined as L = D −W, where W = [wij ]1≤i,j≤N and D
is diagonal with dii =

∑
j wij . Several authors have shown

that Laplacian eigenmaps amount to applying classical metric
MDS to commute-time distances [78], that is, to distances
related to random walks in a graph. In that sense, Laplacian

eigenmaps can be understood in the same way as kernel
PCA, that is, as a method of preserving inner products in a
feature space. In the case of Laplacian eigenmaps, the latter
is equipped with the inner product associated with commute-
time distances.

To some extent, auto-associative feed-forward networks
[31], [44], [63], [17], [24] can also be thought of as involving
a feature space. Feed-forward networks are universal function
approximator. In the case of NLDR, they are used in a very
specific configuration, called auto-association, in which one
tries to reproduce as output the data that are presented as
input. This learning process is not trivial because the network
has a deep and bottleneck1 architecture, that is, it consists
of many hidden layers, and the middle layer comprises
fewer neurons than the input and output layers. Formally, if
f : RD → RD denotes the network, NLDR can be achieved
if we assume that f = h◦g, where g : RD → RP , h : RP →
RD, and P < D. Hence, the deep network f results from
stacking two shallow ones, g and h. Computing xi = g(ξi)
reduces the data dimensionality, whereas ξ̂i = h(xi) maps
it back to its initial high-dimensional space. The learning
process identifies the parameters of f that minimize the TLS
error

∑
i ‖ξi − ξ̂i‖22. This cannot easily be achieved with

backpropagation alone [50], due to the deep architecture of
the network, but new promising learning techniques are being
developed [24]. Notice that if g and h are linear, the auto-
associative network reduces to PCA and does nothing more
than fitting a linear subspace through the data cloud.

D. Self-organization

Self-organization finds its inspiration in the brain archi-
tecture [71]: the organization of sensory maps in the cortex
reflects that of the corresponding sensing organ, in what
is known as a topographic map. Neighboring points in the
primary visual cortex, for example, correspond to neigh-
boring points in the retina. Such an organization conforms
to the intuition of DR: close data items should remain
near to each other in the low-dimensional representation.
Topographic mapping was popularized in the field of DR by
Kohonen’s self-organizing feature maps (SOMs). In contrast
to the majority of other DR methods, SOMs do not build
an embedding. Instead, low-dimensional coordinates are pre-
established in G = [gk]1≤k≤Q. Most of the time, the vectors
in G are located at the nodes of two-dimensional rectangular
grid. The goal of the SOM is then to deform the grid in the
high-dimensional data space, so that it fits through the data
cloud. For this purpose, each vector gk is associated with
high-dimensional coordinates in the data space, denoted by
γk. In order to ensure the topographic consistence, the SOM
considers each datum ξi succesively and moves all grid nodes
according to

γk ← γk + αKσ(d(gk,gl))(ξi − γk) , (7)

where 0 ≤ α ≤ 1 is a learning rate, Kσ is a positive and
decreasing function of its argument (a Gaussian function,

1The term hourglass would actually describe better this kind of network.
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for instance), d(·, ·) is a distance in the grid space, and l =
arg mink ‖ξi − γk‖2.

A pecularity of SOMs is that they accomplish a kind of
vector quantization [20] in addition to DR, as the number
of grid nodes is often much smaller than the data size. The
fact that the low-dimensional coordinates of the grid node
are imposed also means that the geometrical structure of data
must be visualized with colored grid nodes or other artifacts.
These issues are addressed in reversed SOM models [33],
[75], in which vector quantization is no longer mandatory,
the grid is built in the high-dimensional data space, and the
update rule (7) is applied on low-dimensional coordinates.

