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Abstract— Dimensionality reduction techniques aim at repre-
senting high-dimensional data in low-dimensional spaces. To
be faithful and reliable, the representation is usually required
to preserve proximity relationships. In practice, methods like
multidimensional scaling try to fulfill this requirement by
preserving pairwise distances in the low-dimensional represen-
tation. However, such a simplification does not easily allow for
local scalings in the representation. It also makes these methods
suboptimal with respect to recent quality criteria that are
based on distance rankings. This paper addresses this issue by
introducing a dimensionality reduction method that works with
ranks. Appropriate hypotheses enable the minimization of a
rank-based cost function. In particular, the scale indeterminacy
that is inherent to ranks is circumvented by representing data
on a space with a spherical topology.

I. INTRODUCTION

Dimensionality reduction [8], [12] aims at finding a
low-dimensional representation of high-dimensionality data,
e.g. for visualization purposes. The quality of the repre-
sentation is usually evaluated by checking that proximity
relationships are preserved. In this way, close data items are
represented close to each other, whereas distant items remain
far from each other.

In practice, the generic principle of proximity preservation
can be instantiated in various ways. For instance, principal
component analysis [18] tries to preserve pairwise scalar
products. Multidimensional scaling [22] and closely related
techniques [5], [10], [19] attempt to reproduce pairwise
distances. The success of these methods mainly depends on
how distance errors are weighted in the definition of the cost
function. Giving more importance to small distances usually
allows data to unfold [19], [25]. The choice of the metric
might be important as well. Geodesic distances, for instance,
better capture the intrinsic structure of data than Euclidean
distances [6], [11], [21].

This paper describes a dimensionality reduction technique
that tries to preserve rank information instead of distances.
Ranks are obtained by sorting either each row or column in
a matrix of pairwise distances. The idea is motivated by the
fact that modern quality criteria for dimensionality reduction
evaluate the preservation of ranks [13] or, equivalently,
of K-ary neighborhoods [23]. These works tend to show
that the principle of proximity preservation that underlies
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dimensionality reduction is rendered more faithfully by ranks
than distances. If the use of ranks raises no particular
issue in a quality criterion, the situation becomes more
complicated in the context of a cost function as sketched in
[14]. For example, ranks are piecewise constant functions of
distances and thus have a zero derivative almost everywhere.
The presence of ranks in a cost function therefore requires
specific optimization tools. In contrast to distance matrices,
rank matrices are not necessarily symmetric. Ranks also
introduce a scale indeterminacy: multiplying all distances
with a constant factor leaves the ranks unchanged. The
method suggested in this paper addresses these issues with
ad hoc solutions. In particular, the scale indeterminacy is
circumvented by representing the data on a sphere, instead of
a Cartesian space. Several recent works have investigated the
feasibility of representing data on a differentiable manifold
[15], [17]; however, they do not consider the question of
optimizing ranks instead of distances.

The remainder of this paper is organized as follows. Sec-
tion II introduces a generic cost function for dimensionality
reduction, which is first instantiated with distances. Next,
Section II justifies the use of ranks and plugs them into the
cost function. As the data are immersed in a spherical shell,
Section III briefly presents some concepts of optimization on
manifolds. Section IV describes in details the optimization
technique that minimizes the proposed rank-based cost func-
tion. Section V presents some experimental results, including
comparisons with state-of-the-art techniques.

II. COST FUNCTION

The definition of a cost function for dimensionality reduc-
tion should ideally be guided by or related to the quality
criterion that one seeks to optimize. If the expression of
the criterion is simple and has good properties (such as
differentiability and no indeterminacy), then the cost func-
tion can obviously be the criterion itself. In dimensionality
reduction however, recent quality criteria involve ranks of
sorted distances. The usual approach is then to design the cost
function as a surrogate of the criterion, with useful properties
for its optimization. For instance, differentiability can be
obtained by approximating rank preservation with distance
preservation.

