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Abstract.   Modern data analysis often faces high-dimensional data.  
Nevertheless, most neural network data analysis tools are not adapted to high-
dimensional spaces, because of the use of conventional concepts (as the 
Euclidean distance) that scale poorly with dimension.  This paper shows some 
limitations of such concepts and suggests some research directions as the use of 
alternative distance definitions and of non-linear dimension reduction. 

1. Introduction 

In the last few years, data analysis has become a specific discipline, sometimes far 
from its mathematical and statistical origin, where understanding of the problems and 
limitations coming from the data themselves is often more valuable than developing 
complex algorithms and methods.  The specificity of modern data mining is that huge 
amounts of data are considered.  There are new fields where data mining becomes 
crucial (medical research, financial analysis, etc.); furthermore, collecting huge 
amount of data often becomes easier and cheaper. 

A main concern in that direction is the dimensionality of data.  Think of each 
measurement of data as one observation, each observation being composed of a set of 
variables.  It is very different to analyze 10000 observations of 3 variables each, than 
analyzing 100 observations of 50 variables each!  One way to get some feeling of this 
difficulty is to imagine each observation as a point in a space whose dimension is the 
number of variables.  10000 observations in a 3-dimensional space most probably 
form a structured shape, one or several clouds, from which it is possible to extract 
some relevant information, like principal directions, variances of clouds, etc.  On the 
contrary, at first sight 100 observations in a 50-dimensional space do not represent 
anything specific, because the number of observations is too low.   

Nevertheless, many modern data have this unpleasant characteristic of being high-
dimensional.  And despite the above difficulties, there are ways to analyze the data, 
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and extract information from observations.  If the current data analysis methodologies 
are not adapted to high-dimensional, sparse data, then it is our duty to develop 
adapted methods, even if some well-admitted concepts must be questioned.  In 
particular, artificial neural network methods, now widely and successfully used in 
data analysis, should be faced to high-dimensional data and modified if necessary. 

This paper makes no pretence of presenting generic solutions to this problem; the 
current state-of-the-art is far from that.  However, we will illustrate some surprising 
facts (Section 2) about high-dimensional data in general, and about the use of neural 
networks in this context (Section 3).  In particular, we will show that the use of 
standard notions as the Euclidean distance, the nearest neighbor, and more generally 
similarity search, is not adapted to high-dimensional spaces.  There is thus a need for 
alternative solutions; this paper only gives paths to future developments (Section 4), 
to a new research activity that could influence considerably the field of neural 
networks for data mining in the next few years. 

2. Some weird facts about high-dimensional space 

High dimensional spaces do in fact escape from our mental representations.  What we 
take for granted in dimension one, two or three, because we can figure it out quite 
easily, might not actually hold in higher dimensions. Let’s highlight some weird facts. 

2.1. The empty space phenomenon 

Scott and Thompson [1] first noticed some counter-intuitive facts related to high 
dimensional Euclidean spaces, and described what they called the “empty space 
phenomenon”.   

Fact 1.  The volume of a hyper-sphere of unit radius goes to zero as dimension 
growths. The volume of a sphere of radius r in d dimensions is given by: 
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Figure 1a shows the volume for r = 1; we see that the volume rapidly decreases 
with d. So, in higher dimension, a unit sphere is nearly empty. 

Fact 2.  The ratio between of the volumes of a sphere and a cube of same radius 
tend towards zero with increasing dimension as illustrated in Figure 1b.  In one 
dimension these volumes are equal, and in two dimensions the ratio is approximately 
0.8, but in higher dimension we can say that the volume of a hyper-cube concentrate 
in its corners.  

Fact 3.  The ratio of volume of a sphere of radius 1 and 1-ε tend towards zero 
given the obvious fact that its value is equal to (1-ε) to the power d. With d as small 
as 20, and e =  0.1, only 10% of the original radius contains 90% of the volume of the 
outer sphere, and so the volume of it concentrates in an outer shell. The same holds 
for hyper-cubes and hyper-ellipsoids as well. 
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Fig. 1. Left (a): volume of the unit sphere; Right (b): ratio between the volumes of the unit 
sphere and the unit cube, with respect to the dimension of the space. 

These observations imply that high-dimensional spaces are mostly empty.  They 
indeed show that local neighborhoods of points are mostly empty, and that even in the 
case of uniform distributions, data is concentrated at the borders of the volume of 
interest. 

2.2. The concentration of measure phenomenon 

We will now have a deeper look at the behavior of the widely used Euclidean distance 
(i.e. the L2-norm of the difference) when applied to high dimensional vectors.  

