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ABSTRACT

Dimensionality reduction is a well known technique in sig-
nal processing oriented to improve both the computational
cost and the performance of classifiers. We use an elec-
troencephalogram (EEG) feature matrix based on three ex-
traction methods: tracks extraction, wavelets coefficients
and Fractional Fourier Transform. The dimension reduction
is performed by Mutual Information (MI) and a forward-
backward procedure. Our results show that feature extrac-
tion and dimension reduction could be considered as a new
alternative for solving EEG classification problems.

1. INTRODUCTION

Since the integration between classical and modern biomed-
ical signal processing with the engineering, new fields have
been activated in a new area known called “neuroengineer-
ing.” Clinical neuroengineering has active fields such as
neural prosthesis, brain computer interface (BCI), new clin-
ical imaging techniques and treatment tools with electroen-
cephalogram (EEG), evoked potentials (EPs), magnetoen-
cephalography (MEG) and functional magnetic resonance
imaging (fMRI). Nowadays, there are several processing
methods, tools and algorithms for helping in new treatments,
obtaining new measurements of brain activity and detecting
brain diseases.
EEG signals not only represent the brain function but also
the status of the whole body, i.e., a simple action as blinking
the eyes introduces oscillations in the EEG records. Then,
the EEG is a direct way to measure neural activities and it is
important in the area of biomedical research to understand
and develop new processing techniques.
EEG signal pre-processing and processing could be consid-
ered as a “pattern recognition system” with focus on the

This work has been funded by the Spanish Government under grant
TEC2008-02473.

classification algorithms. Pre-processing methods include
EEG signal modelling, segmentation, filtering and denois-
ing, and EEG processing methods consist of two tasks: fea-
ture extraction and classification.
Feature extraction consist in finding a set of measurements
or a block of information with the objective of describing in
a clear way the data or an event present in a signal. These
measurements or features are the fundamental basis for de-
tection, classification or regression tasks in biomedical sig-
nal processing and is one of the key steps in the data analysis
process.
Features constitute a new form of expressing the data, and
can be binary, categorical or continuous: they represent at-
tributes or direct measurements of the signal. For example,
features may be the age, health status of the patient, family
history, electrode position or EEG signal descriptors (ampli-
tude, voltage, phase, frequency, etc.). The aim of extracting
features is to identify “patterns” of brain activity: features
can be used as input to a classifier. The performance of a
pattern recognition system depends on both the features and
the classification algorithm employed.
This work at improving the performance of EEG signal clas-
sification. For this purpose, we construct a feature matrix
using epileptic EEG signals and different feature extraction
algorithms, and then we try to improve the classifier per-
formance by dimension reduction. In this way, we could
remove redundant features and improve the computational
cost by simplification of the resulting models.
The paper is organized as follows: Section 2 explains the
feature matrix construction, dataset used and also introduces
the feature selection procedure. Section 3 shows results in
EEG dimension reduction of the feature matrix. In Section
4 the main results are discussed and conclusions of the pa-
per are given in Section 5.



2. METHODS

2.1. EEG feature extraction: related work

More formally, feature extraction assumes we have for N
samples and D features, a N × D data matrix. It is also
possible to obtain a feature vector at the sample n from the
feature matrix, that is, x is a unidimensional vector x =
[x1, x2, ... , xD] called as “pattern vector”.
More specifically in EEG detection and classification scener-
ies, there are several features proposed in the literature for
EEG signals such as power spectral density [1], wavelet
transform [2, 3], Lyapunov exponents with wavelets [4],
sampling techniques [5] and time frequency analysis [6].
In this paper, we evaluate three methods for feature extrac-
tions for EEG signals: tracks extraction (LFE) [7], wavelet
transform (W) and Fractional Fourier transform (FrFT) [8].
Although there are more methods proposed for EEG extrac-
tion in the literature [9], we have chosen these algorithms
because both wavelets and the FrFT show better results than
others methods, for example: Fourier transform or time-
frequency analysis (TFD). FrFT has the property that if we
gradually increase its order, we can obtain more informa-
tion in the form of coefficients than the Fourier transform.
On the other hand, wavelets improve the time-frequency
resolution through multi-resolution analysis [8]. Addition-
ally, the tracks extraction has been selected because it works
with only three features: energy (E), frequency (F) and track
length (L), which together can solve complex classification
problems [7]. Moreover, this method could be combined
with other features and improve the results, as shown later.