The study of quality criteria also tells us that dimen-
sionality reduction can be subject to two types of errors.
Intrusions [13] (or flattening errors [17]) occur when two
distant groups of neighboring points are mixed together in
the low-dimensional representation. In contrast, extrusions
[13] (or tearing errors [17]) occur when a neighborhood is
split into distant parts in the representation. For example, in
the case of a spherical manifold, two planar representations
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are possible. If the spherical shell is crushed, then intrusions
dominate, whereas a representation made of two caps next
to each other like an Earth map is mostly extrusive.

Within the framework of distance preservation, the balance
between intrusions and extrusions can be expressed in the
following way. First, let X = [xi]1≤i≤N and Y = [yi]1≤i≤N
denote the data set and its low-dimensional representation,
with xi ∈ Rn, yi ∈ Rp, and p ≤ n. Pairwise distances
between items xi and xj for 1 ≤ i, j ≤ N are given
by dij = dX(xi,xj) where dX is the distance measure in
the high-dimensional space. Conversely, δij = δY(yi,yj)
denotes pairwise distances between items yi and yj with
respect to the distance measure δY in the low-dimensional
space. This allows us to write

E(Y;X) = λ
N∑

i,j=1

(dij − δij)2
b+ dij

+(1−λ)
N∑

i,j=1

(dij − δij)2
b+ δij

,

(1)
where parameter λ controls the tradeoff between intrusions
and extrusions [24]. In (1), squared differences of distances
are gathered in to differently weighted terms. The weights
are inversely proportional to the distance in either the high-
dimensional space (first term) or in the low-dimensional
space (second term). Parameter b influences the decrease
of the weights. Knowing that intrusions correspond to cases
where δij � dij , their weight is light in the first term of (1).
In contrast, a light weight in the second term is associated
with cases where δij � dij , that is, with extrusions.

In addition to ensuring differentiability, the approximation
of rank preservation with distance preservation also circum-
vents the scale indeterminacy that is inherent to ranks. On
the other hand, it annihilates the main advantage of using
ranks, which is their allowance for local scalings in the low-
dimensional representation. This property is however highly
desirable, even to obtain a planar representation of such a
simple manifold as a half sphere. Concentrating points near
the manifold center does not break local neighborhood rela-
tionships and facilitates flattening; rank preservation makes
this concentration possible. In contrast, distance preservation
entails too strong constraints.

The above arguments pledge for designing a cost function
based on ranks instead of distances. For this purpose, one
rewrites (1) as

E(Y;X) = λ
N∑

i,j=1

(rij − ρij)2
b+ rij

+(1−λ)
N∑

i,j=1

(rij − ρij)2
b+ ρij

,

(2)
where rij denotes the ranks of xj with respect to xi.
Formally, nonreflexive rank without ties are defined by

rij = |{k s.t. dik < dij or (dik = dij and k < j)}|.
Similarly, we have in the low-dimensional space

ρij = |{k s.t. δik < δij or (δik = δij and k < j)}|.
Exactly as in (1), the two weighted terms allow either
intrusions or extrusions and λ controls their respective im-
portance.

III. OPTIMIZATION ON MANIFOLD

Due to the scale indeterminacy, the use of ranks in an
iterative optimization technique such as gradient descent
can lead to degenerate solutions. The successive updates
of the estimate can cause either a concentration or a dis-
persion of all points in the low-dimensional representation
when optimizing rank-based functions. From a force-directed
placement [7] point of view, as used by RankVisu [14], the
most likely degenerate solution depends on whether forces
that move the points are repulsive or attractive. Several
workarounds can address the specific case of a dispersion.
At first glance, the easiest solution is to constrain the low-
dimensional representation to lie inside a compact subset
of the Cartesian space. In practice however, the addition of
constraints makes the optimization more complicated. As an
alternative solution, we suggest representing the data set on a
spherical shell. This section briefly introduces the necessary
concepts of optimization on manifolds, which are applicable
to the sphere.

