
 127 
 
R. Franck (ed.), The Explanatory Power of Models, 127-139. 
© 2002 Kluwer Academic Publishers.  Printed in the Netherlands. 

MICHEL VERLEYSEN 
 
 

CHAPTER 6 
 
 

THE EXPLANATORY POWER OF ARTIFICIAL  
NEURAL NETWORKS 

 
 
 

1. INTRODUCTION 
 
Many engineering problems include some kind of recognition: from automatic 
character recognition to the control of steel quality in a steelworks, through the fault 
detection in nuclear plants or the prediction of financial rates, it is impossible to 
enumerate all domains where the key challenge is to identify an input-output 
relationship between variables or concepts.  When the physical relationship is 
difficult to tackle, models are developed to approximate it. 
 There are many ways to develop such models.  Linear ones are used in 
many cases, even if it known that the linearity limitation will make the model 
inadequate.  Non-linear models are the solution, but they suffer from many 
limitations, related to the concept of recognition itself: what is the relation to be 
recognised if it is only known through examples?  Artificial neural networks (ANN), 
i.e. models based on the remote analogy with the information processing in a human 
brain, try to answer to this question.  ANN models are built (trained) on examples, 
the purpose being to keep the equilibrium between a correct training and a useful (in 
some cases meaningful) representation. 
 Despite the fact that ANN are known to be "blind", or non-explanatory, we 
intend to show that it is possible to feed to or to extract knowledge from these 
models; the step towards an explanatory power is then straightforward.  But the real 
question is to know to what extend it is possible to interpret the results of such a 
"non-explanatory" model: what is the real difference between extracting 
representable knowledge from a computational model, and using a "blind" model to 
predict, classify or recognise some relationship?  
 
 

2. BACKGROUND 
 
Information technology is a keyword in our modern world.  More than a fashion, 
computer science, artificial intelligence, and many other scientific breakthroughs 
transform our today life in a way that was unthinkable twenty years ago.  Who was 
able to predict at the time that a pizza could be ordered through Internet and paid 
with electronic money, and that the same Internet network would be used to book a 
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plane ticket, to read a scientific article or to consult the weather forecasts in a 
holiday resort? 
 What electronics and computer science makes feasible is however limited 
by the inventiveness of engineers, who traditionally build machines able to 
efficiently achieve repetitive tasks.  These tasks have to be described in terms of 
rules and sequences of operations, or software, and this is probably the main 
limitation of the state-of-the-art in computer science.  In short, what is easily 
described and analysed is also easily programmed, and thus easily solved by the 
powerful machines built today.  But problems that are more difficult to describe in 
terms of rules are hard to solve, just because the programming languages and the 
way how computers work are not adapted to non-rule based, perceptive tasks.  For 
example, multiplying large matrices together, computing the trajectory of a space 
shuttle or drawing up the balance sheets of a company are tasks which may seem 
hard because they are computationally intensive, but which are in fact easily 
"solved" by a computer since they are easily described in terms or rules 
(mathematical, physical or legal ones respectively).  On the other hand, recognising 
his/her neighbour is an easy task for everybody, but face recognition is a very hard 
problem for any computer, the reason being that the problem is hard (quite 
impossible) to describe by rules.  Obviously, we don't recognise faces by looking at 
the hair cut and colour, the eyes colour and shape, the respective location of the neck 
and the eyes,…; our brain rather analyses a face image as a whole, and gives a 
decision (for example the name of the person) according to a global perception of 
this image. 
 Such comments make the background of the artificial neural networks 
(ANN) field.  Already in the fifties, but more specifically in the early eighties, 
researchers tried to understand how the (human) brain works, or maybe more 
realistically how a few neurons can communicate together, exchange information 
and adapt their functionality to the past experience, in order to replicate their 
behaviour in computers of a new generation, which would in turn be more adapted 
to face recognition and other perception tasks such as speech and image recognition, 
sensory-motor control, fuzzy concepts association, etc. 
 Traditional artificial intelligence (AI) was not the right answer to this new 
challenge.  Expert systems for example are now considered as tools able to integrate 
a qualitative dimension in the processing of information (Cottrell, 1995), rather than 
the miracle solution to "intelligent" problems.  ANN may be considered as artificial 
intelligence too, while ANN techniques are radically different from "traditional" AI 
ones. 
 
