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Fédréric Vrins, Michel Verleysen

UCL Machine Learning Group
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ABSTRACT

This paper presents two approaches for showing that spu-
rious minima of the entropy may exist in the blind source
separation context. The first one is based on the calcula-
tion of first and second derivative of the output entropy and
The second one is based on entropy approximator for mul-
timodal variable having small overlap between the modes.
It is shown that spurious entropy minima arise when the
source distribution becomes more and more multimodal.

1. INTRODUCTION

It is known that minimizing globally the entropy cost func-
tion under the whitening constraint leads to recover the
source with the lowest entropy [6]. Nevertheless, previous
works have suggested that local entropy minima exist, and
correspond to spurious solutions of the blind source separa-
tion (BSS) problem (see [5] and references therein). How-
ever, such works have been based on numerical simulation
and Parzen density estimation, and thus do not constitute an
absolute proof. In this communication we shall provide a
specific class of source distribution for which we prove rig-
orously (in the case of two sources and two sensors), that it
does exist spurious local minima of the entropy contrast.

We shall consider the simplest and most widely used
BSS model, which assumes noise-free mixtures with the
same number of sensors and sources: X = AS where
X = [X1 · · · XK ]T is the observation vector, S =
[S1 · · · SK ]T is the source vector and A is an invertible
matrix; T denotes the transposition operator. For simplic-
ity, we shall focus on the deflation approach which extracts
the sources one by one by maximizing a non Gaussianity in-
dex. A popular and statistically efficient non Gaussianity in-
dex of a random variable Y is the negentropy J(Y ) [8]. We
consider the problem of maximizing the negentropy of bT

X

with respect to the vector b. Remind that the negentropy of
Y is defined as J(Y ) = 1

2{log[2πvar(Y )] + 1} − H(Y )
where var(·) denotes the variance and H(Y ) denotes the
entropy of Y . For a random variable Y with density pY , the

entropy is given by [2]: H(Y ) = −
∫

pY (y) log pY (y) dy.
Since J(·) is scale invariant, we may normalize b such that
b

T
X has a given variance. Further, we may without loss of

generality assume that the sources have the same variance
since one can divide any source by a constant and multi-
ply the corresponding columns of A by the same constant.
Thus, setting w = A

T
b, we are led to consider the problem

of maximizing J(wT
S), which is the same as minimizing

H(wT
S) under the ‖w‖ = 1 constraint.

We focus on the K = 2 case. Vector w can then
be parameterized as [cos θ sin θ]T. Let Zθ = w

T
S =

cos θS1 + sin θS2, the problem is to minimize H(Zθ) with
respect to θ; this function is periodic with period π, hence
one may restrict oneself to θ ∈ [0, π). In this paper, we fo-
cus on the possible existence of entropy local minima that
do not correspond to a source but well to a mixture, that
is the output entropy admits local minima for θ which are
not integer multiples of π/2. The existence of such local
minima will be theoretically proven when the source distri-
bution is multimodal enough, as observed in [5].

Two complementary approaches are presented. In Sec-
tion II, the first and second derivatives of the function
H(Zθ) are analyzed for specific source probability distri-
bution function (pdf). By contrast, the approach derived
in Section III relies on an entropy approximation when the
source pdf is strongly multimodal; it is a formalization of
the idea first presented in [5]. It yields more general results
than the first approach, but is valid only when the overlap
between the modes becomes small enough.

2. THE DERIVATIVE APPROACH

This approach relies on an expansion up to second order
of the entropy of a random variable slightly contaminated
with another variable, which has been established in [3].
Specifically, let Y be some random variable with density
pY and δY a small (arbitrary) random increment, one has

H(Y + δY ) ≈ H(Y ) + E[ψY (Y )δY ] +

1

2
{E[var(δY |Y )ψ′

Y (Y )] − [E(δY |Y )]′ 2} ,
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up to second order in δY , where ψY = (− log pY )′ is the
score function of Y , ′ denotes the derivative. As usual, E(·)
and E(·|Y ) denote the expectation and conditional expecta-
tion given Y and var(δY |Y ) = E[(δY )2|Y ] − E(δY |Y )]2

is the conditional variance of δY given Y . We apply the
above result to Y = Zθ and δY being the increment δZθ of
Zθ induced by an increment δθ of θ. Elementary calculation
yields

δZθ = Z⊥
θ δθ − Zθ(δθ)