Classical optimization procedures [4], [16] are aimed at
optimizing a cost function on a Euclidean space. If we
consider variable z ∈ Rn and minimization problem

min
z
f(z) , (3)

where f : Rn → R, an iterative gradient-descent algorithm
can be schematized as follows. At the (k + 1)th iteration,
the optimization procedure updates previous estimate z(k)
towards the minimum of cost function f . First, the algo-
rithm updates the search direction η(k); in the case of the
steepest descent method, this direction is given by η(k) =
−∇f(z(k)). Secondly, the line-search algorithm moves the
estimate along the search direction η(k). Update rule

z(k + 1) = z(k) + αkη(k)

yields the next estimate, with αk ∈ R being the step size. The
latter has to ensure a sufficient decrease of the cost function
[4], [16]. After the update, we have f(z(k + 1)) < f(z(k))
and we proceed until a (local) minimum is reached.

In the case of cost function f : M → R whose domain
is manifold M, the theory of optimization on manifold [1]
generalizes classical tools and procedures. For instance, the
search direction η(k) and the iterative update rule are adapted
in order to take the manifold constraint into account. The
optimization problem in (3) is rewritten as

min
z∈M

f(z),

where M ⊆ Rn is a differentiable manifold, which is
informally defined as a set that is locally homeomorphic
to a subset of a Euclidean space. Manifold M expresses
the geometric constraints that item z has to satisfy. In our
case, manifold M is a sphere and we could carry out the
optimization with the equation of the sphere as a constraint.
Classical constrained optimization [3], [4], [16] usually
introduces Lagrange multipliers to solve such a problem.
Since all N points of the low-dimensional representation
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have to lie on the manifold, N constraints — and hence N
Lagrange multipliers — are added. This approach obviously
complicates the problem.

An unconstrained optimization using spherical coordinates
suffers from annoying shortcomings as well. The singularities
at both poles cause numerical problems. The poles are
represented by segment lines in the spherical coordinate
space: for example, the north pole is defined by

{(φ, θ)|θ =
π

2
, φ ∈ [0, 2π]}.

In contrast, optimization on a manifold generalizes the
principle of a gradient descent by forcing the updated es-
timate z(k + 1) to remain on manifold M. Because of the
manifold curvature, moving the estimate along line-search
direction η(k) is not sufficient. Instead, the estimate should
follow a geodesic of the manifold. The remainder of this
section describes how one can adapt both the search direction
and the update rule in order to stick to a manifold geodesic.

An adequate search direction η(k) is defined as follows.
Since gradient −∇f(z(k)) may not encompass the manifold
constraint, we first project orthogonally on tangent space
Tz(k)M. Actually, denoting a geodesic curve γ such that
γ(0) = z(k), its derivative γ′(0) belongs to the tangent
space Tz(k)M. Forcing the search direction η(k) to belong
to the tangent space allows the evaluation of a geodesic curve
satisfying γ′(0) = η(k), hence the update of z(k) along this
geodesic curve.

To translate z(k) along the geodesic curve γ, the algorithm
first evaluates a new item z′(k) = z(k) + αkη(k). Then,
to satisfy the manifold constraint, the latter is mapped,
i.e. retracted, on the manifold. This task is achieved by
a retraction function Rz(k) : Tz(k)M → M which is
informally defined as a smooth mapping from the tangent
space to the manifold; formal definition and properties can
be found in [1]. For instance, the retraction function allows
the definition of the geodesic curve:

γ : R→M, t 7→ γ(t) = Rz(k)(tη(k)).

Moreover, the properties of the retraction function [1] ensure
the following conditions{

γ(0) = z(k)
γ′(0) = η(k) .

Note that the step size αk is set to ensure a sufficient decrease
of the cost function. Figure 1 illustrates the procedure that
is detailed and theoretically justified in [1].

