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The problem of blind source separation is usually solved by optimizing a contrast function that

measures either the independence of several variables or the non-gaussianity of a single variable. If the

problem involves bounded sources, this knowledge can be exploited and the solution can be found with

a customized contrast that relies on a simple endpoint estimator. The minimization of the least absolute

endpoint is closely related to and generalizes the minimization of the range, which has already been

studied within the framework of blind source extraction. Using the least absolute endpoint rather than

the range applies to a broader class of admissible sources, which includes sources that are bounded on a

single side and, therefore, have an infinite range. This paper describes some properties of a contrast

function based on endpoint estimation, such as the discriminacy. This property guarantees that each

local minimum of the least absolute bound corresponds to the extraction of one source. An endpoint

estimator is proposed, along with a specific deflation algorithm that is able to optimize it. This

algorithm relies on a loose orthogonality constraint that reduces the accumulation of errors during the

deflation process. This allows the algorithm to solve large-scale and ill-conditioned problems, such as

those proposed in the MLSP 2006 data competition. Results show that the proposed algorithm

outperforms more generic source separation algorithms like FastICA, as the sources involved in the

contest are always bounded on at least one side.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Blind source separation (BSS) has proved to be useful in many
areas of signal processing. Applications are numerous in denoising
[7], acoustics [9], biomedical signal analysis [13], and in other
domains that involve arrays of sensors. However, in most of these
applications, general-purpose methods are used. These methods,
such as JADE [2] and FastICA [12,10], are widely available and have
been well studied in the literature (see [11] and references
therein). They also provide the user with an interesting tradeoff
between ease of use and overall good performance.

In practice, the BSS problem can be solved only if the sources
and the mixtures fulfill some conditions. The most common
assumptions are that the sources are statistically independent,
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and that the mixtures are linear and instantaneous. This frame-
work correspond to independent component analysis [11] (ICA).
Finding a solution to the ICA problem requires the definition of a
contrast function, namely an objective function that is applied to
one or several linear combinations of the mixtures, and whose
global maxima correspond to desired solutions of the problem.

This paper aims at studying a contrast function that relies on
some a priori assumptions about the sources signals. If these
assumptions are valid, an algorithm based on this specific contrast
function can dramatically increase the separation performance,
compared to usual techniques. The literature gathers several
works that develop similar approaches. For instance, assumptions
such as the sparsity [31] or the non-negativity [20] of the sources
have been investigated. Our approach is related to previous works
about the range of the estimated sources [28,29,25], also known
as the support width measure (SWM) [23,15]. As a contrast
function, the range has interesting properties, such as the absence
of local minima [26]; it can even be used with dependent sources,
provided all sources have a bounded support [25].

We extend this approach to sources whose supports are
bounded only on one side, such as non-negative sources, among
other possibilities. For this purpose, we assume that sources are
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centered and we replace the range with an estimator of the lowest
endpoint, in absolute value. An important result is that we show
that the proposed contrast keeps the discriminacy property, i.e. to
each of its local maxima corresponds a linear combination of the
mixtures that actually returns a single source, up to some scaling
and permutation.

As the least absolute endpoint (LAE) is not everywhere
differentiable, we propose a specific algorithm for its minimiza-
tion. Each part of the algorithm (whitening, deflation, loose
orthogonality constraint) have been designed in order to max-
imize the separation performance in difficult problems. Experi-
ments detailed in this paper come from the ‘‘ICA algorithms for
large-scale, ill-conditioned, and noisy mixtures’’ data analysis
competition at the IEEE MLSP 2006 workshop. The proposed
technique has won this contest.

The remainder of this paper is organized as follows: Section 2
introduces ICA. Section 3 describes the proposed contrast, which
is based on the LAE. Section 4 describes an estimator of the
contrast, along with a specific optimization procedure. Section 5
details the results obtained with the mixtures proposed in the
IEEE MLSP 2006 competition. Finally, conclusions are drawn
in Section 6.
2. The framework of ICA

The problem of BSS is usually tackled within the framework of
ICA. The main hypotheses in ICA are the independence and
stationarity of the sources. As for the mixtures, one usually
assumes that they are linear and instantaneous. If s ¼ ½s1; . . . ; sm�

T

denotes the vector of unknown sources, then the mixture model
can be written as x ¼ As, where x ¼ ½x1; . . . ; xn�

T is the vector of
observed mixtures and A is the unknown mixing matrix.
Throughout this paper, we assume that the number of mixtures
is equal to the number of sources (m ¼ n).

2.1. Contrast function

Statistical independence is the key assumption that allows ICA
to recover the unknown sources. In practice, almost all ICA
algorithms actually achieve the optimization of a quantity that
measures in some way the independence of the estimated
sources. Informally, a function is thus a contrast if its maximiza-
tion allows us to identify either one or all sources. This leads to the
distinction of two classes of contrasts.

