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Abstract

Many engineering problems include some kind of recognition: from automatic character
recognition to the control of sted quality in a stedworks, through the fault detection in
nuclear plants or the prediction of financia rates, it is impossible to enumerate all domains
where the key chalenge is to identify an input-output rdationship between variables or
concepts. When the physica relationship is difficult to tackle, models are developed to
approxi mae it.

There are many ways to devel op such modéls. Linear ones are used in many cases, even if it
known that the linearity limitation will make the modd inadequate. Non-linear modds are
the solution, but they suffer from many limitations, related to the concept of recognition itself:
what is the relation to be recognised if it is only known through examples? Artificial neura
networks (ANN), i.e. models based on the remote anal ogy with the information processing in
a human brain, try to answer to this question. ANN models are built (trained) on examples,
the purpose being to keep the equilibrium between a correct training and a useful (in some
cases meaningful) representation.

Despite the fact that ANN are known to be "blind", or non-explanatory, we intend to show
that it is possible to feed to or to extract knowledge from these models; the step towards an
explanatory power isthen straightforward. But the real questionis to know to what extend it
is possible to interpret the results of such a "non-explanatory” modd: what is the redl
difference between extracting representable knowledge from a computational modd, and
using a"blind" modéd to predict, classify or recognise some rdationship?

Introduction

Information technology is a keyword in our modern world. More than a fashion, computer
science, artificia inteligence, and many other scientific breakthroughs transform our today
lifein away that was unthinkabl e twenty years ago. Who was ableto predict at the time that
a pizza could be ordered through Internet and paid with dectronic money, and that the same
Internet network would be used to book a plane ticket, to read a scientific article or to consult
the weather forecasts in aholiday resort?

What dectronics and computer science makes feasible is however limited by the
inventiveness of engineers, who traditiondly build machines able to efficiently achieve
repetitive tasks. These tasks have to be described in terms of rules and sequences of
operations, or software, and this is probably the main limitation of the state-of-the-art in
computer science. Inshort, what is easily described and analysed is aso easily programmed,
and thus easily solved by the powerful machines built today. But what is more difficult to
describe in terms of rules is hard to solve, just because the programming languages and the
way how computers work are not adapted to. For example, multiplying large matrices
together, computing the trajectory of a space shuttle or drawing up the baance sheets of a
company are tasks which may seem hard because they are computationaly intensive, but
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which are in fact easily "solved" by a computer since they are easily described in terms or
rules (mathematical, physical or legal ones respectively). On the other hand, recognising
his/her neighbour is an easy task for everybody, but face recognition is a very hard problem
for any computer, the reason being that the problem is hard (quite impossibl€) to describe by
rules. Obviously, we don't recognise faces by looking at the hair cut and colour, the eyes
colour and shape, the respective location of the neck and the eyes,...; our brain rather
analyses a face image as a whole, and gives a decision (for example the name of the person)
according to aglobal perception of thisimage.

Such comments make the background of the artificial neural networks (ANN) field. Already
in the fifties, but more specifically in the early eighties, researchers tried to understand how
the (human) brain works, or maybe more realistically how a few neurons can communicate
together, exchange information and adapt their functionality to the past experience, in order to
replicate their behaviour in computers of a new generation, which would in turn be more
adapted to face recognition and other perception tasks such as speech and image recognition,
sensory-motor control, fuzzy concepts association, ...

Traditional artificid intdligence (Al) was not the right answer to this new challenge. Expert
systems for example are now considered as tools able to integrate a qualitative dimension in
the processing of information (Cottrel, 1995), rather than the miracle solution to "intdligent”
problems. ANN may be considered as artificial intelligence too, while ANN techniques are
radicdly different from "traditional" Al ones.

M od€disation

The domain of artificial neural networks is large and multidisciplinary, and this has two
consequences.  On the positive side, knowledge and experience acquired in each fidd
concerned by ANN (from biology to dectronics, through mathematics, statistics, control,
computer science,...) is used to build new theories and concepts, as we will detail below. On
the other side, transdisciplinary research is naturally less specific and thus less advanced in a
particular fidd. The interest of ANN research is found in the transdisciplinary character
itsdf, the purpose being to use ideas from some fields (biology and neuroscience), tools from
others (mathematics, statistics and computer science), to build new tools (neuroengineering)
that can be used in many application areas (control, recognition, time series prediction, data
anaysis,...). We will limit our discussion to neuroengineering, an area that we will try to
define below.