IV. REDUCING THE DIMENSIONALITY WITH RANKS

The forthcoming paragraphs describe a practical way to
minimize cost function E(Y;X) defined in (2) on the unit
sphere S = {y ∈ R3|‖y‖2 = 1}. For this purpose,
the low-dimensional representation denoted by Y(k) =
[yi(k)]1≤i≤N is updated in two steps. First, we determine
a set of suitable search directions ηi(k); their calculation
is detailed further below. Once the search directions are
projected on their associated tangent space

Tyi(k)S = {η ∈ R3|ηTyi(k) = 0},

Fig. 1. Illustration of the (k+1)th iteration of the optimization on manifold
procedure. Adapted from [17].

the first update can be written as

y′i(k) = yi(k) + αkηi(k) ,

where αk ∈ R is the step size. In the second step, vectors
y′i(k) are retracted on sphere S in order to satisfy the
geometric constraints. The retraction function

Ryi(k) : Tyi(k)S → S
normalizes the vectors such that the new iterate is defined
by

yi(k + 1) = Ryi(k)(αkηi(k))

=
yi(k) + αkηi(k)
‖yi(k) + αkηi(k)‖

.

The value of the step size αk is adjusted to ensure that the
cost function (2) decreases at each iteration.

In Section III, the search directions are computed by dif-
ferentiating the cost function. However, ranks are piecewise
constants and their derivatives are null almost everywhere. As
a workaround, we use a specific model of the matrix of pair-
wise ranks given by R = [ρij ]1≤i,j≤N . This model allows
us to empirically relate distances to ranks and thus evaluate
ηi(k) in an alternative way. For some given configuration
of Y(k), Fig. 2 shows the observed relationship between
δij (the pairwise distances) and ρij (the pairwise ranks). At

Fig. 2. Representation of the rank values ρij with respect to the distance
values δij related to an embedded data yi; 1 ≤ j ≤ N .

each update of Y(k), this relationship can be interpolated by
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differentiable functions ψj : S → R : y(k) 7→ ψj(y(k)) that
satisfy the follwing conditions:

ψj(yi(k)) = ρij(k),∀(i, j) . (4)

To be consistent with the asymmetry of ranks, the inter-
polation functions ψj only depend on the value of yi(k).
The interpolation problem amounts to finding functions ψ̃j :
R+ → R : δ 7→ ψ̃j(δ) such that

ψ̃j(δij) = ρij ,∀(i, j),
where the geodesic distance δij between yi and yj is given
by

δij = arccos
(

yTi yj
‖yi‖‖yj‖

)
.

Using the cost function in (2) and the definition of ψ̃j , the
minimization problem is thus rewritten as

min
Y|yi∈S

E(Y;X), (5)

where

E(Y;X) = λ

N∑
i,j=1

(rij − ψ̃j(δij))2
b+ rij

+

(1− λ)
N∑

i,j=1

(rij − ψ̃j(δij))2
b+ ψ̃j(δij)

.

Search direction ηi(k) is computed by differentiating the cost
function in (5) with respect to yi. Because of the asymmetry
of ranks, the derivative is given by

ηi(k) = −
N∑
j=1

∂E

∂ρij

∂ρij
∂yi

(yi(k)) , (6)

where ∂E
∂ρij

is evaluated by differentiating (2):

∂E

∂ρij
= −2λ

(rij − ρij)
b+ rij

−(1−λ)
(rij − ρij)(rij + ρij + 2b)

(b+ ρij)2
.

Since functions ψj and ψ̃j interpolate ranks ρij , the deriva-
tive of the latter is expressed by

∂ρij
∂yi

=
∂ψj
∂yi

=
∂ψ̃j
∂δij

∂δij
∂yi

.

We can thus rewrite (6) as

ηi(k) = −
N∑
j=1

∂E

∂ρij

∂ρij
∂δij

∂δij
∂yi

(yi(k)) , (7)

where

∂δij
∂yi

=
−
(

yj

‖yi‖‖yj‖ −
yT

i yjyi

‖yi‖2‖yj‖
)

√
1−

(
yT

i yj

‖yi‖‖yj‖
)2

. (8)

Equation (8) shows that ∂δij

∂yi
is orthogonal to yi. Therefore

this derivative and the search direction ηi(k) are on the
tangent space Tyi(k)S.

