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Abstract

The problem of aircraft engine condition monitoring based on vibratioratsga addressed. To do so, we
compare two estimators of the Frequency Response Function of an aingiae which input is its shaft
angular position and which output is an accelerometric signal that meaghrasons. It is shown that this
problem can be seen as a smoothing problem, and that linear kernel srgositbimas Gaussian Process
Regression allows the computation of the FRF.

1 Introduction

We tackle the issue of monitoring the behavior of an aircraft engine fronpdimg of view of measured
vibrations. Abnormal level or odd pattern of vibrations may be the coreemuof mechanical or sensor
malfunction, both of dramatic importance for engine manufacturers and aipieators.

The aim of our work is to develop Damage Detection and Condition Monitoringrigthgns for aicraft en-
gines. To do so, we model the engine as an input/output system where thésitige shaft angular position,
considered as a periodic excitation, and the output is the instant vibrateinMest information concerning
this input/output relationship are embedded in the Frequency ResponsttoRar{FRF)G:

, Y (k)
= —= 1
G(jwr) (k) (1)
whereU (k) andY (k) are respectively the Fourier transforms of the shaft angular positioipfethe instant
vibration level at frequencyy. Fig. 4 gives an example of such an FRF plot.

To allow Damage Detection, we propose to estimate confidence intervalglatmRF estimates. If for
one or several frequencies the FRF value crosses the limits, then a noatfeult is likely to occur.

The originality of this work lies first in the input/output point of view that we pwee, between the shaft po-
sition and accelerometric data. Furthermore we suggest a particular sngotimique, namely Gaussian
Process Regression (GPR) which have been under considerabteatierthe Machine Learning commu-
nity. The aim of this regression is to estimate the FRF, when records belongseyeoal “normal” -at
least labelled as such by experts- engines operating at the same regiavaitaiele. Finally we compute
confidence bounds for the FRF estimate.
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Remark that we limit the scope of this work in several respects: first wevd#aSISO' systems only.
Then we disregard important topics such as the presence of nonlineatidiss. We hold the excitation to
be periodic only, while important random contributions related to combustiold di® taken into account.
Other technical features will be mentionned in conclusion.

Section 2 relates our article to previous works in several fields. Sectiork8speiecise the classical mea-
surement and estimation model used in the litterature. Section 4 aircraft emgimeeasured data.

2 Related work

This article is related to Condition Based Monitoring (CBM) framework. CBMifustrial machines has
been attracting increasing attention over the years in both academic anttialdueas. According to [24]

it consists in four main steps: data acquisition, feature extraction, featleetisn, and decision-making.
The first two steps rely on mechanical modeling or rotor dynamics [16]erexisl vibration phenomena
in rotating machines [13, 24] and data analysis [18]. The latter builds onethergl tools and methods
developped in signal processing [15, 2], statistical signal estimation etedttbn [10, 22, 28], learning
theory, change detection [1], fault detection and isolation [7]. AircZ&M deals with many problems such
as structural health monitoring. It treats Engine Health Monitoring (EHM) sigegial case [27, 9]. As a
subtopic of EHM, vibrations monitoring in engines addresses the following$sgotor/stator contact [19],
rotor unbalance, blade defects [11], bearing [17] and gearingetdf30].

Some authors take a probabilistic stand on CBM and study the fluctuations wibtladgion spectrum of
aircraft engines. For example [4, 5] take advantage of extreme valagytteedetect novelty from spectral
or time-frequency data.

In the Control and System Identification litterature [12, 20] and in Modalysis [14], focus is put more
particularly on the FRF, while its non-parametric estimation remains an activefieddearch [29, 21]. The
statistical properties of the estimators of FRF is a topic of deep interest .j2®],2because of their role in
subsequent parametric identification of plants. In order to reduce thé&nea, it is common practice to av-
erage the FRF estimator over several blocks, in order to cancel thesaeoturbations due to measurement
noise of inputs and/or outputs.