E. Similarity preservation

Some recent publications put forward similarity preserva-
tion as an improvement over distance preservation. Whereas
a pairwise dissimilarity such as a distance equals zero for
identical items, a similarity is usually defined as a decreasing
function of the distance. In the context of dimensionality
reduction, the use of similarities is increasingly perceived
as more consistent with the intuition that local properties
such as K-ary neighborhoods should be preserved prior to
global properties. This idea already guides many weighting
schemes that are used in distance-preserving methods such
as MDS, Sammon’s mapping, CCA, and their variants. By
using similarities, the dominating terms in a cost function
are naturally associated with small distances. For instance,
let us define normalized pairwise similarites with

πij =
γ(δ2ij)∑
k<l γ(δ

2
kl)

and pij =
g(d2

ij)∑
k<l g(d

2
kl)

, (8)

where γ and g are positive and decreasing functions of their
arguments.

Using normalized similarities makes it possible to consider
them as probability densities. Stochastic Neighbor Embed-
ding (SNE) [23] exploits this property in its cost function,
which involves a Kullback-Leibler divergence between the
normalized similarities in the high- and low-dimensional
spaces. The KL divergence can be written as

D(X; Ξ) =
∑
i<j

πij log(πij/pij) (9)

and can be minimized by gradient descent. The formula of
the partial derivative with respect to the low-dimensional
coordinates turns out to be surprisingly concise and elegant:

∂D(X; Ξ)
∂xi

=
∑
j

(πij − pij)
g′(d2

ij)
g(d2

ij)
(xi − xj) . (10)

It also shows that the gradient is negligible for large dis-
tances, that is, for small similarities, provided g′(dij) ≤
g(dij). Recent papers investigate the choice of the similarity
functions [64] and the definition of the cost function [68].
As the KL divergence is not symmetric, the authors of [68]
consider a weighted combination of two divergences, based
on the same principle as their distance preserving method in
[67], [66]. In particular, this allows them to cast their method
within the framework of statistical information retrieval.

Notice that although previous DR methods such as kernel
PCA, Laplacian eigenmaps, or LLE also involve similarities,
they do not preserve them in a straightforward way as SNE
and its variants do. Instead, one can consider their action as
follows. First, they convert similarities into inner products in
a feature space (such as those associated with commute-time
distances in the case of Laplacian eigenmaps). Next, they
discard all feature space dimensions that lead to moderate
distortions the pairwise inner products. Experimental results
[64] are in favor of true similarity preservation.

IV. TAXONOMY OF METHODS

The large variety of methods in the field of dimensionality
reduction naturally raises the question of their classification.
They can be gathered into several categories, which cor-
respond to different conceptual ideas, assumptions of their
underlying model, or algorithmic properties.

A well-known frontier is the one that separates linear
methods from nonlinear ones. For instance, the models of
PCA and classical metric MDS both assume that data are
distributed on (or near to, because of noise) a linear subspace.
These methods do not perform optimally if the data to be
processed are sampled from a nonlinear manifold such as the
popular Swiss roll. The majority of recent manifold learning
methods can deal with this case.

Dimensionality reduction methods can also be classified
according to their paradigm, which can be inner product
preservation, distance preservation, similarity preservation,
rank preservation, auto-association, or topological mapping,
among many other possibilities. As to distance-preserving
methods, one can refine the categories by considering Eu-
clidean distances, geodesic ones, or random walks in a graph,
also known as commute-time distances.

Considering that DR amounts to a total least square regres-
sion problem, all DR methods involve some kind of optimiza-
tion. DR methods can thus be categorized according to the
various optimization techniques they rely on. An important
distinction is the one that separates spectral methods [54]
from those that utilize more generic optimization schemes,
such as (stochastic) gradient descent. Classical spectral me-
thods are PCA and metric multidimensional scaling, which
are both linear. Most nonlinear spectral methods result from
applying classical metric MDS to nonlinearly transformed
data, in a so-called feature space, following the idea de-
veloped in kernel PCA. Methods such as Isomap, MVU,
LLE, and Laplacian eigenmaps can all be cast within this
framework. Notice however that a further distinction can be
drawn between dense and sparse spectral methods. The for-
mer (KPCA and Isomap) utilize the leading eigenvectors of a
dense Gram matrix, whereas the latter involve the nontrivial
trailing eigenvectors of a sparse positive semidefinite matrix,
whose entries can often be considered as similarities. These
two formulations are actually dual [76] and all methods
reduce to MDS applied in a feature space. For example,
the pseudo-inversion of the graph Laplacian matrix shows
that Laplacian eigenmaps turn out to be MDS applied on
commute time distances. Spectral methods own the appealing
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advantage of yielding the global optimum of their associated
cost function. This nice property comes at the expense of
less flexibility in the design of the cost function. Not all cost
functions can be expressed in the form of an eigenproblem
and those that can are not necessarily pertinent. Sparse
spectral methods can also suffer from numerical problems
in the computation of the trailing eigenvectors.