Fact 1.  The standard deviation of the norm of random vectors converges to a 
constant as dimension increases though the expectation of their norm growths as the 
square root of the dimension. More precisely, it has been proven in [2] that under i.i.d. 
assumption on xi, 
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where a and b are constants depending only on the four first momentums of xi.   
Note that the same law applies to the Euclidean distance between any two points, 

since it happens to be a random vector too. 
Fact 2.  The difference between the distances of a randomly-chosen point to its 

furthest and nearest neighbor decreases as dimensionality increases. This can be 
illustrated by the asymptotic behavior of the relative contrast [3] : 
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where Dmin and Dmax are the distance to respectively the nearest and furthest neighbors 
of a particular point. Note that the hypothesis of the theorem is induced by equation 
(3). A more general proof of the theorem can be found in [4]. 
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The conclusion we can draw from these observations is that, in high dimensional 
spaces, all points tend to be equally distant from each others, with respect to the 
Euclidean distance. As dimension increase, the observed distance between any two 
points tends towards a constant. This can be illustrated when computing the 
histograms of distances between random points of increasing dimensionality. It 
appears that (1) the mean of the histogram growths and (2) its variance shrinks. 

2.3. The curse of dimensionality 

Finally let us have a look at a not-so-weird-but-often-ignored fact, which Richard 
Bellman named “The Curse of Dimensionality” [5]. It refers to the huge amount of 
points that are necessary in high dimensions to cover an input space, for example a 
regular grid spanning a certain portion of the space. When filling an hypercube in 5 
dimensions ( [0 1]5) with a 0.1-spaced grid, one needs no less than 100.000 points. 

3. Consequences for neural network learning 

The considerations developed in the previous section have important consequences on 
ANN (Artificial Neural Networks) learning.  The following subsections give 
examples of such consequences in specific contexts. 

3.1. Supervised learning 

When modeling some process producing an output on basis of observed values for 
particular inputs, one has to fit a chosen model to a dataset. The more extensive the 
dataset, the more accurate is the model. Ideally, the dataset should span the whole 
input space of interest, in order to ensure that any predicted value (i.e. output of the 
model) is the result of an interpolation process and that no hazardous extrapolation 
occurs.  

But one has to face the curse of dimensionality. Silverman [6] addressed the 
problem of finding the necessary number of training points (samples) to approximate 
a Gaussian distribution with fixed Gaussian kernels. His results show that the required 
number of samples grows exponentially with the dimension.  Fukunaga [7] obtained 
similar results for the k-NN classifier showing that whereas 44 observations are 
sufficient in 4 dimensions, not less than 3.8e57 are necessary when dimension is 128. 

3.2. Local models 

Local artificial neural networks are often argued to be more sensitive to 
dimensionality than global ones.  By local models, we mean approximators (or 
classifiers, or density estimators) made of a combination of local functions (for 
example Gaussian kernels).  Indeed Gaussian functions also have an unexpected 
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behavior when extended to high-dimensional spaces.  Examples of such 
approximators are RBFN (Radial-Basis Function Networks) and kernel methods. 

When a normal distribution with standard deviation σ is assumed, the probability 
density function to find a point at distance r from the center of the distribution is 
given by [8] : 
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which is maximum for r/σ = (n-1)0.5.  In one dimension, it is maximum at the center 
of the distribution, as expected, but when dimension growths, it diverges from the 
center (see Figure 2), which become nearly empty, whereas the Gaussian distribution 
is maximal ! This shows that Gaussian kernels are not local any more in higher 
dimensions, and that models that have been seen as sums of local kernels do not 
behave as such in high dimensions. 

 

  

Fig. 2. Probability density of a point from a 
normal distribution to be at distance r of the 
center, for several space dimensions. 

Fig. 3. Example of distance histogram in a 
several-clusters distributions.  

 
This limitation to the use of local models, in particular with Gaussian kernels, 

seems severe.  However, it should be emphasized on the fact that global models, as 
for example MLP (Multi-Layer Perceptrons), probably equally suffer.  Indeed, in 
many cases, sums of sigmoids as in MLP result in functions taking significant values 
in a limited region of the spaces.  While mathematically different, models as MLP and 
RBF thus often behave similarly in practice.  This enforces the conviction that local 
and global models equally suffer from the curse of dimensionality (and related 
effects), while this is probably harder to prove for global models. 