Modelisation is a primary goa in many scientific domains. Science itsdf tries to create and
define models whose aim is to be as generic as possible.  Modern science assumes that
fundamental laws exist and contral all physical phenomena. A strong assumption is that these
laws are observable, even if we don't know them; Maxwell's equation are a good example.
Many e ectromagnetic phenomena were observed, understood and even modeled through
equations before Maxwell; his unified theory has the merit to be compatible with previous
observations and laws, but also to be more general and thus more simplein the concepts. One
could find many other examples, such as Einstein's rdativity, ...

We generaly assume that the laws are observable through experiences, but dso that the
experiences can be repeated indefinitdy; this is an essential basic statistical concept: many
experiences, or samples, are needed to build atheory, i.e. to discover a "modd" and/or to fit
its parameters. We will come back below on the dilemmas between building and fitting
models, and also between fitting and generalisation.

It seems that science is build around the concept of models. But obviously, a human brain
does not work in the same way. In the context of the face recognition problem mentioned
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above, nobody tries to create a (mental) modd of face characteristics before recognising
someone in the street. Our conceptudisation is fuzzier, more ambiguous, but richer too; we
do not build "classical" models, but we build something € se, much more difficult to describe.
As stated above, this difficulty in the task or problem description is reflected into the
inadequacy of traditional computers to handl e the problem. How to "program™ the solution of
aproblem which isitsdf difficult to describe? The pioneering ideas of neural networks were
an attempt to answer to this deadlock: if a human brain can easily handle problems which
seem complex for atraditional computer, building machines that "imitate" the human brainin
some way could be the sol ution.

Neur oscience and neur oengineering

To "imitate’ the human brain could seem a science-fiction goal. Of course, the intention is
not to build a super-computer having human capabilities... On the contrary, the god of the
ANN fidd is to get ideas from the brain biology and to use them in new computer
architectures, in order to build machines which are more adapted to solve perception tasks.

Table 1 lists compares some pertinent characteristics of a "traditional computer” (based on
Von Neumann's architecture) and of a human brain. It should be noticed that the items listed
areindicative and qualitative only, and that each of them should merit a detailed discussion...

traditional computer human brain

single processor massive parallelism (neurons and synapses)
high speed (100 MH2z) slow speed (100 Hz)

sequences of instructions (software) learning (adaptation)

uniqueness of solutions fuzzy behaviour and many possible sol utions
very sensitiveto errors fault-tol erant

deterministic and ordered variabl es fuzzy and non-quantified concepts

Table 1. afew indicative characteristics of traditional computers and human brains

What makes a human brain so powerful (compared to our PCs...) in tackling perceptive
problems, such as reading, speech recognition, sensory-motor coordination, face
recognition,..? The two main ideas are first the massive paraldism of neurons and synapses
contained in the brain, and secondly the adgptation of the huge number of parameters
(synaptic coefficients) according to the experience. Based on these two concepts, researchers
firgt tried to mode how real neurons and synapses operate (see for example the pioneering
work of MacCullogh and Pitts 1943), and then tried to imitate this mode of operation into
artificia machines... and moddst Most ANN models are far from the biological redity;
modelling brain neurons and synapses, and developing computetional tools able to perform
efficiently in perceptive tasks are different busi nesses, despite a common inspiration. Werbos
(1997) distinguishes between neurosc ence and neuroengineering: the first research fidd aims
at understanding how a brain works, the second one at mimicking its potentidities. Figure 1
illustrates this difference: "Neuroengineering tries to deveop algorithms and architectures,
inspired by what is known about brain functioning, to imitate brain capabilities which are not
yet achieved by other means. By demonstrating al gorithm capabilities and properties, it may
raise issues which feed back to questions or hypotheses from neuroscience" (Werbos 1997).
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Figure 1. neurascience and neuroengineering. From (Werbos, 1991).