 

3. MODELLING 
 
The domain of artificial neural networks is large and multidisciplinary, and this has 
two consequences.  On the positive side, knowledge and experience acquired in each 
field concerned by ANN (from biology to electronics, through mathematics, 
statistics, control, computer science, etc.) is used to build new theories and concepts, 
as we will detail below.  On the other side, transdisciplinary research is naturally 
less specific and thus less advanced in a particular field.  The interest of ANN 
research is found in the transdisciplinary character itself, the purpose being to use 
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ideas from some fields (biology and neuroscience), tools from others (mathematics, 
statistics and computer science), to build new tools (neuroengineering) that can be 
used in many application areas (control, recognition, time series prediction, data 
analysis, etc.).  We will limit our discussion to neuroengineering, an area that we 
will try to define below.   
 Modelling is a primary goal in many scientific domains.  Science itself tries 
to create and define models whose aim is to be as generic as possible.  Modern 
science assumes that fundamental laws exist and control all physical phenomena.  A 
strong assumption is that these laws are observable, even if we don't know them; 
Maxwell's equations are a good example.  Many electromagnetic phenomena were 
observed, understood and even modelled through equations before Maxwell; his 
unified theory has the merit to be compatible with previous observations and laws, 
but also to be more general and thus simpler in the concepts.  One could find many 
other examples, such as Einstein's relativity, etc. 
 We generally assume that the laws are observable through experiences, but 
also that the experiences can be repeated indefinitely; this is an essential basic 
statistical concept: many experiences, or samples, are needed to build a theory, i.e. 
to discover a "model" and/or to fit its parameters.  We will come back below on the 
dilemmas between building and fitting models, and also between fitting and 
generalisation. 
 It seems that science is built around the concept of models.  But obviously, 
a human brain does not work in the same way.  In the context of the face recognition 
problem mentioned above, nobody tries to create a (mental) model of face 
characteristics before recognising someone in the street.  Our conceptualisation is 
fuzzier, more ambiguous, but richer too; we do not build "classical" models, but we 
build something else, much more difficult to describe.  As stated above, this 
difficulty in the task or problem description is reflected into the inadequacy of 
traditional computers to handle the problem.  How to "program" the solution of a 
problem that is itself difficult to describe?  The pioneering ideas of neural networks 
were an attempt to answer to this deadlock: if a human brain can easily handle 
problems which seem complex for a traditional computer, building machines that 
"imitate" the human brain in some way could be the solution. 
 
 

4. NEUROSCIENCE AND NEUROENGINEERING 
 
To "imitate" the human brain could seem a science-fiction goal.  Of course, the 
intention is not to build a super-computer having human capabilities…  On the 
contrary, the goal of the ANN field is to get ideas from the brain biology and to use 
them in new computer architectures, in order to build machines that are more 
adapted to solve perception tasks. 
 
Table 1 compares some pertinent characteristics of a "traditional computer" (based 
on Von Neumann's architecture) and of a human brain.  It should be noticed that the 
items listed are indicative and qualitative only, and that each of them should merit a 
detailed discussion… 
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Table 1: a few indicative characteristics of traditional computers and human brains 
 
traditional computer human brain 
single processor massive parallelism (neurons and synapses) 
high speed (100 MHz) slow speed (100 Hz) 
sequences of instructions (software) learning (adaptation) 
uniqueness of solutions fuzzy behaviour and many possible solutions 
very sensitive to errors fault-tolerant 
deterministic and ordered variables fuzzy and non-quantified concepts 
 
 
What makes a human brain so powerful (compared to our PCs…) in tackling 
perceptive problems, such as reading, speech recognition, sensory-motor 
coordination, face recognition, etc.?  The two main ideas are first the massive 
parallelism of neurons and synapses contained in the brain, and secondly the 
adaptation of the huge number of parameters (synaptic coefficients) according to the 
experience.  Based on these two concepts, researchers first tried to model how real 
neurons and synapses operate (see for example the pioneering work of MacCullogh 
and Pitts 1943), and then tried to imitate this mode of operation into artificial 
machines… and models!  Most ANN models are far from the biological reality; 
modelling brain neurons and synapses, and developing computational tools able to 
perform efficiently in perceptive tasks are different businesses, despite a common 
inspiration.  Werbos (1997) distinguishes between neuroscience and 
neuroengineering: the first research field aims at understanding how a brain works, 
the second one at mimicking its potentialities.  Figure 1 illustrates this difference: 
"Neuroengineering tries to develop algorithms and architectures, inspired by what is 
known about brain functioning, to imitate brain capabilities which are not yet 
achieved by other means.  By demonstrating algorithm capabilities and properties, it 
may raise issues which feed back to questions or hypotheses from neuroscience" 
(Werbos 1997). 
 