2.2. Dimensionality reduction EEG

In practice, we need to know which features are sufficient
and appropriate to specific problems but usually it is not
easy to know a priori which features will be useful. It is here
where feature selection methods play an important role. Fea-
ture selection techniques can help to achieve the following
goals: (i) reducing the size of the feature matrix. This may
involve removing some features and reducing unnecessary
data storage. (ii) improving both the computational cost
and the performance of the classifier, since we only retain
the features useful to the classifier. This means that we do
not choose the most potentially relevant, because the design
could be suboptimal or conversely, the subset most useful,
because it may exclude the most important relevant features
[10].

2.3. Mutual information (MI)

Mutual information (MI) measures the relevance between a
group of features X and the variable or output Y . This re-

lationship is not necessarily linear. The mutual information
between two variables is the amount of uncertainty (or en-
tropy) that is lost on one variable when the other is known,
and vice versa. The variables X and Y could be multi-
dimensional, solving the drawback in correlation measure-
ments that are based on individual variables [11].
The MI for discrete variables is calculated as

I(X,Y ) =
∑
x∈X

∑
y∈Y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
(1)

Note in Eq.1 that it is necessary to know the exact proba-
bility density functions for estimating the MI and this is the
most sensitive part in the MI estimation. Different methods
have been proposed in the literature to estimate such joint
densities such as Parzen windows, the k-nearest neighbor
algorithm (k-NN), the Kraskov method and other estimators
derived from Kraskov method and oriented to classification
problem [12].

2.4. Forward-backward algorithm

Several search strategies could be used for finding the most
adequate subset of features, such as best-first, branch-and-
bound, simulated annealing and genetic algorithms. Greedy
search strategies such as forward selection, backward elim-
ination or any combination of them are the most popular.
The forward selection method starts from an empty set and
progressively add features one by one according to some
criterion. In a backward elimination procedure one starts
with all the features and progressively eliminates the least
useful ones [10].
With D input features, there are 2D−1 possible subsets that
should be studied but this evaluation is unfeasible for large
D due to its high computational cost. The combination of
forward and backward procedures could alleviate the curse
of dimensionality by avoiding the evaluation of features with
dimension D. This algorithm works in the following steps:
(1) The first feature is selected by MI maximization between
the original features [X1, ...,XD] and the output variable Y :

Xsel
1 = arg max

Xj

{
Î(Xj , Y )

}
, 1 ≤ j ≤ D

where Î(X,Y ) is the MI estimation of I(X,Y ) and Xs1 is
the first variable selected.
(2) Once Xsel

1 is selected, the next components must be se-
lected taking into account this first variable. The second
variable Xsel

2 is the one that maximizes the MI in conjunc-
tion with the first one and the output variable Y :

Xsel
2 = arg max

Xj

{
Î({Xsel

1 , Xj}, Y )
}

, 1 ≤ j ≤ D, Xj �= Xsel
1

The next steps consist in selecting the variable Xsel
st in the

t-th step given a subset of already selected features



S = [Xsel
1 ,Xsel

2 , ...,Xsel
s(t−1)],

then Xsel
st is chosen according to

Xsel
st = arg max

Xj

{
Î({S,Xj}, Y )

}
, 1 ≤ j ≤ D,Xj /∈ S

(3) Assuming that t variables have been selected after step t
(i.e. the last variable selected is Xsel

st ), the backward proce-
dure consist in checking what happens with the MI when a
variable is removed from the subset S. The variable chosen
is the one (Xrem

t ) that increases the estimation of the MI
when eliminated. In other words, we apply the next maxi-
mization rule after forward step t:

Xrem
t = arg max

Xsel
j

{
Î({Xsel

1 , ..., Xsel
j−1, X

sel
j+1, ..., X

sel
t−1}, Y )

}
,

1 ≤ j ≤ t,

if

Î({Xsel
1 , ..., Xsel

j−1, X
sel
j+1, ..., X

sel
t }, Y ) > Î({Xsel

1 , ..., Xsel
t }, Y )

Search methods must have a stopping criterion. The back-
ward elimination is more intuitive than the forward selec-
tion. For the latter one could use a permutation test among
the features chosen to evaluate if a new variable presents a
significant increase of MI. Another way is using a ranking
algorithm rather than a selection one. These methods are
described in [12] respectively. However, studying stopping
criteria for this problem exceeds the scope of this paper and
is left as future work.

3. EXPERIMENTS AND RESULTS

The aim of this section is to evaluate the performance in
dimension reduction of the feature matrix. Several experi-
ments using different MI estimations have been conducted.
A preliminary study on feature selection using Smooth pseudo
Wigner-Ville distribution (SPWV), wavelets and FrFT is de-
scribed in [8].

3.1. Data and experimental setup

This paper uses a database consisting of five sets (denoted as
Z, O, N, F and S), each one containing 100 single-channel
EEG segments each having 23.6 sec duration and sampling
rate of 173.61 Hz. 1. In our experiments we use three clas-
sifications problems to evaluate our features.

1) The first problem called N1, two classes are exam-
ined: normal (Z) and seizure (S).

1More details on the datasets and the classification problem are de-
scribed in [13].

2) The second classification problem called N2, includes
the classes normal, seizure-free and seizure (Z, F and
S respectively).

3) In the third problem called N3, all the five classes are
used.

Next, we create a feature matrix for each problem and in-
dividually test each feature or extraction method using a
classifier. The feature matrix, with dimension (D) equal to
65, has been formed by three feature extraction methods:
tracks extraction (3 features), wavelet coefficients (45 fea-
tures) and fractional Fourier coefficients (17 features).
In this paper we will use SVMs with radial basis function
(RBF) as classifiers. SVMs have proved to be one of the
most appropriate alternative for solving classification prob-
lems and their solution is supported by Statistical Learn-
ing Theory [14, 15]. The SVM parameters are found by
10-fold cross-validation. Time-frequency distribution is the
Reduced Interference Distribution (RID). EEG epochs was
5 secs., Δ = 0.5 Hz and 30% of overlapping. K value for
K-NN algorithm used in estimating the probability density
function was 30.
The statistical relevance of the results has been verified by
means of a Kruskall-Wallis test, which is a sort of nonpara-
metric ANOVA test that does not assume Gaussianity in the
data under study. In all cases (except between Fractional
Fourier (FrF) and LFE+Wavelets (W) in the N1 case) a p-
value smaller than 0.01 has been obtained, thereby rejecting
the null hypothesis that data come from the same distribu-
tion. Note in these tables the difference in difficulty among
N1 (easy), N2 and N3 (hard) problems.
Finally, the performance evaluations of the experiments was
based on 1000 bootstrap runs [16] using two measures:
“Fscore” and accuracy, defined as:

Fscore = 2∗sensitivity∗specifity/(sensitivity+specifity)

where sensitivity and specifity are defined as follows:

. Sensitivity: Percentage of EEG segments contain-
ing seizure activity correctly classified.