An important point to notice is that most neuroengi neering researchers do not try to imitate
how real neurons work, but try to imitate what they can do. This is clearly a specific
assumption: our interest is to build something which works and which can be used, whatever
is the way to reach the goal. In that sense neuroengineering is often far from neuroscience,
because most ANNSs are far from any biological plausibility...

Does we have to model reality?

Maybe a better question should be "What is redity?'. Statisticians (Mouchart 1998) consider
that the starting point of any analysis consistsin observations, and not inreality. Indeed what
could bereality if it is not observable? In any situation, we have a (finite) set of observations,
and we assume that these data represent reality. We could for example measure the tide at a
specific coast location, each day during ten years, and try to guess (or to "predict™) what will
be the tide during the next two years. By limiting our observations to one vaue each day
during ten years, we assume that the process which governstides is entirely described by this
finite set of observations. This is obviously not the case, nor it is in most modelisations of
natural or physical phenomena. However, we might be happy with our tide prediction,
depending on its accuracy; it has no sense to expect an infinite precision in the forecast, first
because we understand that we will never get it, but secondly becauseit is not useful too!

What wetry to eaborate is then a useful model of the observations, rather than a theoretical
complex model of reality. This modd should thus be in accordance with the data themselves
(obvioudy!), but also with some kind of "expected reality behind the observations'; this is
illustrated in figure 2, where the dots represent the observations, and the plain lines three
models of the redlity. The plain line (a) is not acceptable, since it does not fit the data
adequatdly, while both plain lines (b) and (c) fit the data; however, everybody will agree that
the plain line (b) is closer from redity than line (c). This phenomenon is known as
"overfitting": the expected result of a moddisation is line (b), while mathematical criteria
measuring how the observations are fitted will give the preference to line (¢) if some
precautions are not taken.
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Figure 2: fitting and overfitting data. From (MacKay 1995).

(b)

What are Artificial Neural Networks?

ANNSs are tools invented to model observations, and not redity. Thisis a strong assumption,
or limitation depending on the point-of-view. ANNs are learning modds. they try to
modelize something (a reation, a function, clusters, a dynamical process,...) by building a
model which is as genera as possible, but which includes alot of parameters which are then
fitted to achieve the expected goal. Some people will cal them non-parametric modds, since
they have the universal approximation property (see bdow). This is not exactly true in a
statistica context, but the distinction between parametric and non-parametric modd s becomes
sensdess at this point.

ANNSs are useful tools in data analysis and statistics; in fact, they differ from traditiond data
analysis or statistic techniques by their implementation, but not by their goals. One of the
main characteristics of ANNs versus classical methods is that ANNs are essentialy non-
linear. They are thus inherently more powerful, since they can perform non-linear and linear
analysis, where other methods are limited to find linear relationships between data. This
advantage is however balanced by an increased complexity, both a the implementation and
the computational point-of-views. Before going further in the discussion bout ANNs and
their explanatory power, we will briefly describe a few ANN modes and their possible
applications.

Supervised networks

Supervised networks can be viewed as black boxes implementing a relation (a function)
which is known through examples. By examples, we mean input-output pairs, as in the
exampl e of figure 2 where the X-axis represents theinput and the Y -axis the output of a scalar
function; in this example, the function is "known" through 37 examples, illustrated by dots.
ANNSs can of course cope with vector input and outputs instead of scalar ones. The principle
of supervised networks is illustrated in figure 3. The neural network implements an input-
output relationship, parametrized at random before learning. Learning consists in several
steps:

1. theinputs of an input-output pair presented to the network;

2. the ANN computes the associated outputs;
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3. the outputs computed by the ANN is compared to (substracted from) the desired outputs,
i.e. the outputs of the input-output pair;

4. the result of the comparison is used to dlightly modify the network parameters (the
"weights") in order to makethe ANN better approxi mate the input-output pair;

5. operations 1 to 4 are repeated for all known input-output pairs (the observations), usually
severa times for each pair.

igh i .
weight adgptation desired outputs
inputs outputs
—_—p neurd
network
error

Figure 3: supervised neura network

If the learning is carefully realised (this operation usually requires some tuning which is
difficult to achieve in an automatic manner), all observations are "learned” by the network. In
a subsequent phase (which is caled generalisation), new inputs can be presented to the ANN
which will calculate corresponding outputs. In our Figure 2 example, the dots are learned
while the plain line represents possible generdisation.