Another distinction can be drawn between parametric and
nonparametric methods. For instance, PCA and classical
metric MDS both rely on parametric models. The main ad-
vantage of having a parametric model is the ability to reduce
the dimensionality of new data that were not included in the
learning set. This is obvious for PCA, by projecting new data
along the principal component, whereas Nyström formula
[4] is used in the case of MDS. In contrast, many nonlinear
methods are nonparametric. Sammon’s NLM, CCA, SOMs,
and (t-)SNE, to cite only a few, fall in this category. These
methods cannot process new data in a straightforward way.
For some nonlinear spectral methods, such as kernel PCA,
Isomap, LLE, and Laplacian eigenmaps, Nyström formula
can be applied [4], since they consists in applying classical
metric MDS on a Gram matrix computed in a feature
space. (MVU is a noticible exception, as the computation
of the Gram matrix is not direct and involves itself an
optimization step.) Auto-associative networks and generative
topographic mapping [9] (GTM, a generalization of SOMs)
are parametric.

Dimensionality reduction can be hard or soft [12], de-
pending on the ratio of dimensionalities before and after
reduction. Simple methods such as PCA or classical metric
MDS can process very high-dimensional data and project
them to very low-dimensional space, even below the intrinsic
dimensionality of data. Most nonlinear methods are less
robust, due to their higher model complexity, and often fail
to converge if the target dimensionality is lower than the
data intrinsic dimensionality. A noticible exception is t-SNE,
which seems to be insensitive to the curse of dimensionality,
unlike most other methods.

A few DR methods rely on vector quantization. The most
emblematic one is undoubtedly the SOM, though some others
have followed the same idea [15], [35], [33]. Vector quan-
tization reduces the number of data items to be processed
and is therefore dual or complementary to DR. Though it
decreases the computational demand, it also implies that not
all data items are represented in the low-dimensional space.
An intermediate solution consists in replacing genuine vector
quantization with the use of landmarks [14], [64]. Instead
of computing distances or similarities between pairs of data
items, they are measured from one datum to one landmark.
This requires less storage and less computation, while still
providing low-dimensional coordinates for each datum.

The literature often mentions a distinction between global
and local DR methods [14]. Although these qualifiers are
used for all kinds of methods, they are usually associated
with dense and sparse spectral methods. Because these two
type of methods are dual [76], any local (i.e. sparse) method

becomes global (i.e. dense) once it is considered in an
appropriate feature space.

V. QUALITY ASSESSMENT

An important and yet not fully addressed issue of DR is
quality assessment (QA). Until recently, QA has been over-
looked and most of the effort has been devoted to designing
new (NL)DR methods. Among the obvious ways to assess
quality, the connection between DR and a total least squares
regression problem suggests that the quadratic reconstruction
error is an optimal criterion. However, it requires to re-embed
the low-dimensional data back to the initial high-dimensional
space. Only a few parametric methods such as PCA and auto-
associative networks can do that.

Another possiblity is to choose a popular DR cost function,
such as Sammon’s NLM stress, and compute its value with
any embedding. In addition to being unfair, this methodology
raises several questions. Does the stress function faithfully
translate the intuition of a good embedding? Is distance
preservation a meaningful criterion? Clearly not, as we
know that in order to embed manifolds with complicated
shapes, distances should ideally be stretched and shrunk.
On the other hand, the reason to be of Sammon’s stress
is differentiability: it can easily be optimized. In QA, this
constraint disappears, as the quality measure merely needs to
be evaluated. Therefore, the principle of DR —embed close
neighbors next to each other and maintain large distances
between faraway data items— is more faithfully rendered
by rank preservation. This idea is investigated in [65], [68],
[37] and a uniform framework for all rank-based criteria is
suggested in [38], [39]. Connections between some criteria
and statistical information retrieval are developed in [68].