 

 
 

Figure 1: neuroscience and neuroengineering. 
From P. Werbos, "What is a neural network?", in E. Fiesler & R. Beale (Eds.), "Handbook 

of Neural Computation." (p. A2.2:3, fig. A2.2.2), © IOP Publishing, 1996, 
reprinted with permission. 
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Neuroscience is thus a discipline where functional models (of the brain or parts of it) 
are developed, with the view of deducing some material knowledge of the biological 
system.  On the contrary, neuroengineers do not even try to understand the process 
governing the behaviour of the brain (the process generating the outputs), but rather 
look to build one model, potentially very far from the process, which is useful.  This 
is clearly a specific assumption: our interest is to build something that works and 
which can be used, whatever is the way to reach the goal.  In that sense, 
neuroengineering is often far from neuroscience, because most ANNs are far from 
any biological plausibility... 
 
 

5. DO WE HAVE TO MODEL REALITY? 
 
In the context of artificial neural networks (neuroengineering), the question is ill-
posed.  Reality is not an objective: neuroengineering is nothing else than statistical 
analysis with specific mathematical tools.  Statisticians (Mouchart 1998) consider 
that the starting point of any analysis consists in observations, and not in reality.  In 
any situation, we have a (finite) set of observations, and we assume that these data 
represent reality.  We could for example measure the tide at a specific coast location, 
each day during ten years, and try to guess (or to "predict") what will be the tide 
during the next two years.  By limiting our observations to one value each day 
during ten years, we assume that the process that governs tides is entirely described 
by this finite set of observations.  This is obviously not the case, nor it is in most 
modelling of natural or physical phenomena.  However, we might be happy with our 
tide prediction, depending on its accuracy; it has no sense to expect an infinite 
precision in the forecast, first because we understand that we will never get it, but 
secondly because it is not useful too! 
 The law of gravity (alignment between the moon and the sun, etc.) governs 
the process of tides.  In order to obtain a material or even a functional model of 
tides, one should therefore use the gravity laws, put into equations the position of the 
sun and the moon, etc.  Nevertheless, fishermen are usually not interested in 
understanding how tides are created, but rather on predicting (estimating) at what 
time the tide will be high.  Mathematical models, like artificial neural networks, may 
be used in that purpose; in such situation, the model developed is only a useful 
model but has no other more fundamental goal. 
 The fact that the reality is know or not, i.e. that the observations are 
sufficient to describe the reality or that they aren't, is thus not the right question here.  
The best that ANNs can do is adequately predict new observations!  The reality 
behind the observations is not needed is such situation.  Nevertheless, a further step 
in neural network analysis is somewhat contradictory to this argument.  The dots in 
Figure 2 represent observations, and the plain lines three different models found by 
neural network (or other statistical) analysis.  The plain line (a) is not acceptable, 
since it does not fit the observations adequately, while both plain lines (b) and (c) fit 
the data; however, everybody will agree that the plain line (b) is more acceptable 
than line (c).  Why?  Because even if we do not try to model reality, we still make 
the hypothesis that any model, including the three ones in Figure 2, should be 
reasonably close from the reality to be useful.  It is intuitively obvious that the 
"expected reality behind the observations" is closer from model (b) than from model 
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(c); this intuitive concept is related to the smoothness of the model, which should be 
in accordance with the apparent smoothness of the observations.  Choosing model 
(c) instead of model (b) is known as "overfitting": the expected result of a model is 
line (b), while mathematical criteria measuring how the observations are fitted will 
give the preference to line (c) if some precautions are not taken. 
 
 

 (a) (b) 

(c) 
 

Figure 2: fitting and overfitting data. 
From MacKay D., "Bayesian methods for supervised neural networks", in M.A. Arbib (Ed.), 

"Handbook of Brain Theory and Neural Networks" (p. 145, fig. 1), © MIT Press, 1995, 
reprinted with permission. 

 
 
 In fact, the usefulness of the model, which is the ultimate goal for 
engineers, will be higher for model (b), because model (b) will probably have a 
better prediction capability.  In other words, it will probably better approximate 
unknown points, i.e. points that were not used to build the model. 
 