In the first class, the contrast is a function C of all estimated
sources. The essential property of such a contrast is that it reaches
a global maximum if and only if the estimated sources correspond
to the actual ones, up to a scaling and a permutation. If the
estimated sources are denoted y¼

:
Bx, then arg maxB CðyÞ identi-

fies the demixing matrix (up to the above indeterminancies) and
leads to the simultaneous separation of all sources. Algorithms
that perform this maximization are often said to be symmetric.
Estimators of the mutual information [30,19] belong to this
first class.

In the second class, the contrast is applied to a single estimated
source and it reaches a maximum when the estimated source
corresponds to one of the actual sources. If y ¼ ½y1; . . . ; ym�

T, then
yi ¼ bx and arg maxb CðyiÞ identifies a row of the demixing matrix
B. Notice that k distinct maxima have to be found in order to
extract k sources from the set of mixtures. For this reason,
algorithms that extract sources one by one by repeating the
contrast maximization are said to follow a deflation procedure.
The kurtosis [16] is a typical example of a deflation contrast.

Of course, the fact that a contrast has to be maximized is
purely conventional. In the cases of the mutual information and
the range, it is often simpler to minimizes those quantities instead
of introducing minus signs all around. Notice that, although the
definition of a contrast guarantees that the solution of the BSS
problem corresponds to maxima of the contrast, the converse
statement does not necessarily hold true. This means that,
depending on the contrast, local maxima can exist, which do not
correspond to any solution of the problem. Contrasts that are free
of spurious maxima are said to be discriminant [25].

2.2. Whitening

Many ICA algorithms comprise a whitening step that simplifies
the separation problem. Prewhitened mixtures are denoted by
z¼
:

Vx, where the whitening matrix V is such that Ez and the
covariance matrix Efz zTg is equal to the identity and the product
VA is orthogonal. After this preprocessing, ICA reduces to finding
an orthogonal matrix W and y ¼Wz yields an estimate of the
sources up to a scaling and permutation. As ICA cannot recover the
variance of the original sources [11], this means that each output
will correspond to a whitened source (zero-mean, unit-variance),
whose sign is not relevant. In other words, the output vector y ¼
WVAðs� EfsgÞ is such that Efy yTg ¼ I. In order to compensate for
centering, the vector BEfxg ¼WEfzg can always be added to y. This
shows that without loss of generality, the sources can be assumed
to be white in the identification of B, for the sake of simplicity.
Under this hypothesis, the product VA is orthogonal and such is
also the transfer matrix C ¼ BA. Furthermore, we can assume that
B and A are orthogonal matrices. In particular, in the two-
dimensional case, the mixing matrix A, the demixing matrix B,
and the transfer matrix C are rotation matrices with angles f, j,
and y ¼ jþf, respectively. In this case, source separation
amounts to finding j such that y is an entire multiple of p=2.

The above discussion shows that prewhitening simplifies the
ICA problem from a purely theoretical point view, by reducing the
space of possible solutions. In practice, however, whitening can be
difficult to achieve in some cases, depending on the actual value of
the mixing matrix A. If A is large and has a high condition number,
whitening can fail to decorrelate all mixtures. For this reason, the
implementation of the prewhitening step must be carefully
designed. As whitening is basically intended to decorrelate the
mixtures, its accuracy also critically depends on the sample
covariance matrix. If the sample size is low, or if there are outliers,
whitening can thus be inaccurate.

Deflation algorithms that rely on a prewhitening step are often
said to provide poor separation performances. For a high number
of mixtures, this is mainly due to the accumulation of inaccuracies
during the deflation process. As rows of W are related to each
other with an orthogonality constraint, inaccuracies of a given row
easily propagate to the subsequent ones. This issue can be
addressed by relaxing the orthogonality constraint.
3. A contrast function based on endpoint estimation

Many general-purpose ICA algorithms, like FastICA [12,10] or
JADE [2] offer an appealing tradeoff between separation perfor-
mances and speed. In some demanding applications, however, any
a priori knowledge about the sources can be taken into account in
order to design a specific contrast that improves the perfor-
mances. For instance, contrast functions for sparse [31] or non-
negative [20] sources can be found in the literature. More
generally, the improvement can impact at least four points:
�
 The speed and/or the convergence rate.

�
 The separation quality, measured with performance index such

as the signal-to-interference ratio (SIR).
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Fig. 1. Example of supports of zero-mean independent random variables x; y and the support of the sum of these variables.
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�
 The possibility of relaxing some assumption in the model (such
as the statistical independence of the sources or the usual
requirement mpn).

�
 The possibility of designing a contrast function with more

interesting properties, such as the discriminacy [25].

