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Abstract—Probability Density Function (PDF) estimation is a 
very critical task in many applications of data analysis. For 
example in the Bayesian framework decisions are taken 
according to Bayes' rule, which directly involves the evaluation 
of the PDF. Many methods are available to this aim, but there 
is no consensus in the literature about which to use, nor about 
the pros and cons of each of them. In this paper we present a 
thorough and extensive experimental comparison between two 
of the most popular methods: Parzen window and Finite 
Gaussian Mixture. Extended experimental results and 
application development guidelines are reported. 

I. INTRODUCTION 
Numerical data are found in many applications of data 

analysis. A random variable is the mathematical concept that 
characterizes the numerical results of experiments. To 
analyse data, one may choose to handle directly the results of 
the experiments. For example, simple data analysis methods 
like the linear PCA (Principal Component Analysis), the 
non-linear MLP (Multi-Layer Perceptron), and many others, 
work directly on the numerical values of samples. While this 
way of working may reveal adequate in many situations, 
other require working with the underlying random variable 
instead of the numerical sample. A random variable is 
completely characterized by its Probability Density Function 
(PDF), i.e. a function whose value in x gives the probability 
of an event to occur when the random variable is equal to x. 
Estimating PDF based on samples is of primary importance 
in many contexts. There exists a lot of methods aimed to 
estimate PDFs; while all of them are applicable in the 
univariate case, some of them may also be applied to the 
multivariate one. However, there is no consensus in the 
literature about which method to use, nor about the pros and 
cons of these methods. The aim of this paper is not to answer 
all the questions regarding the use of the methods for 
estimating PDF. Nevertheless, it aims at giving some insights 
into the most effective methods that are traditionally used by 

data analysts. Popular methods used to estimate PDFs in the 
experiments are Parzen windowing and Finite Gaussian 
Mixtures (FGM) that will be described in Paragraph II. 
Paragraph III will present the adopted experimental 
procedure. In Paragraph IV the results of some selected 
experiments are illustrated. Finally, Paragraph V introduces 
some guidelines for the use of PDF estimation methods. 

II. PDF ESTIMATION 
Probability density function estimation is a fundamental 

step in statistics as it characterizes completely the 
“behaviour” of a random variable. It provides a natural way 
to investigate the properties of a given data set, i.e. a 
realization of the random variable, and to carry out efficient 
data mining. When we perform density estimation three 
alternatives can be considered. The first approach, known as 
parametric density estimation, assumes the data is drawn 
from a specific density model. Unfortunately, an a-priori 
choice of the PDF model is in practice not suited since it 
might provide a false representation of the true PDF. An 
alternative is to build nonparametric PDF estimators [1][2] in 
order to “let the data speak for themselves”. A third approach 
consists in using semi-parametric models [3]. As 
nonparametric techniques, they do not assume the a priori 
shape of the PDF to estimate. However, unlike the 
nonparametric methods, the complexity of the model is fixed 
in advance, in order to avoid a prohibitive increase of the 
number of parameters with the size of the data set. Finite 
mixture models are commonly used to serve this purpose. In 
this section, we briefly recall the Parzen window estimator 
(one of the most representative nonparametric PDF 
estimators), and show how the kernel width can be selected a 
priori in the case of Parzen. Next, we present Finite Gaussian 
mixture models. We refer to X  as a continuous random 
variable and to )(xp  as its PDF. Let consider{ }N

nnx 1= , a 
realization of X . 
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A. Parzen Window 
The Parzen window estimator [4] does not assume any 

functional form of the unknown PDF, as it allows its shape to 
be entirely determined by the data without having to choose 
a location of the centers. The PDF is estimated by placing a 
well-defined kernel function on each data point and then 
determining a common widthσ , also denoted as the 
smoothing parameter. In practice, Gaussian kernels are often 
used: 
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where c  and σ  are the kernel centre and the kernel 
width respectively. The estimated PDF is then defined as the 
sum of all the Gaussian kernels, multiplied by a scaling 
factor: 
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1) Silverman’s plug-in principle 
Choosing the kernel width a priori is definitely not the 

best choice for σ , as its optimal value (i.e. the value that 
minimises the measure of dissimilarity between the 
estimated PDF and the estimating one) strongly depends on 
the type of data we are dealing with, their number and the 
amount of noise they are corrupted by. Silverman proposed 
in [2] to plug a Gaussian distribution to approximate )(xp , 
leading to the following rule of thumb:  
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In this equation s  is the empirical standard deviation and 
R  is the sample interquartile range. 