3.3. Similarity search and Euclidean distances 

Most neural network models, as well as clustering techniques, rely on the 
computation of distances between vectors.  For RBFN, it is the distance between a 
data and each kernel center.  For MLP, it is the scalar product between a data and 
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each weight of the input layer.  Both these distance measures may be related to the 
similarity search in clustering techniques, also used in vector quantization, LVQ, 
Kohonen maps, etc.  Similarity search consists in finding in a dataset the closest 
element to a given point. In the context of clustering for example, efficient clustering 
is achieved when data in a cluster are similar (i.e. close with respect to the distance 
function) and data in different clusters are far away from each other. So, when data 
contain clusters, distance histograms should ideally show two peaks (as in Figure 3) : 
one for intra-cluster distances, and the other for extra-cluster distances. But if the 
distance histogram only contains one peak, or if the two peaks are close, distance-
based clustering will be difficult. Unfortunately, the fact is that in high dimensions, 
any distance histogram tends towards a more and more concentrated peak, making the 
clustering task uneasy [9].  This is a direct consequence of the concentration of 
measure phenomenon. 

4. Towards solutions 

Effects of the curse of dimensionality and related limitations on neural network 
learning seem unavoidable in high-dimensional spaces.  There are however at least 
two paths to explore to remedy to this situation. 

4.1. Alternative distance measures 

The use of the Euclidean distance between data is conventional and is rarely 
discussed.  However, it is not obvious that another definition of distance could not be 
more appropriate in some circumstances, and in particular in high-dimensional 
spaces.  In practice, any distance measure between vectors x and y (with components 
xi and yi) of the following form could be considered: 
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In practice, (4) is applicable for any positive value of r; the asymptotical behavior 

of any distance definition as (6) is the same (i.e. all distances are subject to the 
concentration phenomenon).  But the convergence rate of (4) differs for different 
values of r.   

The intuition tells that using high values of r can mitigate the effects of loss of 
locality for Gaussian-like kernels.  Nevertheless it has been shown [3] that lower 
values of r can keep the relative contrast (4) high (for a particular 
dimension).  Unfortunately there is no known reason  (other than numerical 
computation-related arguments) to find a lower bound for optimal r.  And there is no 
sense in taking r = 0...Therefore it remains to find the proper to set a lower bound for 
r, so that an optimal and most probably dimension-dependant compromise can be 
found. 

110 M. Verleysen  et al.



 

4.2. Non-linear projection as preprocessing 

Another way to limit the effects of high dimensionality is to reduce the dimension of 
the working space.  Data in real problems often lie on or near submanifolds of the 
input space, because of the redundancy between variables.  While redundancy is often 
a consequence of the lack of information about which type of input variable should be 
used, it is also helpful in the case where a large amount of noise is unavoidable on the 
data, coming for example from measures on physical phenomena.  To be convinced of 
this positive remark, let us just imagine that the same physical quantity is measured 
by 100 sensors, each of them adding independent Gaussian noise to the measurement; 
averaging the 100 measures will strongly decrease the influence of noise on the 
measure!  The same concept applies if n sensors measure m quantities (n > m). 

Projection of the data on submanifolds may thus help.  A way to project data is to 
use the standard PCA (Principal Component Analysis).  However PCA is linear; in 
most cases, submanifolds are not linear (think for example to a horseshoe distribution, 
as in [10]) and PCA is not efficient. 

Alternative nonlinear methods exist to project data in a nonlinear way.   Examples 
are Kohonen self-organizing maps (usually to project data onto one- or two-
dimensional spaces), and methods based on distance preservation.  The latter include 
Multi-dimensional scaling [11-12], Sammon’s mapping [13], Curvilinear Component 
Analysis [14] and extensions [15].  All these methods are based on the same principle: 
if we have n data points in a d-dimensional space, they try to place n points in the m-
dimensional projection space, keeping the mutual distances between any pair of 
points unchanged between the input space and the corresponding pair in the 
projection space.  Of course, having this condition strictly fulfilled is impossible in 
the generic case (there are n(n – 1) conditions to satisfy with nm degrees of freedom); 
the methods then weight the conditions so that those on shorter distances must be 
satisfied more strictly than those on large distances.  Weighting aims at conserving a 
local topology (locally, sets of input points will resemble sets of output points).   

An example of successful application of the above approach in the context of 
financial prediction can be found in [16]. 

5. Conclusion 

Theoretical considerations show that using classical concepts in data analysis with 
neural networks to process high-dimensional data may be not appropriate. The reason 
is that some of the underlying hypotheses, though obvious in lower dimension, are not 
verified any more in higher dimensions.  Indeed, in practice, one observes severe 
performance loss with data processing algorithms when data are high dimensional.  
There is thus a need to adapt our models to high dimensionality.  A way one can think 
of is to consider new similarity measures between data, other than the ancestral 
Euclidean distance.  Another way is to reduce the dimension through projection on 
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(non-linear) submanifolds.  In both cases, deep investigation is required in order to 
successfully adapt data processing tools to high dimensional data. 
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