If all sources have upper and lower bounds, an algorithm that
minimizes the SWM can address the last three points, depending
on the context [28,29,24,15,23]. The algorithm described in [14]
can extract sources one by one (using a deflation approach [3,23])
by minimizing the function COðyiÞ¼

:
supOyi

� inf Oyi
, where Ox

denotes the support of the random variable x with the probability
density function px: Ox¼

:
fx : pxðxÞ40g. Thus, the function COðyiÞ is

nothing but the range of the estimated source yi.
In order to deal with a larger set of possible source

distributions, we propose to replace the range estimation with
an endpoint estimation [8]. This approach can be related to
Erdogan’s work [5], which deals with the minimization of the
supremum for symmetric bounded signals. In our approach,
symmetry is no longer required.

In statistics, yðxÞ usually denotes the endpoint [6] of a random
variable x. More precisely, if x has probability density function px

and support Ox ¼� �1; a�
Sq

i¼1 fxig for some finite scalar number a,
and possible isolated points x1; . . . ; xq, with qo1, then
yðxÞ ¼ supOx. Assuming that x has a lower bound instead of an
upper one, an equivalent definition involving the infimum of the
support can be derived.

Compared to the range, the endpoint allows us to extract
sources that are bounded only on a single side. Obviously, double-
bounded sources can be extracted as well, provided we focus on
one of their two endpoints. If the sources are centered, we can
select the smallest endpoint in absolute value, for instance. The
same trick is also useful for single-bounded sources, as ICA can
only recover them up to a sign change. Consequently, we can
define the LAE WðxÞ of a random variable x with arbitrary support
Ox as

WðxÞ¼: minfj inf Oxj; j supOxjg. (1)

In the case of a single-bounded source, this guarantees that
WðaxÞo1. The LAE also benefits from the properties stated in the
following lemma.

Lemma 1 (Properties of the LAE). Let x and y be two independent

random variables. Then, the following properties hold:
P1
 non-negativity: WðxÞX0,

P2
 scale-equivariance: WðaxÞ ¼ jajWðxÞ for all a 2 R,

P3
 superadditivity: if Efxg ¼ Efyg ¼ 0, then Wðxþ yÞXWðxÞ þ WðyÞ.
The proof of this lemma is trivial and is not detailed here. The last
1 As we deal with zero-mean signals, the fact that Wð�Þ is not shift-invariant

does not matter (i.e. for b 2 R0, the equality Wðxþ bÞ ¼ WðxÞ does not necessarily

hold).
property P3 is illustrated in Fig. 1 in the two-dimensional case.
Assuming that bpjaj and jcjpd, we have WðxÞ ¼ b;WðyÞ ¼ jcj,
bþ jcjpminfjaj þ jcj; bþ dg, i.e. WðxÞ þ WðyÞpWðxþ yÞ; equality is
reached only if either d ¼ �c or a ¼ �b, that is, if the support of at
least one of the two sources is symmetric with respect to zero.
It is important to stress that Wðxþ yÞ could take infinite values
even if maxfWðxÞ;WðyÞgo1. This occurs for example if Ox ¼ ½a;1

½ and Oy ¼ ½�1; b½ for some �1oa; bo1. In the following, we
only assume that the sources have a finite LAE.

Based on Lemma 1, we obtain the following corollary, provided
the sources are centered (this condition is trivially fulfilled if the
mixtures are prewhitened).

Corollary 1 (LAE contrast). With the above notations, the criterion

CLAEðyiÞ¼
: W

Xm
j¼1

wijzj

0
@

1
A (2)

is a contrast function for source separation by deflation.

Proof. Let us define by IðwÞ the set of indices j in l; � � � ;m

corresponding to the non-zero entries of the vector w in R:
IðwÞ¼

:
fj : wðjÞa0g. Noting further by ci the ith row of C, cij its

entries, and k¼
:

arg mini WðsiÞ, Lemma 1 allows us to write

W2
ðyiÞ ¼ W2

ðcisÞ

X

P2 ;P3 X
j2IðciÞ

c2
ijW

2
ðsjÞ

¼ W2
ðskÞ þ

X
j2IðciÞnfkg

c2
ijðW

2
ðsjÞ � W2

ðskÞÞ

XW2
ðskÞ,

where the equality results from the fact that kcik ¼ 1 for all
1pipn.