2 + o((δθ)2)

where Z⊥
θ = − sin θS1 + cos θS2. Therefore, noting that

E[ψZθ(Zθ)Zθ] = 1 by integration by parts, one has

H(Zθ + δZθ) ≈ H(Zθ) + E[ψZθ(Zθ)Z
⊥
θ ]δθ+

1

2
{E[var(Z⊥

θ |Zθ)ψ
′
Zθ

(Zθ)]− [E(Z⊥
θ |Zθ)]

′ 2 − 1}(δθ)2

up to second order in δθ. Thus, we have

∂H(Zθ)

∂θ
= E[ψZθ(Zθ)Z

⊥
θ ] and

∂2H(Zθ)

∂θ2
= E[var(Z⊥

θ |Zθ)ψ
′
Zθ

(Zθ)] − [E(Z⊥
θ |Zθ)]

′ 2 − 1.

(1)
The above result shows that the values of θ satisfy-

ing E[ψZθ (Zθ)Z
⊥
θ ] = 0 are stationary points of H(Zθ).

Clearly, this is true for θ = 0 and θ = π/2 since Z0 =
−Z⊥

π/2 = S1, Zπ/2 = Z⊥
0 = S2 and S1 and S2 are inde-

pendent. Actually H(Zθ) attains a local minimum at θ = 0
unless S1 is Gaussian 1. Indeed, the second derivative of
H(Zθ) at θ = 0 reduces to var(S2)E[ψ′

S1
(S1)]− 1. But for

any random variable Y , E[ψ′
Y (Y )] = E[ψ2

Y (Y )] by integra-
tion by parts and var(Y )E[ψ2

Y (Y )] ≥ 1 by the Schwartz in-
equality (noting that E[ψY (Y )Y ] = 1 and E[ψY (Y )] = 0),
which is strict unless ψY is linear, that is Y is Gaussian. By
the same argument, H(Zθ) also attains a local minimum at
θ = π/2 unless S2 is Gaussian.

We consider the special case where the sources have the
same distribution. It can then be seen that there are two
other stationary points of H(Zθ) at θ = π/4, for which
Zθ = (S1 + S2)/

√
2 and Z⊥

θ = (S2 − S1)/
√

2, and at θ =
3π/4, for which Zθ = (S2 − S1)/

√
2 and Z⊥

θ = −(S1 +
S2)/

√
2. Indeed, since the joint distribution of (S1, S2) is

the same as that of (S2 , S1), one has

E
[

ψ(S1±S2)/
√

2

(S1 ± S2√
2

)(S2 ∓ S1√
2

)]

=

E
[

ψ(S2±S1)/
√

2

(S2 ± S1√
2

)(S1 ∓ S2√
2

)]

as the second right hand side is nothing else than the first
with S1 and S2 permuted. Thus E[ψZπ/4

(Zπ/4)(Z
⊥
π/4)]

vanishes as it equals its opposite and

E[ψ−Z3π/4
(−Z3π/4)(Z

⊥
3π/4)] = E[ψZ3π/4

(Z3π/4)(Z
⊥
3π/4)].

1Gaussian distribution has maximum entropy so that in this case the
point θ = 0 corresponds actually to a global maximum of the entropy.

But Z3π/4 = (S2 − S1)/
√

2 has the same distribution as
(S1 − S2)/

√
2 = −Z3π/4 and thus its distribution is sym-

metric. Hence ψZ3π/4
= ψ−Z3π/4

and is an odd function. It
follows that E[ψZ3π/4

(Z3π/4)(Z
⊥
3π/4)] = 0.

To see if the values θ = π/4 and θ = 3π/4 correspond
to local minima of H(Zθ), we look at the second derivative
of H(Zθ). By permuting S1 and S2, we have

E(S2 − S1|S1 + S2) = E(S1 − S2|S1 + S2), (2)

yielding E(Z⊥
π/4 |Zπ/4) = 0. Thus the second derivative (1)

of H(Zθ) at θ = π/4 reduces to E[Z⊥2
π/4ψ

′
Zπ/4

(Zπ/4)] −
1, noting that [7] E[E(Z⊥2

π/4|Zπ/4)ψ
′
Zπ/4

(Zπ/4)] =

E[Z⊥2
π/4ψ

′
Zπ/4

(Zπ/4)]. If we specialize further to the case
where the common distribution of S1 and S2 is symmetric,
one may replace S1 by −S1 in the equality (2), which then
yields E(Z⊥

3π/4|Z3π/4) = 0. Then the second derivative (1)

ofH(Zθ) at θ = 3π/4 reduces to E[Z⊥2
3π/4ψ

′
Z3π/4

(Z3π/4)]−
1. Note that in this symmetric case, the pair (Zπ/4 , Z

⊥
π/4)

has the same joint distribution as (Z3π/4 , Z
⊥
3π/4) and there-

fore E[Z⊥2
3π/4ψ

′
Z3π/4

(Z3π/4)] = E[Z⊥2
π/4ψ

′
Zπ/4

(Zπ/4)].
In summary, if S1 and S2 have the same distribution,

H(Zθ) attains a local minimum at θ = π/4 if and only if

E[Z⊥2
π/4ψ

′
Zπ/4

(Zπ/4)] > 1 .