2) Leave-one-out estimator 
In order to estimate the optimal value of the kernel width, 

the leave-one-out approach can be used. It is based on the 
minimisation of a dissimilarity measure, namely the 
integrated square error (ISE) defined as follows:  

{ } dxxpxp∫ −= 2)()(ˆISE  
This error criterion can also be rewritten as follows: 

{ } dxxpxpdxxp ∫+−∫= 2)()(ˆE22)(ˆISE  

Observing that the last term does not depend on σ , it can 
be ignored as far as minimization is concerned. This leaves 

us with only the second term depending on both σ  and the 
unknown density )(xp . Seeing that the second term can be 
approximated by its leave-one-out estimator )(ˆ nn xp− [1], we 
may define the following error criterion: 
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Substituting the Parzen estimate of )(xp  in this 
expression, we can obtain the leave-one-out cross-validation 
criterion: 

( ) ( )∑
=

∑
≠=−

−∑
=

∑
=

=
N

n

N

nmm
mxnxN

NN

N

n

N

m
nxmxN

NLOOE
1 ,1

,
)1(

2

1 1
2,

2
1)( σσσ

 

Interestingly, this criterion does not require the 
evaluation of an integral anymore. Finally, by scanning a 
certain range of σ the optimal width can be selected: 

)(minargLOO σ
σ

σ LOOE=  

B. Finite Gaussian Mixtures 
Finite mixture distributions can approximate any 

continuous PDF, provided the model has a sufficient number 
of components and provided the parameters of the model are 
chosen correctly [5]. The true PDF is approximated by a 
linear combination of K  component densities: 

∑
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In this equation )( kxp  is the probability of x  given the 
component distribution k  and )(kP  are the mixture 
proportions or priors. The priors are non-negative and must 
sum to one. In practice, Gaussian kernels are often used: 

( )kkcxNkxp σ,)( = . A popular technique for approximating 
iteratively the maximum likelihood estimates of the model 
parameters )(kP , kc  and kσ  is the expectation-
maximization (EM) algorithm [6]. Let us define the 
likelihood function:  
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Maximizing the likelihood function is equivalent to 
finding the most probable PDF estimate provided the data set 
{ }N

nnx 1= . The EM operates in two stages. First, in the E-step, 
the expected value of some “unobserved” data is computed, 
using the current parameter estimates and the observed data. 
Here the “unobserved” data are the data labels of the 
samples. They correspond to the identification number of the 
different mixture components and specify which one 
generated each datum. Subsequently, during the M-step, the 
expected values computed in the E-step are used to update 
the model parameters accordingly. Each iteration step can be 
summarized as follows [3]: 
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Note that in the value )()(
n

i xkP computed in the E-step 
corresponds to the posterior probability that a known data 
sample nx  was generated by component k. 

III. METHODOLOGY FOR ESTIMATION METHODS 
COMPARISON 

The comparison of the two proposed methods for PDF 
estimation requires taking some decisions according with the 
test case and dissimilarity measures to be used and to the 
operative experimental procedure. We summarise them as 
follows: 

• Identify a reference PDF: the reference PDF 
represents the test case for estimation methods comparison. 
It should be affected by the most common singularities and 
characterised by some of the main issues that should be faced 
during real world PDFs estimation. 

• Set the dimension of the synthetic measures set: the 
cardinality of the set of measures is a key performance 
factor: it strongly affects the performance of the PDF 
estimation methods and it is to be related in some way to the 
information that the researcher provides the method with. It 
is a simulation parameter to be set. 

• Select a criterion to measure the distance between 
the reference PDF and the estimating one: one measure of 
dissimilarity should be selected in order to assess the 
performance of the estimation methods under comparison. 