The above inequalities are strict unless there is a single element

in the set IðciÞ. Consequently, because the quadratic function is

monotonously increasing on Rþ, the minimization of CLAEðyiÞ ¼

Wð
Pm

j¼1 wijzjÞ with respect to wi on the unit-sphere leads to the

recovery of the source with the LAE, namely sk. If we assume that

the sources are indexed according to their LAE (i.e. Wðs1Þp
Wðs2Þp � � �pWðsmÞ), we can iterate this result. Then the output

signal yj ¼
Pm

i¼1 wjizi obtained by minimizing CLAEðyjÞ with

respect to wj and subject to wiw
T
j ¼ 1 for all 1pipj is a whitened

copy of sj (or any other source with the same LAE value). &

More generally, by using Pham’s theorem about contrast
functions [18], we find the following result: if mixtures are
prewhitened, then W is constrained to belong to the group of
orthogonal matrices,1 and therefore

Qm
i¼1 WðwizÞ is a contrast

function for separating the m sources simultaneously. More
generally, if mixtures are not prewhitened, then

Qm
i¼1 WðbixÞ=

jdet Bj is a contrast function.
Fig. 2 illustrates that function CLAEð�Þ fulfills the conditions to

be a deflation contrast. Notice that in the two-dimensional case,
the second source is trivially recovered at the same time as the
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first one, thanks to the orthogonality constraint that results from
prewhitening. In this case, A and B are orthogonal, and source
separation is achieved by finding a single angle.

3.1. Discriminacy property of the LAE contrast

A contrast function owns the property of discriminacy
if it reaches a local minimum (or maximum, depending on
the convention) only at a solution point [25]. In other
words, finding any local minimum amounts to extracting one or
several sources and, depending on the separation scheme
(symmetric, by deflation, or partial), all are potentially relevant.
This property is convenient as it turns a global optimization
problem into a local one. Hence, the contrast function has no
spurious optimum.

There are few discriminant contrast functions. To our knowl-
edge, only kurtosis-based and range-based functions own this
property [26]. As a counter example, contrast that are based
on Shannon’s entropy, including mutual-information and max-
imum negentropy method, might not be discriminant in specific
cases [27].

Proving the discriminacy of the proposed contrast function is
not easy because it contains operators such as min, inf, and sup,
which are not everywhere differentiable. Additionally, the con-
trast is not necessarily strictly superadditive (the strict equality in
P3 of Lemma 1 does not necessarily hold true). Therefore, we will
first sketch some results about the contrast discriminacy in the
two-dimensional case, with prewhitened mixtures and orthogo-
nal demixing matrix B. To this end, we shall consider the example
given in Fig. 1 (with Os1

¼ Ox and Os2
¼ Oy). The extension to the

multi-dimensional case will come next. The following lemma
focuses on the contrast discriminacy in the case of a deflation
procedure.

Lemma 2 (Discriminacy of WðwzÞ s.t. kwk ¼ 1 and w 2 R2). Assum-

ing that w 2 R2 satisfies constraint kwk ¼ 1, any local minimum

point of WðwzÞ necessarily corresponds to wVA being proportional to

a basis vector (i.e. proportional to either ½0;1� or ½1;0�).

Proof. Because z is a white random vector and w is a unit-norm
vector, the output y ¼ wz can be written as yy ¼ s1 cos yþ s2 sin y.
Actually, it is sufficient to prove that WðyyÞ is discriminant in a
particular quadrant Qi¼

:
�ði� 1Þp=2; ip=2½, with (i 2 N�); this will

extend to the other quadrants of the unit circle. Here, we consider
only Q1. The discriminacy of WðyyÞ results from its ‘‘quadrant-wise’’
concavity. Indeed, it is the minimum of two functions f iðyÞ and
giðyÞ that are easily seen to be concave in Q1:

WðyyÞ ¼ minfjaj cos yþ jcj sin y|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼
:

f 1ðyÞ

; b cos yþ d sin y|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼
:

g1ðyÞ

g. (3)

Hence, WðyyÞ is also concave in Q1 (and actually in any quadrant of
the unit circle, up to ad-hoc modifications in functions f iðyÞ; giðyÞ).
By corollary, its local minima are necessarily attained at the
borders of the quadrants, i.e. for y 2 fkp=2; k 2 Zg.

Notice that depending on the values of a; b; c; d, the couple of

curves f iðyÞ and giðyÞ may or may not have an intersection in a

given quadrant. For instance, it is obvious that the intersection of

f 1ðyÞ and g1ðyÞ, if it exists, is unique and occur at the angle

y%
ðQ1Þ¼

:
arctanððjaj � bÞ=ðd� jcjÞÞ. For example, no such intersec-

tion exists in Q1 if b4jaj and d4jcj or bojaj and dojcj. &

The above lemma is illustrated in Fig. 3 for four different
quadruples ða; b; c;dÞ (see Fig. 1). The first and second quadrants
Q1 and Q2 are considered for completeness (the two others do not
provide further information because of symmetry properties).
Note that we have f 2ðyÞ ¼ bj cosyj þ jcj sin y and g2ðyÞ ¼ ja cos yjþ
d sin y. Let us now extend Lemma 2 to m42.

Lemma 3 (Discriminacy of WðwzÞ s.t. kwk ¼ 1 and w 2 Rm). After a

prewhitening step, the contrast function WðwizÞ is discriminant on the

set wi 2S
m, where Sm is the m-dimensional unit-sphere

Sm
¼
:
fw 2 Rm : kwk ¼ 1g.