As we aready mentioned, overfitting can occur in neural networks, exactly as in many other
function approximation procedures. It is possible to avoid (or to limit) overfitting by using
only a part of the available observations for learning, and using the other part in order to test
the generalisation property, but this goes beyond the scope of our discussion.

What makes neura networks different from other approximation techniques is the content of
the black box called "neura network” in Figure 3. A widely known ANN is the multi-layer
perceptron (MLP), sketched in Figure 4. Circles represent computing units ("neurons"),
which implement a non-linear function of the sum ther inputs. Each arrow represents a
connection between the output of a neuron A and the input of a neuron B, and is associated to
aparameter (weight) which is multiplied by the output of neuron A before entering neuron B.
Each neuron in alayer is connected to all neurons in the next layer.

inputs

outputs

Figure 4; Multi-Layer Perceptron

The "mode" is characterised by the number of inputs and the number of outputs (dictated by
the problem), the number of layers, the number of neurons in each hidden layer (hidden layers
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are those which are neither connected to the inputs neither to the outputs, two in our
example), and aso by the non-linear function implemented in the neurons (some variations
around the sigmoid can exist). The parameters of the mode are the weights associated to
each syngpse, and dso in some case supplementary parameters in the non-linear functions.

Neura networks are also characterized by a learning rule, i.e. a way to modify the weights
according to observations (input-output pairs), in order to make the network slowly better
approxi mate each of the known data.

MLPs have the "universal approximation” property: under weak conditions, MLPs are able to
approxi mate any function from R" to R®, with an unlimited predision, provided that there are
enough neurons in the hidden layers. This property makes the success of MLPs: in theory,
any task formulated as an approximation problem can be solved...

Some comments however limit the practica use of MLP:

e the universal approximation property does not indicate how many neurons are needed in
the hidden layers;

» two hidden layers are enough to ensure the universal approximation property, but in some
cases experience shows than | ess neurons in more layers could be a better solution;

» the universal approximation property does not indicate how to compute the weights (i.e.
the learning rule).

It should be noticed that learning is realy a complicated task. Learning in MLP is an
optimisation procedure, which can be stuck in local minima, which is not guaranteed to
convergence in practical situations,... Neverthdess, despite these limitations, effident
learning rules have been proposed in the literature, and the MLP is widdy used in many
various application areas where some kind of approximation is needed. MLPs can also be
used in dassification tasks, see bdow for a brief review of possible neura network
applications.

There exist many other supervised neural networks, devoted to approximation and
classification tasks (radial-basis function networks, learning vector quantization, adaptive
resonance theory,...). They differ from MLP by the architecture of the networks, but aso by
their performances in specific situations. One of the today's weak points of the neural
network research is certainly to know which kind of network is best adapted to a class of
problems.

Unsupervised networks

A radicdly different class of ANNs are the unsupervised networks. Figure 5 shows that
weights are adapted in unsupervised networks without using any external information about
the quality of outputs (without "teacher™).
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Figure 5: unsupervised neura network
Unsupervised learning is not a well-defined task: usually no criterion used to evaluate the
guality of learning with respect to a consign (or at least the criterions are less intuitive).

However, unsupervised networks were found to have computational capabilities that can be
used in many applications too.

We will illustrate the concept of unsupervised networks through an example, the Kohonen
sdf-organizing map (Kohonen 1997).