 

6. WHAT ARE ARTIFICIAL NEURAL NETWORKS? 
 
ANNs are tools invented to model observations, and not reality.  This is a strong 
assumption, or limitation depending on the point-of-view.  ANNs are learning 
models: they try to model something (a relation, a function, clusters, a dynamical 
process, etc.) by building a model which is as general as possible, but which 
includes a lot of parameters which are then fitted to achieve the expected goal.  
Some people will call them non-parametric models, since they have the universal 
approximation property (see below).  This is not exactly true in a statistical context, 
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but the distinction between parametric and non-parametric models becomes 
senseless at this point. 
 ANNs are useful tools in data analysis and statistics; in fact, they differ 
from traditional data analysis or statistic techniques by their implementation, but not 
by their goals.  One of the main characteristics of ANNs versus classical methods is 
that ANNs are essentially non-linear.  They are thus inherently more powerful, since 
they can perform non-linear and linear analysis, where other methods are limited to 
find linear relationships between data.  This advantage is however balanced by an 
increased complexity, both at the implementation and the computational point-of-
views.  Before going further in the discussion about ANNs and their explanatory 
power, we will briefly describe a few ANN models and their possible applications. 
 
 

7. SUPERVISED NETWORKS 
 
Supervised networks can be viewed as black boxes implementing a relation (a 
function) which is known through examples.  By examples, we mean input-output 
pairs, as in the example of figure 2 where the X-axis represents the input and the Y-
axis the output of a scalar function; in this example, the function is "known" through 
37 examples, illustrated by dots.  ANNs can of course cope with vector input and 
outputs instead of scalar ones.  The principle of supervised networks is illustrated in 
figure 3.  The neural network implements an input-output relationship, 
parameterised at random before learning.  Learning consists in the following steps: 
 

1. the inputs of an input-output pair are presented to the network; 
2. the ANN computes the associated outputs; 
3. the outputs computed by the ANN is compared to (subtracted from) the desired 

outputs, i.e. the outputs of the input-output pair; 
4. the result of the comparison is used to slightly modify the network parameters 

(the "weights") in order to make the ANN better approximate the input-output pair; 
5. operations 1 to 4 are repeated for all known input-output pairs (the 

observations), usually several times for each pair. 
 

neural
network

-

desired outputs

outputsinputs

error

weight adaptation

 
 

Figure 3: supervised neural network 
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If the learning is carefully realised, all observations are "learned" by the network.  In 
a subsequent phase (which is called generalisation), new inputs can be presented to 
the ANN who will calculate corresponding outputs.  In our Figure 2 example, the 
dots are learned while the plain line represents possible generalisation.  Overfitting 
as in figure 2 (c) can be avoided through specific techniques beyond the scope of 
this chapter. 
 What makes neural networks different from other approximation 
techniques is the content of the black box called "neural network" in Figure 3.  A 
widely known ANN is the multi-layer perceptron (MLP), sketched in Figure 4.  
Circles represent computing units ("neurons"), which implement a non-linear 
function of the sum their inputs.  Each arrow represents a connection between the 
output of a neuron A and the input of a neuron B, and is associated to a parameter 
(weight) which is multiplied by the output of neuron A before entering neuron B.  
Each neuron in a layer is connected to all neurons in the next layer.   
 

inputs

outputs

 
 

Figure 4: Multi-Layer Perceptron 
 
The "model" is characterised by its size (number of neurons, layers, etc.), but also by 
the way how is parameters are set (learning rule) according to the input-output pairs. 
 MLPs have the "universal approximation" property: under weak conditions, 
MLPs of sufficient size are able to approximate any function from Rn to Rp, with an 
unlimited precision.  This property makes the success of MLPs: in theory, any task 
formulated as an approximation problem can be solved! 
 It should be noticed that learning is really a complicated task.  Learning in 
MLP is an optimisation procedure, which can be stuck in local minima, which is not 
guaranteed to convergence in practical situations.  Nevertheless, despite these 
limitations, efficient learning rules have been proposed in the literature, and the 
MLP is widely used in many various application areas where some kind of 
approximation or classification is needed.  
 There exist many other supervised neural networks, devoted to 
approximation and classification tasks (radial-basis function networks, learning 
vector quantization, adaptive resonance theory,…).  They slightly differ from MLP, 
but are used in the same way and for the same applications. 
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8. UNSUPERVISED NETWORKS 
 
A radically different class of ANNs is the unsupervised network.  Figure 5 shows 
that weights are adapted in unsupervised networks without using any external 
information about the quality of outputs (without "teacher"). 
 