From a statistical point of view, such averaging is related to nonparametritién regression. More pre-
cisely, estimating the trend of a response measurementYé/) as a function of several predictors (e.g.
Ui(k),...,U,(k)) inanonparametric way, such that the estimate is less variable than the mdéctalled
smoothing [8, 2.1]. Among many available (scatterplot, running-mean, lkemeothers), we choose Gaus-
sian Process Regression (GPR) [25], which is an instance of kenoaltbing. GPR is rooted in Bayesian
statistics, and enables to add physically meaningful constraints to thesedfesction (see 3.2, Appendix
C). GPR has several interesting features, such as the simplicity of thelyingeheory or its prediction
capacity in areas where data is scarce, which could help to artificially setha spectral resolution.

In Section 3 the measurement model is discussed, taking into account iihesvaspects just evoked (con-
dition monitoring, FRF estimation, non-parametric smoothing) .

3 FRF measurement, noise model and statistical properties of esti-
mators

To measure the FRF, the mechanical system under study is first excitegl$hetts, each producing periodic
excitations. More precisely, two shafts - the low pressure (LP) and prigbsure(HP) - rotate at different
speeds (see Section 4) around the same axis.

! Single Input Single Output.
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Since accelerometric data are resampled with respect to one shaft ontyr (iP), we will consider one
source of excitation only and treat the other as noise. Such noise iseeped as actutator noise in Fig. 1,
and results in an signal notedt) in the time domain. The mechanical system is excited (#y and outputs
the responseg(t¢) which is the sum of the pure responseitand of a noise term. Various preprocessing steps
such as antialiasing and digitization are included, before the Discrete Fotaiesform, implemented as an
FFT. With the notations of [20] we have by linearity :

Y(k) = Yo(k)+ Ny(k) 2
U(k) = Uy(k)+ Ny(k) €)

wherek corresponds to frequengy = % N andT; being respectively the length of recording dfidhe

sampling period Ny (k) and Ny (k) are the noise contributions and have been shown to be complex circular
normally distributed in a large number of situations (see Appendix A).

actuator system
noise noise

u(t
Generator ’—)1 Actuator > System

Y

Antialiasing Antialiasing

upa(t) yaa(t)
Digitization Digitization
uaa(kTs) yaa(kTy)
U(k) Y (k)

Figure 1: FRF measurement (adapted from [20]).

In Sections 3.1 and 3.2 we state the expressions of a classical estimatdf, @&rfeRof its GPR counterpart.
In both it is admitted that the rotation speed of the motor is periodic, with negligibleifitions, so that we
consider the situation gderiodic excitation FRF measuremeas opposed to random excitation measure-
ment (see [20, 2.6]). When explicitly available we write down the statisticgdeptes of the estimators.

3.1 Maximum likelihood estimator of FRF under periodic excitation

As stated above, the estimator of the unknown ERfEjwy,) = Yg((?) is G(jwr) = 2% The error analysis

that reveals the statistical properties of this estimator is standard materialntakag from [20].

Provided that the signal was appropriately preprocessed (includimdylbaiting filtering), that the disturb-
ing noisesNy and Ny follow complex spherical normal laws and tHaf; (k) /Uy (k)| < 1 (see Appendix
B), then the estimator is unbiased.

Similarly, under the same type of hypothesis, the varianc€& efan be approximated. These results are
summarized as follows :

ElG(jwr)] = Go(jws) (4)

. . o2 (k o (k o2 (k
VarlG(ian)] = 1Gotin) (s + s — REG) ®

wherec? (k), 0% (k) ando?; (k) are the variances and covariance of the disturbing noise components.
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Variance reduction by cyclic averaging

The material of this paragraph is taken from [20, 2.5]. In order to redhe variance of the estimator
depicted above, cyclic averaging is applied. This means that succesdavdlocks taken from the same
long recording are averaged. Cyclic averaging needs the numbempfesato be an integer multiple of a
given integer, the period length. This can be achieved with the help ofghksygr, but is insured here by
computer resampling [23, 6].