If the common distribution of S1 and S2 is symmetric,
then E[Z⊥2

3π/4ψ
′
Z3π/4

(Z3π/4)] = E[Z⊥2
π/4ψ

′
Zπ/4

(Zπ/4)] and
H(Zθ) attains a local minimum at θ = 3π/4 if and only if
the above expectation is strictly greater than 1.

Inspired by simulations presented in [5], we consider a
source pdf which is a mixture of two normal densities

pS(s) = {φ[(s+ µ)/σ] + φ[(s− µ)/σ]}/(2σ), (3)

where φ(s) = exp(−s2/2)/
√

2π is the standard normal
density. The ratio σ/µ is taken small so that (3) is bimodal.
Note that the Si are distributed as µS̃i where S̃i have a pdf
of the form (3) with (µ, σ) replaced by (1, σ/µ). It then can
be seen that E[Z⊥2

π/4ψ
′
Zπ/4

(Zπ/4)] = E[Y 2
2 ψ

′
Y1

(Y1)] where

Y1 = S̃1 + S̃2, Y2 = S̃2 − S̃1. For this special case, the
functionsψY1

and E(Y 2
2 |Y1) can be obtained in closed form

and the expectation term E[Y 2
2 ψ

′
Y1

(Y1)] can be expressed as
a simple integral and shown to tend to ∞ as σ/µ tends to 0.
Detail of calculations and proof of this result are reported in
a submitted paper [4].

Figure 1 illustrates the above result:
E[Z⊥2

π/4ψ
′
Zπ/4

(Zπ/4)] is plotted versus σ/µ. One can
see that when σ/µ decreases beyond the value τ = 0.63
(approximately) this expectation becomes greater than 1.
Figure 2 illustrates the example presented in this section
(common distribution for S1 and S2 given by eq. (3)). One
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Figure 1: Plot of E[Z⊥2
π/4ψ

′
Zπ/4

(Zπ/4)] versus σ/µ.

can remark that spurious entropy minima exist if the ratio
σ/µ is lower than τ . On the contrary, no spurious entropy
minima can be observed if σ/µ > τ .
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Figure 2: Plot of H(Zθ) − log(σ) versus θ for several val-
ues of the ratio σ/µ. Vertical dashed lines indicate spurious
minima.

3. THE ENTROPY APPROXIMATION APPROACH

This approach relies on an entropy approximation of a
strongly multimodal pdf, of the form

pY (y) =

N
∑

n=1

πnKn(y) , (4)

where π1, . . . , πN are probabilities and K1, . . . , KN are
pdfs with “nearly disjoint” supports. Due to space limita-

tion, proofs of results are omitted and will be report in a
future paper.

Lemma 1 Let pY be given by (4). Then

H(pY ) ≤ h(π) +

N
∑

n=1

πnH(Kn) , (5)

where H(pY ) denotes (by abuse of notation) the en-
tropy of a random variable with density pY and h(π) =

−∑N
i=1 πi logπi is the entropy of a discrete random vari-

able takingN distinct values with probabilitiesπ1, . . . , πN .
In addition, assume that supKn = supy∈IRKn(y) < ∞
(1 ≤ n ≤ N ) and let Ω1, . . . ,ΩN be disjoint subsets which
approximately cover the supports of K1, . . . , KN , such that

εn =

∫

IR\Ωn

Kn(y)dy

and

ε′n =

∫

IR\Ωn

Kn(y) log
supKn

Kn(y)
dy

are small. Then, we also have

H(pY ) ≥ h(π) +

N
∑

n=1

πnH(Kn) −
N

∑

n=1

πnε
′
n

−
N

∑

n=1

πn

[

log
(max1≤n≤N supKn

πn supKn

)

+ 1
]

εn. (6)

We are interested in the case where the densities Kn in (4)
are of the form

Kn(y) = (1/σ)K[(y − µn)/σ] (7)

where K is a bounded density of finite entropy. The param-
eter σ is taken small with respect to

d = min
m6=l

|µm − µl| (8)

so that the density (4) is multimodal. Taking Ωn in the
above Lemma to be an interval centered at µn of length d, it
results that the εn and ε′n do not depend on n and are given
by
∫

|x|≥d/(2σ)

K(x)dx and
∫

|x|≥d/(2σ)

K(x) log
supK

K(x)
dx

respectively. Thus one gets the following corollary.