Proof. The proof is based on the similarity between the two
arguments of the min function involved in the definition of WðxÞ
(see Eq. (1)) and the range of x, defined as

RðxÞ¼
:

supOx � inf Ox.

Thanks to prewhitening, one has Efyig ¼ 0 (and one can freely
assume Efsjg ¼ 0 for all j), j inf Oyi

j ¼ � inf Oyi
, j supOyi

j ¼ supOyi
,

and RðyiÞ can all be written as a weighted sum of positive
quantities depending on the sources and possibly the sign of the
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Fig. 3. Concavity of WðyyÞ where yy ¼ cos ys1 þ sin ys2 with a ¼ inf Os1
; b ¼ supOs1

; c ¼ inf Os2
;d ¼ supOs2

. The functions f iðyÞ (solid) and giðyÞ (dashed) are plotted in the

two first quadrants for different quadruples ða; b; c; dÞ (clockwise from top left: ð�5;2;�1;3Þ; ð�2;5;�1;3Þ; ð�5;2;�3;1Þ; ð�2;5;�3;1Þ). The WðyyÞ curve (with ‘‘�’’ markers) is

seen to be ‘‘quadrant-wise’’ concave (i.e. concave in each of the quadrants). Hence, all the local minimum points are located on the borders of the quadrants, meaning that

the contrast is discriminant. Finally, one can check that Wðcos ys1Þ þ Wðsin ys2Þ (dash-dotted) is always lower than or equal to WðyyÞ, as claimed in Lemma 1.
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corresponding source weights:

� inf Oyi
¼
X

j

jcijjð� infðsignðcijÞsjÞÞ,

supOyi
¼
X

j

jcijj supðsignðcijÞsjÞ,

RðyiÞ ¼
X

j

jcijjRðsjÞ. (4)

Observe that one must keep signðcijÞwithin the infð�Þ as a negative
sign of cij would transform infðsignðcijÞsjÞ in supðsjÞ, and conversely
for the supremum.

Let us now focus on the part of the m-dimensional unit-sphere

Sm belonging to the same hyper-quadrant as a given vector ci

satisfying cijcika0 for some indices j; k. This restriction, noted

RðciÞ, is the set of unit-norm m-dimensional vectors having the

same sign vector as ci (with signð0Þ ¼ 0 by convention). Mathe-

matically, this restriction can be expressed as

RðciÞ¼
:
fw 2Sm

g s.t. 8j signðwjÞ ¼ signðcijÞ,

which is defined for unitary vectors w 2 Rm
nIm only, Im being the

set of m-dimensional vectors having a single non-zero entry.

Assume yi ¼ cis does not correspond to a source (i.e. cieI
m). It

makes then sense to compute the restriction RðciÞ. On this

restriction, each right-hand side of Eq. (4) is a weighted sum of

constant, positive quantities (e.g. a2
j ) and can be written as

f ða; ciÞ ¼
X

j

jcijja2
j .
On the other hand, earlier works about the range-based contrast

functions show that if a2
j 40 for all j, then f is free from local

minimum point on the restriction RðciÞ (see details in [22]).

From these results, one gets that neither � inf Oyi
nor supOyi

can have a local minimum point on RðciÞ (whatever is w 2 Rm
nIm).

Finally, it is easily seen that, consequently, WðyiÞ, which is then the

minimum of two functions free from local minimum on any

restrictions RðciÞ, is itself free from local minimum on any

restrictions RðciÞ, i.e. whatever is ci 2S
m provided that there

exists j; k such that cijcika0.

Since this result does not depend on the number of nonzero

entries of ci, this means that provided that there are at least two

nonzero entries, one can set one additional entry to zero without

facing a local minimum point. This concludes the proof of the

discriminacy of WðyiÞ. &

Notice that the symmetry of the (bounded) source densities is
not required in the above lemma, even though it is a sufficient
condition for the lemma to hold true.
4. Implementation

An ICA algorithm relies on several implementation choices.
Mixtures can be prewhitened or processed as such. As for the
contrast function, a good estimator that can be applied to finite
samples must be found. Depending on the contrast nature, the
algorithm can follow a deflation procedure or separate all sources
jointly. The contrast optimization itself can work according
different schemes, such as gradient descent or fixed-point
iterations.
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The algorithm we propose is intended to solve the problems of
the MLSP 2006 competition. These problems involve a high
number of mixtures, low sample sizes, and/or ill-conditioned
mixtures of sources that are single-bounded or double-bounded.
As the LAE is a property of scalar random variables, the algorithm
naturally adopts a deflation architecture. We also developed a
symmetric algorithm based on the LAE but only a few preliminary
experiments sufficed to show that it scales poorly with the
number of mixtures. This can easily be explained by the fact that
symmetric algorithms have to update and orthonormalize the
complete matrix W at each update, whereas deflation algorithms
follow a ‘‘divide and conquer’’ policy, in which W is determined
row by row. Other implementation choices, such as prewhitening,
the contrast estimation, and the contrast optimization, are
discussed in the following subsections, after the introduction of
some notations.
4.1. Notation