MO
w, )\(H

=

=

Figure 6: Kohonen's sdlf-organizing feature map

Figure 6 illustrates the basic concept of Kohonen maps. Computational units (circles on the

figure) are arranged on a (usualy 2-dimensional) grid. The function implemented by each

unit is a non-linear function of the weighed sum of itsinputs. Asinthe MLP, each neuronis

connected to each input, but unlike the MLP, it is also connected to other neuronsin the layer

(in fact its neighbours as shown in Figure 6). In order to understand how a Kohonen map

works, let's go in some more details about the learning. The connections between the input

and the neurons have adjustable weights, which will be set by the learning agorithm; latera

connections between neurons have fixed weights determined by the structure of the network,

but which are not modified during learning. After arandom initiaisation of the weights,

1. aninput vector X is presented to the network;

2. the neuron whaose weight vector is "dasest" from x (according to some distance measure)
is sdected,

3. the weights of this neuron and of its neighbours are adapted in order to be "closer” from
the input vector X;

4, seps1to 3 arerepeated severd times for each input vector x.
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No step in the learning algorithm requires any kind of knowledge about the quality of the
outputs. But wha kind of property could have such network if there is no "desired"
behaviour? Actualy, the Kohonen map, as other unsupervised networks, has an "emergent"
property: it can be shown that "close" input vectors (again according to some distance
measure) will activate neurons which are topologically close on the grid (aneuron is activated
by an input when its weight is d osest from the input than any other weight in the map). The
Kohonen map thus realises some kind of projection from a high-dimensiona space onto a
lower dimensional (here 2-dimensional) space, respecting the topology between vectors; the
projection is discrete since there is a finite number of neurons in the map.

The primary goal of Kohonen maps is not function approximation, but projection and
clustering. By projection, we mean that data in a high-dimensiona space can be projected
(because of the topological property) on a 2-dimensional space; the projection is of course
non-linear, which makes this network different from Principal Component Analysis for
example. The clustering task consists in grouping together data which are similar, among a
large database in a high-dimensional space.  Examples of Kohonen maps applications will be
given in the next section.

Neural network applications

ANNSs being mostly developed by engineers, it is not surprising to find most of the ANN
applications in the engineering field. Nevertheess, ANN models can be and are used in al
fields where some kind of approximation or andysis has to be performed on data collected
from unknown processes. Applications fields include medicine, physical sciences,
economi ¢s, business, computer science, arts,...

Below is a list of application examples that can be found in (Fiesler et a., 1997) and
(Kohonen 1997):

Supervised learning can be used for:

» dassification of chromosomes for the diagnosis of genetic abnormality;

» intracardiac € ectrogram recognition in implantabl e cardioverter defibrillators;
» optimal robot trajectory planning;

» modeling of a polymerization reactor;

» control of tel escope adaptive optics;

e prediction of financia time series.

Unsupervised |earning can be used for:

e analysis of socio-economic situations;

» dassification of rock samples to determine archaeological origin;
* parsing of linguistic expressions;

» gopraisd of land value of shore parcds;

» pitch classification of musica notes.

These applications were not chasen to be representative of al fields where ANN can be used,
but to show the diversity of domains which are not restricted to engineering sciences. We
will detail one of these applications, the analysis of socio-economic situations (Blayo et a.
1991).

Non-linear dimension reduction is a typical task performed by supervised and unsupervised
ANNs. When data are high-dimensional, such reduction can be interesting for two reasons;
the first one is simply because low-dimensional data are easier to anayse by hand and to
visualise, and the second is that the solution of problems in high-dimensional spaces
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(cdlassification for example) usualy requires an exceeding number of data (observations) to
reach acceptable performances, while the same level of performances can be reached with
much less data in lower-dimensional space (this is a consequence of the empty-space
phenomenon, known in data ana ysis).

Our example consists in anal ysi ng the soci o-economic situation of 52 countries, according to
six variables: the annua increase the infant mortality, the illiteracy ration, the school
attendance, the GIP (grossinternal product per inhabitant), and the annua GIP increase. Each
country is thus represented by a point in a six-dimensional space, which is normalised in each
direction in order to give the same importance to each variable.