Under the hypotheses that the disturbing nalégk), N, (k) is independent of the undisturbed signals
Uo(k), Yo(k) (which may not be true in closed loop contexts), thatthenput-output data blocks!” (n), 4! (n), | =
1,2,..., M come from independent experiments where the noise contributions hagearioments and are
independent, then the averaged estimator is unbiased:

E[GuL(jwr)] = Goljwk) (7)
where

Ulk) = DFT@H(1:n)) (8)

Ylk) = DFT@EM(I:n) )

O(k) = iMiUﬂl(k) (10)
M &

R 1 M-1

Y(k) = > YUK (11)

The variance of the estimator can be approximated by:

GML(jwk)P( o3 (k) ot (k)

62 (k
M\ T TR i) @

Var[Gur(jwr)] ~ Yo (k)Uo(k)

where 67 (k), 6% (k), 6%, (k) stand for sample variances and covariance, which definitions are given
Appendix B. It can be noticed that this term is divideddy which was the aim of averaging. Nevertheless,
the above results depend on the validity of the hypotheses, and shouthtetitwvith care. Unfortunately,

it depends orYy andUj, that are most of the time unknown. This means that another way to estimate the
variance of the estimator may be necessary.

3.2 GPR estimation of FRF

As remarked in the Introduction, the variance reduction in Section 3.1 ctobght of as a nhonparametric
smoothing [8, 2], with the constraint that abscissa are taken in the diseteté sequencieq fi }re(i n)
defined in Section 3. In this article we explicitly choose a smoother of a sgénthinamely a Gaussian
Process Regressor, that belongs to the category of kernel smoathiegsions.

The mathematical problem is stated as follows:ylet f(x) + ¢ be a real or complex function of taken

in a vector space, subject to a random perturbation. In ourgaselx can be associated respectively to
G(jwy) and to the frequency. We are given a finite samglg, x;) }i=1,... ». Then we want to estimate the
probability law of the noiseless FRF in pointx.;)}i=1,... ». that can be different fronix; }. Technically,
what is looked for is the conditional law evaluatedkin which is noted (see [25]):
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wherey = (y1,...,yn)", X = (21,...,20)7, Xs = (241, ..., Tsn,)”. In order to computé, | X,,y, X

we first choose a pridr.
f K(X,X) K(X,X,)
[ £, ] NN(O’ l K(X.,X) K(X., X,) ])

where K (X, X,) is an x n, matrix called the Gram matrix. The value &f depends on the choice of
the kernel that parametrizes the Gaussian process. Admitting thatsaigy are jointly Gaussian random

vectors such that:
x m, A C
ME(IREN 1)

xly ~ N(m;+CB'(y-m,),A-CB'0T) (14)

then (cf [25, A.2]) :

Consequently the conditionnal law fifis (see [25, 2.2]):
£X.y, X~ N(K(X,X)(K(X, X)+02)y,
K(X., X)) — K(X., X)(K(X,X) +0’I) 'K (X, X*)) (15)

whereK (X, X), K (X, X.), K(X., X) are covariance matrices and whetgis the variance of the obser-
vation noise. In the particular case where we estinfatat the same frequencies as those in the measured
samples, thelX = X, and:

fly, X ~ N(K(X,X)(K(X,X)+oD)y,
K(X,X) - K(X, X)(K(X, X) + 0®I) 'K (X, X)) (16)

Computational shortcuts

The computation of the mean and covariance of the estimator needs the inva@rsidarge matrix. For
example, with the available data,= 8192 and four engines are considered at the same time. Since matrix
inversion need$®(n?), the exact computation is impossible in reasonable time. Consequently, we had to
compute approximate results. In this particular case, it turns out that th{scgle of the data is very short.

The corresponding Gram matrix is then sparse, and sparse linearsselar used to shrink computation
time. This will be made precise in following articles.

Model parameters

The result of the regression is fully determined by the Gram mérixhe noise leveb, and the measured
data. K depends on a kernel function, that usually depends on a small numbparasfeters. They are
estimated during a calibration phase called “model selection” in the Machimaibgditterature. Details

are given in Appendix C.