In practice, source separation problems must be solved with
only finite samples of the observed mixtures. In order to account
for this limitation, we adopt the following conventions. Vector
xðtÞ ¼ ½x1ðtÞ; . . . ; xnðtÞ�

T denotes the observation of the random
vector x at time t, where t is a discrete time index that belongs to
some set of integers T¼

:
f1; . . . ;Ng, with 1oNo1. The whole

sample is denoted by the matrix X ¼ ½xð1Þ; . . . ;xðNÞ�, whose rows
are written as xi ¼ ½xið1Þ; . . . ; xiðNÞ�. When referring to the under-
lying stationary random variable, the time index t is absent.
Corresponding notations associated with s and y can easily be
deduced.
4.2. Whitening

Many successful ICA algorithms such as FastICA and JADE rely
on prewhitening because it restricts the space of possible
solutions to orthogonal matrices. Another advantage is that the
implementation of whitening is straightforward and involves only
well studied algebraic procedures, like eigenvalue or singular
value decompositions. For instance, if the mixtures are ill-
conditioned, this can be detected in the whitening step and this
issue can be addressed before the source separation. On the other
hand, whitening can also be a source of inaccuracies.

In practice, whitening can be achieved through two diffe-
rent strategies; both of them assume that the mixtures are
centered (

PN
t¼1 xðtÞ ¼ 0). The simplest strategy relies on the

eigenvalue decomposition of the sample covariance of the
mixtures, written as

R¼:
1

N
XXT
¼ NKNT,

where N is an orthogonal matrix and K is a diagonal matrix of
eigenvalues. After the decomposition, the whitening matrix and
the whitened mixtures are written as V¼

: K�1=2NT and Z ¼ VX,
respectively.

We adopt a second strategy that is based on the singular value
decomposition of XT, denoted

XT
¼ USNT,

where U and N are orthogonal matrices. Matrix S has the same
size as XT and its main diagonal contains the singular values, in
descending order; other entries are zero. The decomposition
allows us to compute the whitened mixtures directly as the
product Z ¼

ffiffiffiffi
N
p

In�NUT, where In�N denotes a truncated N � N

identity matrix, with only n rows. This is a convenient notation to
express the fact that we keep only the rows of UT that are
associated with the n largest singular values.

The product Z ¼
ffiffiffiffi
N
p

In�NUT involves only a selection of rows
and a scaling. In contrast, the product Z ¼ VX can be slightly less
accurate as it involves linear combinations of the rows of X, from a
numerical point of view. Additional inaccuracies can stem from
the fact that the eigenvalue decomposition in the first strategy
does not processes the complete data matrix X. Instead it is
applied on the sample covariance matrix R, whose computation
can suffer from rounding errors.

In order to be robust against ill-conditioned mixtures, the
proposed algorithm checks the results of the singular value
decomposition. For this purpose, it estimates the covariance of Z.
If some row zi has a variance lower than one and/or nonzero
covariances with respect to other rows, we remove it from the
whitened sample Z; in practice, the algorithm discards all rows of
Z having a standard deviation that is lower than 0.99. Mixtures
with a variance lower than one have an abnormally low LAE and
thus perturb the subsequent source separation step. As ICA
recovers the sources up to a permutation, we can freely rearrange
the rows of Z so that the bad ones are the last p ones; Z is then
updated according to Z ½z1; . . . ; zn�p�

T. Next, the separation
algorithm is run on this reduced vector, yielding n� p estimated
sources. After the separation, the ICA output consists of the
estimated sources, to which we append the badly whitened rows
of Z, without any further processing: Y ½y1; . . . ; yn�p; zn�pþ1;

. . . ; zn�
T. This allows us to measure the separation performance on

n signals, as in the normal case.
4.3. Estimation of the contrast

The LAE contrast can be discretized in order to obtain the
estimator

ĈLAEðyiÞ¼
:

min min
t2T

yiðtÞ

����
����; max

t2T
yiðtÞ

����
����

� �
. (5)

This allows us to reformulate the extraction of a single source with
the LAE contrast function as follows: the estimate of the ith source
results from the minimization of ĈLAEðwiZÞ with respect to the
entries of wi. Replacing the infimum and supremum of the
support with minimum and maximum operators leads to an
estimator that is highly sensitive to the sample size, additive
noise, and outliers.