Since ∂ρij

∂δij
= ∂ψ̃j

∂δij
, we can evaluate ∂ρij

∂δij
by differentiating

the interpolation functions ψ̃j . Nevertheless, results are com-
puted by approximating ∂ρij

∂δij
: the method derives the rank

distribution from distances by a central difference algorithm.
As mentioned in the introduction, dimensionality reduction

by rank preservation faces two big issues: the scale inde-
terminacy of distances with respect to their ranks and non-
differentiability of ranks. The method we describe addresses
the first one by immersing data in spherical shell; this
avoids degenerate representations with outliers and far away
scattered points. The non-differentiability of ranks is circum-
vented by interpolating the observed relationship between
ranks and distances. In constrast, the methods described
in the literature rely on less straightforward solutions. For
instance, in [14], the authors tackle the scale indeterminacy
by initializing their rank-preserving method with the result
of a distance-preserving method (such as Isomap [21]). Next,
they update the data representation by minimizing two cost
functions, with the one depending on distances and the other
on ranks. A large weight is given to the preservation of
distances during the first iterations in order to control the
scale of the representation and to prevent points to scatter
around. To minimize the second cost function, the same
method addresses the non-differentiability of ranks by using
pairwise point permutations and force directed placement [7].

V. RESULTS

This section presents experiments on several data sets. The
first part of this section is dedicated to the embedding of
two toy example data sets. Results on the immersion of a
hyperboloid on the unit sphere shows the improvements of
preserving ranks rather than pairwise distances. The results
are assessed both by visualization and quantitatively by
evaluating quality criteria [13]. The second data set gathers
items generated on a frog skin manifold.

In the second part of this section, experiments are per-
formed on a real data set of pictures of a virtual face
[12], [20], [26]. The results of the rank-based and the
distance-based method [17] are compared with several state-
of-the-art dimensionality reduction methods: Isomap [21],
Geodesic Nonlinear Mapping [6], Curvilinear Distance Anal-
ysis [11], Stochastic neighborhood embedding [9], Local
Tangent Space Alignment [26].

A. Toy example : the hyperboloid

This section presents the embedding results of a hy-
perboloid on a sphere. 1000 data are randomly generated
on the hyperboloid H ≡ x2 + y2 = (1+z2)2

2 , where
z ∈ [−1.5, 1.5]. Fig. 3 illustrates the high-dimensional data
where the color varies with the azimuthal angle of the
hyperboloid. [5], [6], [11], [21] approximate the pairwise
geodesic distances to avoid shortcuts due to the Euclidean
distance. The approximation is achieved by building a graph
in the data distribution. Each node, i.e. each item, is jointed
to its 15 closest neighbors; the resulting edges are weighted
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Fig. 3. Original data generated on the hyperboloid H. The color varies
with the azimuthal angle.

by the corresponding Euclidean distances. Then, the pair-
wise geodesic distances are approximated by computing the
shortest path in the connected graph.

The hyperboloid is embedded on a sphere with the pro-
posed rank-based method and the corresponding distance-
based method defined by minimizing (1). The minimization
procedure aimed at preserving pairwise distances on a sphere
is detailled in [17]; this methods also determined the optimal
value assigned to the radius of the sphere. Simulations are
computed for different values of λ ∈ [0, 1] and b ∈ R+. The
values of those parameters are set experimentally to improve
the quality criteria detailed in [13].

Fig. 4 presents the quality criteria. The two upper curves
illustrate the percentage of the K-ary neighborhoods that are
preserved. For a fixed value of the size of the neighborhood
K, for example K = 100, the quality criterion counts data
that are in the 100-ary neighborhoods on the hyperboloid
and that remain in the corresponding 100-ary neighborhoods
when they are embedded on the sphere.