• State a clear experimental procedure and perform 
each task: according with the previously defined criterion, 
experiments should be set in order to perform the 
comparison with the optimal simulation parameter settings 
for each single method. Moreover, in order to guarantee a 
certain degree of generalisation exogenous factors should be 
taken into account during the statement of the experimental 
procedure. It is the case of the cardinality of the set of 
synthetic measures. 

A. Rationale of the selected PDF 
According with the generalization requirements we aim 

to, a PDF has been selected by considering some of the most 
common issues to be faced during real world PDF 
estimation. It is the case of a PDF resulting from the mixture 
of multiple parametric PDFs, with two peaks (a higher one 
and a lower one) forced in the structure and shape of the 
selected PDF. With more details, the adopted PDF is a 
mixture of four Gaussian PDFs (i.e. N1(x|3.5,1.6), 
N2(x|7.5,2), N3(x|12,2), N4(x|16.5,1.5), where Ni(x|µ,σ) 
refers to the ith Gaussian density function with mean and 
standard deviation respectively equal to µ and σ) and one 
Gamma PDF with α parameter and β respectively equal to 8 
and 0.2. 

B.  Distance measure 
To asses the performance we used the Hellinger distance 

[7]. If we set: a) S ⊆ ℜ, a,b ∈ S; b) x ∈ S  is a continuous 
random variable; c) P(x) is the probability law of x, then the 
Hellinger distance can be defined by the following 
expression:  

( ) ( )( ) ( ) ( )( ) dxxPxPxPxPH
b

a
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2
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where the notation H2(P1(x), P2(x)) means that this is the 
formula of the squared Hellinger distance. 

IV. EXPERIMENTAL RESULTS 
In Parzen’s window we can set only the sigma parameter 

and there isn’t standard deviation because is a deterministic 
method. In the experiments we consider from 0.15 to 1.95 
step 0.1 and 2 as value for sigma. Figure 1 shows that σ in 
Parzen's estimator should be naturally large for small N and 
small for large N.  We made experiments also considering 
the Silverman’s plug-in principle and we obtained good 
results only with few data according to literature [1][2]. 
Therefore from experimental results we know that 
Silverman’s plug-in should be a good way to set the sigma 
parameter when less than 250 data are considered. In FGM 
we can set the number of kernels and the number of 
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iterations. In the first part of the study we made experiments 
with 15000 data and different number of iterations and 
kernels; experiments show (Figure 2) that best results with 
200 iterations are obtained independently from the number of 
kernels. Indeed from this first part of the experiments, we 
deduced to use in the following experiments always 200 
iterations because they give best results without a very large 
computational cost. In the second part of the experiments 
with different number of data, we met the problem that EM 
algorithm collapses with few data and a big number of 
kernels. Results are shown in Figure 3. FGM requires an 
initialization that in our experiments was made through the 
vector quantization [8] with the k-means algorithm. Indeed 
for FGM we obtain a standard deviation and results show 
that it’s quite small in all configurations. 

V. CONCLUSIONS 
The goal of our work is to experimentally assess the 

performance of two popular methods for PDF estimation: 
Parzen window and FGM. We implemented an exhaustive 
experimental campaign whose results are summarized in 
Figure 4. In conclusion if a low number of data available is 
not encountered, FGM are thus expected to perform well; in 
particular FGM perform better than the other methods when 
there are more than 80 data and using 4 kernels. When the 
number of data is really big, i.e. more than 7500 data, it’s 
better to increase the number of kernels at 15 to obtain the 
minimum error. Instead with few data, less than 80, FGM 
don’t work but Parzen with Silverman’s plug-in is a good 
estimator; moreover it’s easy to use for setting the 
parameters and the low computational cost. Future work will 
concern the extension of the comparison to other methods as 
Vector Quantization. 
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Figure 1.  Distance vs number of data, σ as parameter 
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Figure 2.  Distance average vs number of kernels,  
number of iterations as parameter 
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Figure 3.  Distance average vs number of kernels,  
number of iterations as parameter 
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Figure 4.  Comparison between the methods 
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