Error analysis

The convergence df.|X,,y, X to the regression functioR[y|x] is established in [25, 7], using equivalent
kernels. The variance of the estimator is directly given by the estimated ravis@ee, obtained by model
selection. Quantity that are equivalent to the bias can be computed in thei@agentext of GPR, such as
the risk, or expected loss [25, 7.2]. This will be examined in further works

From the point of view of linear smoothers, bias and variance are ddjuneale hard to compute. General
expressions can be written for linear smoothers [8, 3.4.2,3.8], but @pgatons are not available in our
particular case, up to our knowledge.

2 As discussed in [25, 2.7], it is not mandatory to choose zero mean .
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4 System and data

A turbofan whose structure is presented by Fig. 2 is considered. Air fh@ outside enters an intake, then
is successively compressed by the low-pressure (LP) and highypee@iP) compressors. Compressed air
passes to a combustion chamber, where it is mixed with fuel and burnt. Batpressors are powered by
turbines located at the rear of the engine, which transmit their energy tommgressors through two contra-
rotating shafts, the low-pressure (LP) shaft and the high-preskiiteghaft. Although turbofan condition
monitoring can be achieved in various ways, we take the stand to focusratieits monitoring in this work.
Two accelerometers provide vibration measurements at a constant 5ekjdericy. Since compressors and
turbines are fan-like components made of a varying number of blades ndoumthe shafts, it is expected
that their motion entails vibrations at frequencies which are multiples of gheds.

LP Shaft HP Turbine

HP Shaft

VO
LT T
\IIIIII

LP Compressor LP Turbine

Figure 2: Turbofan engine. Simplified diagram of fan, low-pressurk tdgh-pressure compressors and
turbines attached to their respective shafts.

The recordings under study were provided by the Health Monitoring irepat of SNECMA and cor-
respond to a dual-shaft turbofan mounted on a testbench, that uedeagmntinuous acceleration during
several minutes. They include raw vibration outputs of an accelerometgiesd at 51kHz, as well as LP
and HP shaft angular velocity computed from raw keyphasor data anpled at 6.25 Hz. Sample time
series are plotted in Fig. 3. Four recordings are currently used in thig stud
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In order to apply cyclic averaging -so that the signal is composed of ageinteumber of periods- we
resample the vibration measurements [23, 6] with 1024 samples per period.

Four subsamples whith length= 8192 are extracted from the whole signal vectors for regime values close
to 2000 rpm . Because of the relative slow increase of the regime, when cameastationarity of vibration
signals.

5 Results

The main result of this section is the fact that the model selection step and tissi@aProcess Regression
were succesfully computed in reasonable time, given the fact that the dimerishe data is: = 4 x 8192,
which is very large for usual GPR problems as explained in Section 3.2.

We suppose that the parameté&sando of the Gaussian Process have been adequately learnt from the data
thanks to model selection (see Appendix C).

Then we compute the me#ifj X.., y, X and the covariance of the FRF estimator, that allow to plot confidence
interval. Fig. 4(top) shows a detail of both, on a limited order domain. Figott{im) also shows the four
individual FRF that were used for regression.
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Figure 4: FRF in the order domain (top) predicted mean and associatedarmdiinterval (bottom) super-
imposed FRF of all engines.

We notice that the FRF is almost everywhere included in the confidencedhtesvich is consistent with
the fact that the four engines are labelled as normal by the expert.

6 Conclusions and perspectives

In this article we have raised the issue of using FRF to perform nonpaiamainage Detection in aircraft
engine with vibration data. We have presented classical tools and mord oews, and confronted their
theoretical advantages and drawbacks. Preliminar results are avawvedlshow that Gaussian Process
Regression can be used to estimate the mean spectrum and associatehcenfitervals, in spite of the
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size of the samplex(= 4 x 8192). Thorough examination on experimental grounds is necessary, sp#ygifi
concerning the estimation of the bias and variance of the two compared eséimator

Future works will concern mainly:

¢ the evaluation of the capacity of these tools to perform damage detectiomugf tiois is our aim,
the current article has focused mainly on estimation tools. We expect to nme@tisglifficulties
because of the scarceness of fault data, related to the very high reliabditgraft engines. This was
addressed for example by [5].

e the assessment of the computed FRF. Indeed there are many facts tdabeased to check the
validity of the FRF, such as the knowledge of the geometry of the compréssarumber of blades,
etc...