neural
network

outputsinputs

weight adaptation

 
 

Figure 5: unsupervised neural network 
 
Unsupervised learning is not a well-defined task: usually no criterion is used to 
evaluate the quality of learning with respect to a consign (or at least the criterions 
are less intuitive).  However, unsupervised networks were found to have 
computational capabilities that can be used in many applications too. 
 We refer the reader to specialised literature for details on how unsupervised 
networks work and are used.  In a few words, we can say that a priori information 
replaces a posteriori one for the learning: steps 3. and 4. of the learning in 
supervised networks are replaced by an adaptation of the parameters according to 
some property of input data, instead of a measure of the correctness of the model. 
 Unsupervised networks are used when data analysis must be performed 
without knowledge of true or measured output values.  Grouping similar data, or 
partitioning data into small sets, are typical unsupervised tasks.  Examples of 
Kohonen maps applications will be given in the next section. 
 
 

9. NEURAL NETWORK APPLICATIONS 
 
ANNs being mostly developed by engineers, it is not surprising to find most of the 
ANN applications in the engineering field.  Nevertheless, ANN models can be and 
are used in all fields where some kind of approximation or analysis has to be 
performed on data collected from unknown processes.  Applications fields include 
medicine, physical sciences, economics, business, computer science, arts, etc.  
Below is a list of application examples that can be found in (Fiesler et al., 1997) and 
(Kohonen 1997): 
 Supervised learning can be used for: 

• intracardiac electrogram recognition in implantable cardioverter 
defibrillators; 
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• optimal robot trajectory planning; 

• modelling of a polymerisation reactor; 

• control of telescope adaptive optics; 

• prediction of financial time series. 
 

Unsupervised learning can be used for: 

• analysis of socio-economic situations; 

• classification of rock samples to determine archaeological origin; 

• parsing of linguistic expressions; 

• appraisal of land value of shore parcels; 

• pitch classification of musical notes. 
 
 These applications were not chosen to be representative of all fields where 
ANN can be used, but to show the diversity of domains which are not restricted to 
engineering sciences.  We will detail one of these applications, the analysis of socio-
economic situations (Blayo et al. 1991). 
 Non-linear dimension reduction is a typical task performed by supervised 
and unsupervised ANNs.  When data are high-dimensional, such reduction can be 
interesting for two reasons.  The first one is simply because low-dimensional data 
are easier to analyse by hand and to visualise.  The second is that the solution of 
problems in high-dimensional spaces (classification for example) usually requires an 
exceeding number of data (observations) to reach acceptable performances, while 
the same level of performances can be reached with much less data in lower-
dimensional space (this is a consequence of the empty-space phenomenon, known in 
data analysis). 
 Our example consists in analysing the socio-economic situation of 52 
countries, according to six variables: the annual increase, the infant mortality, the 
illiteracy ration, the school attendance, the GIP (gross internal product per 
inhabitant), and the annual GIP increase.  
 Viewing or analysing points in a six-dimensional space is quite difficult.  
For this reason, a standard procedure is to use PCA (Principal Component Analysis) 
to project the six-dimensional space on a two-dimensional one.  Projection means 
that some similarity criterion should be respected, i.e. that vectors close in the initial 
space will remain close in the resulting space.  This condition is verified for PCA; 
however, PCA is a linear projection, and is thus able to cancel any linear 
relationship between variables, but not non-linear ones.  Kohonen maps are able to 
capture non-linear relationships, the result being a better "unfolding" of the six-
dimensional data in a two-dimensional plane.  Figures 6 shows the six-dimensional 
database of 52 countries projected on a two-dimensional plane, respectively by the 
PCA (a) and the Kohonen maps (b) methods.  Both have their advantages and 
drawbacks; nevertheless, it should be noticed that the most frequent use of this kind 
of projection is to facilitate a subsequent interpretation; Kohonen maps clearly 
outperform PCA in this context, because of the better unfolding which leads to a 
better repartition of countries on the map. 
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   (a) 
 

   (b) 
 
Figure 6.  Socioeconomic situation of 52 countries projected by PCA (figure a) and Kohonen 
maps (figure b).  From F. Blayo, P. Demartines, "Data analysis: How to compare Kohonen 

neural networks to other techniques?", in A. Prieto (Ed.), "Artificial Neural Networks"  
(p. 472, figs. 1-2), © Springer-Verlag, Lecture Notes in Computer Science 540, 1991, 

reprinted with permission. 
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10. THE EXPLANATORY POWER OF ANNS:  
COMMENTS AND CONCLUSION 