Viewing or analysing points in a six-dimensiona space is quite difficult. For this reason, a
standard procedure is to use PCA (Principd Component Anaysis) to project the six-
dimensiona space on a two-dimensional one. Projection means that some similarity criterion
should be respected, i.e. that close vectorsin theinitia space will remain closein the resulting
space. This condition is verified for PCA; however, PCA is alinear projection, and is thus
able to cance any linear rdationship between variables, but not non-linear ones.  Kohonen
maps are able to capture non-linear rdationships, the result being a better "unfalding” of the
six-dimensiond data in a two-dimensional plane. Figures 7 shows the six-dimensiona
database of 52 countries projected on a two-dimensional plane respectively by the PCA (a)
and the Kohonen maps (b) methods. Both have thdar advantages and drawbacks;
nevertheess, it should be noticed that the most frequent use of this kind of projection is to
facilitate a subsequent interpretation; Kohonen maps clearly outperform PCA in this context,
because of the better unfolding which leads to a better repartition of countries on the map.
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Figure 7: socioeconomic situation of 52 countries projected by PCA (a) and Kohonen maps
(b). From (Blayo, 1991).

The explanatory power of ANNs

Neura networks have the reputation to behave as black boxes; this can furthermore be
understood as alack of explanatory power. Wewould like to comment these two arguments,
and to point out some explanatory cepabilities of ANNS.

ANN are usualy considered as black boxes by reference to MLP, and more particularly to
their hidden layers and connections. Obvioudly, it is quite difficult to interpret the value of
hidden layers weights in MLP, because they form a part of the approximation process and of
its optimisation procedure than can hardly be dissociated from the whole. Neverthdess, in
our apinion, this does not mean that ANN are block boxes! First because MLP are far from
being the only existing ANN maodel, and secondly because the explanatory power of ANN
can be found e sewhere than in the weight val ues...

Explanatory power of models, and in particular of ANNSs, can be seen at different leves. For
the sake of simplicity, we will distinguish four levels, but some of them could be interl eaved.
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Theseleves are:

1. redity level: how amodd could be used to interpret the reality hidden behind data?

2. datalevd: how a modd could be used to interpret data (observations), whatever is the
redlity behind the data?

3. modd leved: does the structure of a modd reveal some useful information about the
redlity or the data?

4. modd's parameters level: does the value of the model's parameters (weights for example)
give some useful information about the redity or the data?

The two first levels have a different nature than the two last ones. Readlity and data leve do
not imply any understanding of the model or how it works; in other words, these leves are
application or data-dependent, and the comments will beidentical for an ANN mode or other
ones. On the contrary, model and model's parameters leve depend on the mathematical tool
used to analyse data, and raise more specific comments about ANNS.

1. Redity levd

As mentioned above, redlity can only be ana ysed through observations. Analysing the redlity
itsdf through any kind of model is thus just impossible. Nevertheless, it does not mean that
comments about the redlity could not be make, based on the data andysis realised by the
model. For example, if aforecasting of the employment situation in a country shows that that
number of unemployed persons will increase, it could mean that socia charges are too high;
neverthdess, this is a socioeconomic-only conclusion that is not related to the modd, unlike
the forecasting itsdlf.

2. Daalevd

ANNSs, like any other mathematical data analysis tool, use data in a way that is completdy
independent from the application. Selecting the data and transforming them in a way that is
suitabl e to the model is preprocessing, and usually quite independent from the ANN (or other
model). Datarlevel andysisisredly where ANN can be explanatory: the purpose can beto fit
data, to predict, to smooth, to detect outliers, to detect clusters,... ANNSs are exactly as
explicative as any other model at that level: they extract al information that is possible to
extract from the data and present it in a way that is more suitable for further problem-leve
analysis.

3. Modd levd

The question of interpretability is more complex at thislevd. How amodd itsdf, and not the
results produced by the model, can help to interpret data mostly depends on the model's
structure  MLPs are for example very different from Kohonen maps in that matter. MLP
interna units and layers do not have any other meaning than being degrees-of-freedom added
to the structure in order to reach a solution or a goal; the more complex the problem is, the
more units and layers will be necessary. On the contrary, Kohonen maps units have an
interpretation in the input space: since each unit is only influenced locdly, it can be
associated to a limited region of the input space which could, depending on the application
(but aso on the preprocessing), have some signification; for example, some units or groups of
units in our sodo-economic example (Figure 7 (b)) are associated to countries under
development, some to capitalist ones,... Modd-levd interpretation is close from the
application; however, unlike redlity-level one, it uses information contained in the structure of
the modd, not in its computationa results.