. Specificity: Percentage of EEG segments not con-
taining seizure activity correctly classified.

and

Accuracy =
# of correctly classified labels

total # of labels

3.2. Results

Table 2 shows individual performance (Fscore) for each fea-
ture extraction method and their combinations on indepen-
dent test sets. N2 problem achieves 99.74% in performance
using features LFE+FrF (dimension D=20). N3 achieves



96.02% with all features (D=65). N1 problem is solved
using just 2 features (LE) obtained from tracks extraction
(100% with D=2).
The experiments that follow evaluate each feature (or fea-
ture subsets) using a feature selection algorithm based on
forward-backward procedure and Mutual Information (MI)
as relevant criteria. Although the N1 problem only needs
two features (LE) to solve the classification problem (see
Table 2), this problem was also included in feature selection
analysis to see if there is possibility of finding other subset
of features with the same performance (100%).
Table 1 shows the results on feature selection using reduced
interference distribution (RID) and three methods for MI
estimation: Kraskov, Parzen and K-NN. It should be noted
that each method selects different features, but in most cases
it is successful in Fscore rate.

Table 1. Fscore evaluations achieved by three different MI
estimations and RID. Fscore values average and variances
correspond to over the 1000 bootstrap runs.

Forward-backward selection
Kraskov Parzen Knn

N1
{E, 1 FrF} {L,E} {F,E, 5 WC, 10 FrF }

99.77 ± 0.0013 100 ± 0 99.16 ± 0.0058

N2
{L,F,E, 1 FrF} {L,F,E} {L,F,E, 2 WC, 5 FrF}
100 ± 0.0023 83.50 ± 0.0552 99.79 ± 0.0023

N3
{3 FrF} {L,F,E} {L,F,E, 2 WC, 6 FrF}

85.45 ± 0.0116 83.34 ± 0.0721 99.59 ± 0.0356

The following can be noted from these results:

• N1 is definitely solved with only two features ob-
tained by tracks extraction method (LFE). Parzen me-
thod selected the appropriate features.

• Problem N2 has increased from 99.74% with dimen-
sion D=20 (see Table 2) to 100% with D=4 (see Table
1). Similarly, problem N3 from 96.02% with D=65
(see Table 2) to 99.59% with D=11 (see Table1). The
selection method that showed better performance in
this case was the K-NN.

Classification results clearly show the good performance of
the LE detector in N1 problem (100%). They also show an
increase of accuracy with less features for datasets N2 and
N3. This validates the importance of choosing suitable fea-
tures in each classification problem.
Finally, Table 3 shows a comparison between our features
selected and other methods proposed in the literature. Re-
sults are presented in accuracy rate and the distribution used
is the RID. Note that N1 and N2 has reached the maximum
accuracy but with the difference in the dimension of the fea-
ture matrix (D=2 for N1, N2 D=4) than the best approach
(D=4 both N1 and N2). Something similar occurs with N3
that has increased in accuracy from 99.28% to 99.59% but
with a noticeable dimension reduction (D=11) compared
with the best proposal in the literature, which has D=24.

4. DISCUSSION

Preliminary studies have shown the effectiveness of both
wavelet coefficients and FrFT algorithm, as well as tracks
extraction method for EEG classification [8]. There are three
important remarks in this paper: (i) We made a preliminary
selection of several time-frequency distributions; RID dis-
tribution was chosen for its good performance in classifica-
tion tasks. (ii) We select features based on MI criteria and
evaluate these features. (iii) We show a comparison between
our features selected and other methods proposed in the lit-
erature.
Results presented in this work confirm that feature selection
based on MI and forward-backward procedure is a good al-
ternative for improving the classifier performance in EEG
signals. In addition, these results also show the effective-
ness of tracks extraction method for EEG signals with epilepsy
and also show that these features could be combined with
other features for classification tasks.

5. CONCLUSIONS

Dimensionality reduction of epileptic EEG feature matrix
using mutual information and forward-backward procedure
has shown to be a good alternative for improving classifier
performance. On the other hand, features proposed based on
tracks extraction, wavelet coefficients and fractional Fourier
transform could be considered a good alternative to solve
EEG classification problems with epilepsy.
Future work is oriented to detect other events on EEG sig-
nals such as event related potentials (ERPs), slow wave-
sleep (SWS) and oxygen deprivation on fetal EEG, as well
as the study of stopping criteria in the forward-backward al-
gorithm and the comparison with non-greedy methods for
MI estimation.
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