Fortunately, better estimators exist and can reliably infer the
theoretical infimum and supremum of the support of yi, starting
from the sample vector yi. As a good tradeoff between evaluation
speed and estimation quality is needed, we use averaged order
statistics [4,21], as advised in [28] for estimating the range. This
estimator works well if the probability distribution function has at
least one ‘‘sharp frontier’’. The use of order statistics within the
framework of ICA has already been investigated in e.g. [17,1].
Assuming that y0i ¼ ½y

0
ið1Þ; . . . ; y

0
iðNÞ� contains the same entries as yi

in ascending order, then the estimator based on averaged order
statistics can be written as

Ĉ
q

LAEðyiÞ¼
:

min �
1

q

Xq

k¼1

y0iðkÞ;
1

q

Xq

k¼1

y0iðN þ 1� kÞ

( )
, (6)

where q is an integer between 1 and bN=2c. The estimator is such
that

Ĉ
qþ1

LAE ðyiÞpĈ
q

LAEðyiÞ. (7)

However, if the sample size N is large enough, (1=qÞ
Pq

k¼1 y0iðkÞ ’

min yi if y0iðlÞ ’min yi for all 1plpq, and likewise for
(1=qÞ

Pq
k¼1 y0iðN þ 1� kÞ.
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Table 1

ICALAE: simple deflation procedure to minimize Ĉ
q

LAE

½W;V� ¼ ICALAEðXÞ

(1) Whiten the mixtures using a singular value decomposition:

(a) Center the sample X by removing its mean:

X xðtÞ �
1

N

PN
s

xðsÞ

� �
1ptpN

.

(b) Compute the SVD of the centered sample: XT
¼ USVT.

(c) Compute Z directly: Z ¼
ffiffiffiffi
N
p

In�N UT.

(2) Discard the p rows of Z having a variance lower than 0:992 (0pppn).

(3) To extract the ith source, with 1pipn� p, do:

(a) Initialize wi to any random direction and the update angle a to p=4.

(b) Check loose orthogonality: if for some joi the inequality

jwiw
T
j jo cosðp=12Þ holds then make wi orthogonal to all wj:

wi  wi �
P

j wiw
T
j wj; wi  

wi

kwik
.

(c) Compute the ith ICA output: yi ¼ wiZ (i.e. yiðtÞ ¼ wizðtÞ for t 2T).

(d) Estimate the LAE of yi using mean order statistics:

� Determine the indices of the q lowest and q highest values of yiðtÞ.

� Average the two corresponding sets of values to obtain the estimated

infimum and supremum of yiðtÞ, for t 2T; keep their minimum absolute value

as in (6) to obtain Ĉ
q

LAEðyiÞ. Compute vector hi accordingly (see (8)).

� Use hi to compute d ¼ Zhi .

� If dawi , make d orthogonal to wi and normalize it:

d d� dwT
i wi; d 

d

kdk
.

(e) Update wi and a:

� Compute w0i ¼ cosðaÞwi � sinðaÞd and ĈLAEðw
0
izÞ (see step (d) above).

� If Ĉ
q

LAEðw
0
izÞoĈ

q

LAEðyiÞ, then let a 1:01a and wi  w0i , else let a a=1:2.

(f) Go back to step 3(b) if convergence is not attained.

(4) Append the p incorrectly whitened mixtures to the extracted sources:

8i4n� p; yi  zi .

After robust SVD-based whitening, sources are extracted one-by-one with a loose

orthogonality constraint preventing error accumulation. The LAE is minimized by a

simple gradient descent.
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Provided there is no noise and no outliers, we have
Ĉ

q

LAEðyiÞpCLAEðyiÞ and Ĉ1
LAEðyiÞ ! CLAEðyiÞ as N!1. Hence, the

accuracy of the above estimator increases with the sample size N.
In the noise-free case, the value of q can be taken close or equal to
one. However, it is noteworthy that Ĉ

q

LAEðyiÞ is a piecewise linear
function and that increasing the value of q ‘‘smoothes’’ it.

In the presence of noise, q must be slightly increased. See [29]
for a discussion about the choice of q in the context of range-based
contrasts.

The computation of ĈLAE involves a sorting operation, whose
time complexity (OðN log NÞ) is higher than for more traditional
contrasts such as the kurtosis (typically OðNÞ).