Corollary 1 Let pY be given by (4) withKn of the form (7).
Then with the same notation as in Lemma 1 and d given
by (8), H(pY ) − logσ is bounded above by h(π) + H(K)
and converges to this bound as σ/d→ 0.
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Let us return to function H(Zθ). We consider the case
where the sources S1 and S2 have densities pS1

and pS2

which are mixtures of normal densities with the same vari-
ance σ. One may model Si as Ui+σVi whereU1, U2, V1, V2

are independent random variables, U1 and U2 are discrete
and V1 and V2 are standard normal variables. Hence Zθ is
distributed as U(θ) +σV where U(θ) = cos θU1 + sin θU2

and V is a standard normal variable independent of U1 and
U2. The density pZθ is thus of the form described by (4)
and (7) with K = φ, the standard normal density. There-
fore, from Corollary 1, H(Zθ) ' h[U(θ)] + logσ +H(φ)
for small σ, where h[U(θ)] is the discrete entropy of U(θ).
Since the discrete entropy depends only on the probabilities
associated to the values of the random variable, but not on
these values themselves, one can prove:

Lemma 2 Let U(θ) = cos θU1 +sin θU2 where (U1, U2) is
a pair of discrete random variables taking a finite number
of values. Then h[U(θ)] = h(U1, U2) except for a finite
number of values of θ for which h[U(θ)] < h(U1, U2).

The above result shows that h[U(θ)] is essentially a constant
function of θ, except for some jumps downward at certain
values of θ. Since H(Zθ) may be approximated, for small
σ, by h[U(θ)] plus a term not depending on θ, one may
expect, for σ small enough, thatH(Zθ) admits local minima
near the points of downward jumps of h[U(θ)].

For instance, consider again the source pdf (3): in this
example U1 and U2 take values in {−1, 1} with probabili-
ties {1/2, 1/2}. Then, provided that θ /∈ {kπ/4|k ∈ Z},
U(θ) has 4 distinct values with probabilities equal to 1/4:
h[U(θ)] = log(4). If θ ∈ {π/4, 3π/4}, U(θ) takes
only 3 distinct values with probabilities {1/4, 1/2, 1/4} :
h[U(θ)] = (log(2) + log(4))/2 < log(4). Finally, if θ ∈
{0, π/2}, U(θ) takes 2 distinct values, with probabilities
equal to 1/2, and in this case, h[U(θ)] = log(2) < log(4).

Lemma 3 Let Zθ be distributed as U(θ)+σV where U(θ)
is as in Lemma 2 and V is a standard normal variable
independent of (U2, U2). Let θ1, . . . , θp be the values of
θ ∈ [0, π) for which h(U(θ)) < h(U2, U2). Then for σ suf-
ficiently smallH(Zθ) admits p local minima in [0, π), which
converge respectively to θ1, . . . , θp, as σ → 0.

The above Lemma shows the existence of spurious en-
tropy minima when the Gaussian modes overlap becomes
negligible: this overlap depends on the ratio of the inter-
modal distances to the mode standard deviation σ, as can be
seen from Corollary 1. Figure 3 shows such minima when
σ is small enough. In this approach, the term small enough
remains vague since no numerical threshold τ is available.

4. CONCLUSION

In this paper, two different arguments are used to prove that
spurious minima of entropy may exist in the blind source

0     π/4 π/2 3 π/4 π

2
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2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Figure 3: Plot of H(Zθ) − log(σ) for σ = 0.2 (solid),
σ = 0.6 (dashed) and σ = 1.5 (dash-dotted); U1 =
{−

√
103/4,

√
103/4} with probabilities [1/2, 1/2] and

U2 = {0, 2, 8} with probabilities [1/2, 3/8, 1/8].

separation context when dealing with source pdfs that are
“multimodal enough”. The first approach, that uses a se-
ries development of the entropy, allows one to precise the
terms ”multimodal enough” in terms of expectation and
score functions, but is only applicable for the case of same
(and symmetric) source pdfs. By contrast, in the second ap-
proach, the terms “multimodal enough” remain vague and a
“threshold” cannot be determined. But this method is more
general in the sense that it can deal with asymetric and dif-
ferent source pdfs.
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