The lower curves quantify the extrusion and intrusion
behavior of those local neighborhoods. When the curve is
positive, the low-dimensional representation is more intrusive
than extrusive. Conversely, the embedding is more extrusive
when the curve is negative. Intuitively an intrusive (resp. ex-
trusive) immersion is related to a flattened (resp. torn)
immersion.

In Fig. 4, local neighborhoods are better preserved by
the rank-based dimensionality reduction than by the dis-
tance based method. Considering, for example the 100-ary
neighborhoods, 80 percents of the original data remain in
those neighborhoods after embedding them with the rank-
based method. Conversely, only 65 percents of the 100-ary
neighborhoods are correctly preserved by the distance-based
dimensionality reduction method.

Fig. 5 (a) and Fig. 5 (b) illustrate the dimensionality
reduction results when λ = 0.6 and b = 10 for the rank-
based method. In those figures, the color varies with the
azimuthal angle of the hyperboloid. Results of Fig. 5 (b) are

Fig. 4. Quality criteria for the rank-based method where λ = 0.6 and
b = 10 and for the distance-based method method when λ = 0.4 and
b = 0.1

represented in the spherical coordinate space. Note that there
are singularities in the north and south pole of the sphere.
Moreover, because of the topology of the sphere, embedded
data in the left of Fig. 5 (b) are close to the items in the
right part of this figure.

The color varies smoothly, with respect to the azimuthal
angle of the hyperboloid, which assesses the preservation of
the topology. Those results illustrate the benefit of preserving
ranks. Actually, the rank-based method enables the local con-
tractions (for data close to the extremies of the hyperboloid)
and dilatations (for data close to the center of the distribution,
i.e. when z ≈ 0) of distances.

Fig. 5 (c) and Fig. 5 (d) present the result for the distance-
based method when λ = 0.4 and b = 0.1. The distance-based
method flattens the hyperboloid since the color does not
vary smoothly; this observation is confirmed by the intrusive
behavior observed in Fig. 4.

Moreover data are immersed on a small part of the sphere.
The resulting low-dimensional representation is close to a
flattened immersion on the R2 Euclidean space; the topology,
hence the loops, of the hyperboloid is not preserved.

B. A frog immersed on a sphere

Fig. 6. Data generated on a frog manifold. The color varies with the height
of the frog.
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(a) (b)

(c) (d)

Fig. 5. Representation on the sphere (a) and in the spherical coordinate space (b) of the embedding of the hyperboloid by the rank-based dimensionality
reduction method; Representation on the sphere (c) and in the spherical coordinate space (d) of the embedding of the hyperboloid by the distance-based
dimensionality reduction method. The color varies with the azimuthal angle of the hyperboloid.

1000 data are generated on a close manifold that has the
shape of a frog [2] which is homeomorphic to the sphere; the
frog skin manifold is topologically equivalent to a spherical
shell: the former can be smoothly deformed into the other.
This manifold is illustrated in Fig. 6 where the color varies
with the height of the frog. Before embedding the frog on the
sphere, the geodesic distances are approximated. Simulations
are performed both with the rank-based and the distance-
based methods.

The results of the rank-based method are presented in
Fig. 7 where the color varies smoothly with respect to the
height of the frog. Since the homeomorphisme between the
sphere and the frog skin manifold is nearly an isometric
isomorphisme, the distance-based method performs as well
as the rank-based method as illustrated in Fig. 8. More than
85 percents of the K-ary neighborhoods are preserved when
K > 6.