¢ the validity of hypotheses given the available data: for example it is assumietthéhFT of the noise
contribution is circular complex normal. This should be tested, following [Z6E uniformity of the
data, i.e. the fact that all vibration recordings belong to healthy engihéise @ame regime, should
be verified. Reciprocally, the presence of outliers could be automaticatigwdised. This is related to
model selection, and to the problem of “multiple task learning”.

e the comparison between smoothers: the analytical expression of biaaréante of the ML estimator
are available, but hard to estimate from data. The results given by ranptic techniques such as
bootstrap must be used to compare the empirical variance of ML and GPR testirmhthe mean
FRF. Other aspects such as the computational load and the convergeadeo$ estimators might be
of interest, if easily available.

o the evaluation of other smoother: one main drawback of GPR is the factibat@tion noise variance
does not depend or. Some authors have extended GPR to heteroskedastic noise (see [p5, 9.3
Linear smoothers can also cope with the dependengddee “weighted smoothers”, [8, 3.2]).

e the relation with system identification in the frequency domain: non parametfcdsmation is
meant to be a mere subroutine of system identification? The quality of estim&tesiites that of
system identification. Can we measure the advantage of linear smoothing sydttéo the system
identification that occurs after FRF estimation ?

e various generalisations:

1. so far accelerometric data have been resampled with respect to tP shaf
can the estimation be extended to MIMO systems ?

can outlier frequencies be detected and discarded ?

what is the influence of nonlinear distortions on FRF estimates ?

o > DN

can random excitation be taken into account, to take into account the stiormbuooise ?
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A Noise contribution in the frequency domain

Following [3] we admit that the-component vectoX is circular complex normal with meany and
covariancel y y if the vector[Re(X); Im(X)] is distributed as:

I% Re(ux) | 1| Re(Xxx) —Im(Xxx)
Im(px)

Im(Xxx) Re(Xxx)
It is shown (see [3, 4.4], [20, 14.16]) that the Fourier coefficienta atationary time series with finite
moments converge asymptotically to a circular complex normal law whith indepecdmponents. In [26]
the quality of the normal approximation for small samples is assessed.

B Bias and variance of FRF estimators

The following Taylor series converges provided thsit; (k)/Up (k)| < 1, i.e. if the Signal to Noise Ratio
(SNR) is large enough. Then it follows :

Gl = Fi) a”
_ V1N ( )/ Yo(k)
~ Golgr)(1+ 3 (f)))(l + o) (19
When cyclic averaging is added, the following expressions are needed:
M
k) = Uk - OGk) (20)
=1
M
) = e YU - (k) (21)
=1
M
Foh) = s S (VIE) ~ V) UT(R) — (k) (22)

C Model selection for GPR

Model selection is aimed at estimating the hyperparameters of the covariarsteh which itself deter-
mines the Gram matri¥’. The most popular covariance function is the squared exponential \whjes-
sion is:

1

5z (70— 7)") (23)

whereo is the signal energy andhe characteristic length-scale of the signal. Keand X+ be vectors of
points where is evaluated :

k(xp,zq) = Jj%exp(—

K(X, X*) = (k(zi,zj%))1<i<m1<j<n (24)
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The adequation between the data and the model is quantified by the margiliabtidevhose expression
Is:

1 1 n
logp(y|X) = —oy (K +op)y — S log|K +o71| — - log(27) (25)
whereo™ is the noise level.

Given the data sampl@(x;, y:) }ic(1,n), the marginal likelihood is numerically optimized with respect to
hyperparametersr,, o, 1), thanks to appropriate algorithms such as the conjugate gradient [25, 5].