4. Parameersleve

The reason why ANNSs are often considered as non-explanatory black boxes is that the
weights (the internal parameters) of some ANN models, like MLPs, are difficult to interpret.
Although there are some attempts to use the informative contents of the weight values, it must
be recognised that in most cases, such interpretation is quite basic (for example, sign or
nullity of some weights can beinterpreted in the same way as derivativesin the case of simple
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functions, but this is usualy limited to weights connected to input or output units).
Neverthdess, with other kinds of models, interpretation similar to modd-level one is
possible; in our soci o-economic example (Figure 7 (b)), typica weights to units associated to
aclass of countries can be used as areference, in order to compare other countries or to make
other analyses. Without generaity, parameters-level interpretation is usually easier with
unsupervised modds than with supervised ones; but some supervised modds (like RBFN,
Radial-Basis Function Networks) also permit some kind of interpretability, mostly for the
same reasons of locality in the input space as in Kohonen maps.

Some comments and conclusions

Artificial neural networks are often known as black-boxes, whose results are difficult to
interpret from the application point-of-view. We believe that this reputation is only justified
a the level of the parameters value, for some ANN models. On the contrary, ANNs are
powerful approximation and classification models, and their power can be exploited to
analyse behaviours of datathat are difficult to analyse with other techniques.

But the real question is to know what kind of explanation is needed from an ANN modd.
What is explanation? We believe that any kind of (modd) interpretation becomes justified
once the information provided by the interpretation is useful. The usefulness is obviously
subj ective and depends on the context; however, usefulness must also be measured at the right
levedl. When a human brain analyses or resolves a problem, interpretability is of course dso a
key point. Neverthe ess, no one has the ideato look at the synaptic coefficients or membrane
potentials in the brain in order to get some information about the problem! Similarly,
explanation from an ANN mode should be mainly searched at the data leve, where ANNs
(and other similar techniques) excel. In addition to that, some knowledge can be extracted
from the modd and parameters level as detailed above but this should be seen as a
supplementary source of information, not as the principal one.

Other more technical aspects were not addressed here, athough they are linked to knowledge
and interpretability in neural networks. Using problem-related information to enhance the
performances of an ANN mode in one example. As shown by the MLP and Kohonen maps
examples, neural nets work as closed models, trained through observations. It must be
admitted that it is difficult to find context-independent methods to add other kind of
information in a network, such as uncertainty about data, probability of "wrong"
observations,... Common methods usudly try to convert such information in a form that is
more suitable for an ANN, such as resampling (Abu-Mostafa 1995) or quantization of data, ...

A similar problem arises with non-numerica data (such as colors), or unordered ones (such as
class labels). Using ANN-like methods with such data usudly necessitates a preprocessing
aimed at converting them into more usua numerical ordered data. This preprocessing has a
computational goal only; it must be understood that the consequence of such atificia
transformation of data is that the numerical or ordered character of the results cannot be used
for any kind of interpretability! Unfortunately, thisis not aways verified in theliterature...

ANN performances are also closdly rdated to the definition of error criteria, as illustrated in
Figure 3; inadequate criteria can lead to wrong interpretation of results! This is a crucia
problem with ANN: criteria are very often based on some least-mean square (LMS) error,
which is "natura" with linear approximation methods, but much less with non-linear ones;
LMS is often used with non-linear models just because we don't have any better idea...

Artificial neural networks are computational modd's, and must be considered as such. They
are aimed to model data; their explanatory power is thus related to the observations, and not
to the reality behind them. In this context, interpretation and explanation is where ANN
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excel: more than modelling data, they are able to generalise on situations that were not
"learned”. Of course, generalisation is only successful when learning makes it possible, i.e.
when the redlity is "sufficiently” described by the observations. This is why redlity and data
should not be mixed up: explanation from a computational modd is interesting when it is
useful, i.e. when it gives information that is contained but hidden in the data.
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