C. Virtual face data set

This data set gathers 698 pictures of 64×64 pixels of a vir-
tual face taken from different azimuthal and elevation angles
and from different lightings [12], [21], [26]. While pictures
are 4096-dimensional vectors, the intrinsic dimension of the
picture manifold is only 3. The angle of the camera and of the
lighting are known parameters; they are used to qualitatively

(a)

(b)

Fig. 7. Embedding of the frog skin manifold on the sphere by the rank-
based dimensionality reduction method. Illustration of the results (a) on the
sphere and (b) in the spherical coordinate space. The color varies with the
height of the frog.
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Fig. 8. Quality criteria for the embedding of the frog where λ = 0.4
and b = 10 for the rank-based method and λ = 0.8 and b = 1 for the
distance-based method.

evaluate the performances of the method.
This experiment compares several state-of-the-art me-

thods: Isomap [21], Geodesic nonlinear mapping (GNLM)
[6], Stochastic neighborhood embedding (SNE) [9], Lo-
cal Tangent Space Alignment (LTSA) [26] and Curvilinear
Distance Analysis (CDA) [11]. Isomap, GNLM and CDA
are respectivally variants of the Multidimensional scaling
(MDS) [22], the Sammon mapping [19] and the Curvilinear
Component Analysis (CCA) [5]; thoses methods use the
geodesic distance rather than the usual Euclidean distance. To
improve the results performed by SNE, the method is adapted
by using the approximation of the geodesic distances.

Fig. 9 (a) illustrates the quality criteria for the different
dimensionality reduction methods. Only the percentage of
preserved neighborhoods are represented to increase the
readability of the figure. Despite CDA improves embedding
results for small K-ary neighborhoods (K ≤ 15), this
method is not efficient for medium and large neighborhoods.
One can observe that the rank-based method clearly outper-
forms the other ones, with respect to those quality criteria.

Fig. 9 (b) shows the embedding results for the rank-based
dimensionality reduction method. In this figure, the color
varies smoothly with respect to the azimuthal angle of the
camera. In the center of Fig. 9 (b), dark items are close to
light ones due to the poor light level; all those figures are
dark.

VI. CONCLUSION

Dimensionality reduction methods try to preserve proxi-
mity relationships. Traditionally, the embedding is performed
by minimizing a pairwise distance cost function while the
quality is assessed by rank-based quality criteria. Those
recent quality criteria motivate this work since the preserva-
tion of local neighborhoods is quantified by comparing rank
matrices.

The dimensionality reduction method presented in this
paper preserves rank relationships to rend more faithfully
the preservation of neighborhoods, hence the local topology
of the data distribution. This method improves embedding
results by allowing local scaling of distances. Nevertheless,

the rank-based method does not outperform distance-based
methods on data sets that are homeomorphic to the low-
dimensional space.

The embedding is defined by the minimization of a rank-
based cost function that expresses the tradeoff between the
risk of flattening and tearing the low-dimensional represen-
tation. This compromise is implemented and controlled by
a user-defined parameter. Moreover, an additive parameter
controls the decrease of the weight function, hence the
importance given to small ranks.

Preserving ranks raises some issues: ranks are asymmetric,
piecewise constant and they suffer of a scaling invariance.
Data distributions are thus immersed on a compact manifold,
the unit sphere, to avoid the spread of the data distribution.

Since ranks are piecewise constant, this distribution is
interpolated with respect to the corresponding distances.
Hypotheses on the ranks allow the differentiation of the
interpolation functions. Moreover, those hypotheses and the
theory of optimization on manifolds make possible the min-
imization of the cost function.

First results show the benefit of the proposed rank
preservation algorithm. The improvements of the rank-based
method are evaluated by comparing the results with a
corresponding distance-based method. They are both as-
sessed qualitatively by visualizing the embedding results
and quantitatively by using quality criteria. Furthermore, the
performances of the method are compared with several state-
of-the-art dimensionality reduction methods.

The choice between preserving distances or ranks is left
for further works. Nevertheless, since the preservation of
ranks is motivated by its ability to scale locally distances, first
answers could be found by quantifying those contractions
and dilatations. Moreover, the improvements are assessed
by comparing this method with the corresponding distance-
based method. However, further works will try to determine
appropriate cost functions for the rank preservation purpose.
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