 
Neural networks have the reputation to behave as black boxes; this can furthermore 
be understood as a lack of explanatory power.  We would like to comment these two 
arguments, and to point out some explanatory capabilities of ANNs. 
 ANNs are first designed to model data, i.e. to model empirical evidence.  
The learning process is based on the empirical values or measurements.  Obviously, 
if the learning in an ANN model is successful, then this model will represent the 
data (the empirical evidence) successfully.  The evaluation of the model is an 
integral part of the learning.  Since learning and evaluation are performed on the 
same data, the evaluation of the model will be good!  (For the sake of completeness, 
the reader should be aware that statistical procedures to avoid overfitting –such as 
cross-validation, resampling, etc.– are used when training an ANN; when correctly 
used, this leads to a successful learning and a good evaluation of the model.) 
 In the context of ANNs, the right question is not does the model fits the 
reality, but rather is the model useful? 
 Reality is not the question here, as in any case the statistical analysis starts 
from the observations only.  The fact that these observations faithfully represent (or 
not) reality is another (but important) question.  ANNs will model the observations, 
though keeping in mind that the ultimate goal is not to model the observations, but 
to obtain a useful model: the best model is the one which gives the best predictions 
for new situations that were unknown when the model was built.  Intuitively 
however, when we have to choose between several mathematical models with 
similar performances on the observations, common sense will lead to the choice of 
the smoother model, because smoothness is related to reality.  Therefore, while the 
search for a material model of reality is not the question with ANNs, the reality is 
still taken into account at some stage of the modelling process. 
 Based on these comments, it is thus an obvious conclusion that ANNs do 
not provide any insight to reality, i.e. to a "true" model.  This goes in the direction of 
the "black-box" reputation of ANNs.  However, the point-of-view of people working 
in the field of or using ANNs is that this possible true model is irrelevant or simply 
not useful, at least in the applications they deal with.  Even if a theoretical model, 
close to reality, would exist, it would probably be much too complicated to be used 
in practical engineering (or other) problems.  Remember that ANNs were mostly 
developed by engineers!   
 Of course, everybody is not satisfied with such point of view.  In many 
(other) situations (even engineering ones!), one of the purposes of building a model 
is to learn something about what is behind the data.  Let us take the example of the 
human vision system.  In the last decades, biologists and engineers developed 
models of the human vision system on the causal (data) level.  During the 
development, there is no question about functional signification of the model (even 
if intuition during this development could be guided by some knowledge about the 
biological structure of the system).  But of course the aim of developing this model 
is to understand how the human vision system works (and not what it does!).  What 
was an aim (and a hope) during the development of an empirical model became a 
nice result afterwards: many models of the human visual system are valid at the 
material level (they do resemble –in some way– to the human system).  But it must 
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be kept in mind that this remains an exception, and that most ANNs do not provide 
reasonable material models. 
 Moreover, the above conclusions about the non-explanatory characteristics 
of neural nets must be moderated.  For example, most unsupervised networks are 
much easier to interpret than standard supervised Multi-Layer Perceptrons.  
Technical details on possible interpretation of the coefficients included in 
unsupervised models would go beyond the scope of this chapter.  Nevertheless the 
concept can be illustrated by the socio-economic example above.  If we look at 
figure 6 (b), regions in the map corresponding to particular situations (industrialised 
countries for example) will correspond to network parameters that can be interpreted 
as a "mean" value (or a typical situation) of these countries.  The same applies to 
other groups, such as Latin-American countries, Eastern block states, etc. 
 Interpretation of the parameters in a neural network model is a major 
concern of ANN research.  The above discussion pointed out that:  

1. There exist some possibilities to interpret the network parameters, at least in 
specific ANN models. 

2. It must be recognised that parameter interpretation is other models, as in 
MLPs, is difficult. 

3. Researchers and users in the field of ANNs do not consider this broken link 
between empirical models and causal interpretation as a major drawback.  On 
the contrary, in most situations, empirical models are considered as the only 
valid ones since the problem can only be known through empirical data. 

 
 The ANN field is characterised by a wide variety of models in competition.  
Most of them must be considered today as empirical models, despite the fact that 
they can help to interpretation of phenomena.  But researchers begin to use emerging 
models as functional ones: the rapidly moving field of ANNs will certainly increase 
this trend in the near future! 
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