In practice, the rank of ξj with respect to ξi in the
high-dimensional space is written as ρij = |{k : δik <
δij or (δik = δij and 1 ≤ k < j ≤ N)}|, where |A| denotes
the cardinality of set A. Similarly, the rank of xj with respect
to xi in the low-dimensional space is rij = |{k : dik <
dij or (dik = dij and 1 ≤ k < j ≤ N)}|. The co-ranking
matrix [39] can then be defined as Q = [qkl]1≤k,l≤N−1

with qkl = |{(i, j) : ρij = k and rij = l}|. The co-
ranking matrix is the joint histogram of the ranks and is
actually a sum of N permutation matrices of size N − 1.
With an appropriate gray scale, the co-ranking matrix can
also be displayed and interpreted in a similar way as a
Shepard diagram [57]. Historically, this scatterplot has often
been used to assess results of multidimensional scaling and
related methods [16]; it shows the distances δij with respect
to the corresponding distances dij , for all pairs (i, j), with
i 6= j. With the co-ranking matrix, distance preservation
errors reduce to rank preservation errors, given by ρij − rij .
As in the case of distances, the error sign is important, in
order to avoid considering the types of errors on the same
footing. This explains why many quality measures, such as
the trustworthiness and continuity [65] and the mean relative
rank errors [37] come by pairs. They separately account
for positive and negative rank errors (called intrusions and
extrusions, respectively, or flattening and tearing errors).
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The generic form of rank-based quality measures consists
of weighted sums over the first K rows and columns of
Q, that is, Q1(K) =

∑K
k=1

∑N
l=1 wklqkl and Q2(K) =∑K

k=1

∑N
l=1 wlkqlk. The weighting schemes range from very

simple ideas (e.g. wkl ∈ {0, 1/KN}) to more complicated
ones, which can raise normalization issues [38]. Notice also
that all of those criteria remain dependent on some scale
parameter, generally given by K [40].

VI. CONCLUSIONS AND PERSPECTIVES

Dimensionality reduction is a boiling hot research topic.
In the last decades, revolutionary ideas have reshaped the
domain, leading to a wide range of methods pursuing similar
goals. The multitude of methods, each one coming with its
own advantages and drawbacks, makes comparisons rather
difficult. This motivated the recent works around rank-based
quality measures. The underlying idea is to evaluate the me-
thods by criteria that are as close as possible to our intuition
of how DR should ideally work. This raises the fundamental
question of what we are really looking for when using
DR methods. Is the application-driven objective close from
neighbor preservation, distance preservation, or any other
principle DR methods and quality measures are built upon?
Naturally a good idea is first to adapt the evaluation criteria to
the application-driven objectives. Another good idea is to try
developing DR methods that optimize directly the selected
quality criterion, or an approximation of it. Recent research
has mostly been conducted in the opposite way: first design-
ing a method, next evaluating it, and eventually trying to see
whether it fits specific application goals. Though it is certain
that modern DR techniques are extremely powerful and can
adapt to many situations, the next challenge is certainly to
reverse the design-evaluation-application process and make
it closer to the application needs. As to visualization by
DR, this includes bridging the gap between DR techniques
developed in the context of machine learning, and advanced
data visualization techniques.
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1948, p. 299.

[42] J. Mao and A. Jain, “Artificial neural networks for feature extraction
and multivariate data projection,” IEEE Transactions on Neural Net-
works, vol. 6, no. 2, pp. 296–317, Mar. 1995.

[43] B. Nadler, S. Lafon, R. Coifman, and I. Kevrekidis, “Diffusion maps,
spectral clustering and eigenfunction of Fokker-Planck operators,” in
Advances in Neural Information Processing Systems (NIPS 2005),
Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge, MA: MIT
Press, 2006, vol. 18.

[44] E. Oja, “Data compression, feature extraction, and autoassociation in
feedforward neural networks,” in Artificial Neural Networks, T. Ko-
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