4.4. Optimization scheme

Since Ĉ
q

LAE is piecewise linear, it is not everywhere differenti-
able. However, we can reformulate it as a weighted sum over all
entries of the ith output sample yi, which is written as

Ĉ
q

LAEðyiÞ ¼ yihi (8)

and where the elements of column vector hi are taken in
f�1=q;0;1=qg and depend on the place of yiðtÞ in y0i and the result
of the minimum in (6). If we assume that hi is constant in an �-ball
around wi, then we can compute

d¼
: qĈ

q

LAEðwZÞ

qw

�����
wi

¼ Zhi. (9)

The above derivative can be plugged into a basic deflation
procedure that is inspired from [14] and works as follows. First,
we make d orthogonal to wi and we normalize it:

d d� dwT
i wi, (10)

d 
d

kdk
. (11)

Next, we compute a potential new value of the demixing vector w,
namely

w0i¼
:

cosðaÞwi � sinðaÞd, (12)

where a is an angle lower than p=4. Notice that w0i has a unit
norm, just as wi. Finally, we update wi and a, provided the
potential new value reduces the LAE. More precisely, if
Ĉ

q

LAEðw
0
izÞoĈ

q

LAEðwizÞ, then a is slightly increased (a 1:01a)
and we adopt the new value (wi  w0i). Otherwise, we leave wi

unchanged, but we decrease the update angle (a a=1:2). After
the update, we can re-evaluate the LAE and repeat the above steps
in order to converge on a solution.

Notice that the optimization scheme that we propose merely
takes into account the direction of d; its norm is neglected.
Therefore, the convergence speed mainly depends on the angle a,
whose decrease is relatively slow. This choice favors separation
quality rather than speed.

Successive updates of wi must obviously ensure that wi

remains orthogonal to all rows of W that have already been
determined by the deflation procedure. Since the mixtures
are prewhitened, this means formally that the orthogonality
constraint wiw

T
j ¼ 0 for joi should be verified. However, in order

to compensate for the accumulation of small inaccuracies in the
deflation process, the orthogonality constraint can be relaxed. In
practice, we only check that the current row wi fulfills the
condition jwiw

T
j jo cosðp=12Þ for all joi. If this is not the case, this

means that wi converges on some previously found solution and
therefore we reinitialize wi. The new value of wi is chosen
randomly, so as to be orthogonal to all previous rows.
Notice also that a strict orthogonality constraint can be too
strong in difficult problems, e.g. with low sample sizes or large
numbers of mixtures. In these cases, a small discrepancy between
the sample covariances and the true covariances can jeopardize
the source extraction after whitening, because whitening decorr-
elates the sample but not necessarily the underlying random
variables. Hence, small departures from orthogonality can allow
W to reach better contrast values and compensate for whitening
inaccuracies.

The complete algorithm is detailed in Table 1.
5. The MLSP 2006 data competition

BSS problems were proposed in MLSP 2006 data competition.
The statement of the problems conveys some a priori information
about the sources. For all subproblems, sources are stationary
(i.i.d. over time), statistically independent and non-negative. If we
assume that u and v are random variables with uniform
probability between 0 and 1, two kinds of sources are generated
according to

si ¼
� logðuÞmaxf0; signðv� 0:5Þg;

u;

(

where each branch is equiprobable. The first branch yields a
super-Gaussian source with sparse distribution, whereas the
second possibility leads to a sub-Gaussian source with uniform
distribution; see Fig. 4 for an example of both kinds of sources.
Therefore, the sample si is a row vector that contains N

independent realizations of the corresponding random variable
si. The mixing matrices are randomly generated, in such a way
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Fig. 4. Sources involved in the MLSP 2006 competition. Sources are statistically independent, stationary and either sparse (left) or uniformly (right) distributed. All sources
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that their entries are uniformly distributed between �0:5 and 0:5,
unless differently specified. More information regarding the
sources and mixing matrices can be found on the competition
website (http://mlsp2006.conwiz.dk/).

In order to assess the quality of the source recovery, the
competition resorts to the SIR, expressed in dB. The average SIR
involves the transfer matrix C and can be defined as follows:

SIR ¼
1

n

Xn

i¼1

10 log10

maxj c2
ijP

j c2
ij �maxj c2

ij

. (13)

The maximum operator is needed because ICA recovers the
sources up to a scaling and a permutation. Similarly, it is useful to
center and standardize the sources, as most ICA algorithm yields
white outputs. Notice that because the SIR is an average, high SIR
values do not necessarily mean that all sources are well recovered:
some sources that are perfectly recovered may compensate for
sources that are badly extracted. We expect our algorithm to
perform better for sources with a sparse distribution than those
with a uniform one. The accuracy of the LAE estimator critically
depends on the number of samples near the theoretical endpoint.
This number is obviously much lower for the uniform distribution
than for the sparse one.

Within the framework of the competition, the average SIR is
used in a Monte-Carlo process. The SIR should be higher than
15 dB for at least 90% of the runs, i.e. P90415 dB, where P90 is the
90th percentile. Four sub-problems must be solved:
1.
 Large scale problem: fixed sample size ðN ¼ 5000Þ, increasing
number of mixtures ðn450Þ, random mixing matrix.
2.
 Small training set problem: fixed number of mixtures ðn ¼ 50Þ,
decreasing sample size ðNo5000Þ, random mixing matrix.
3.
 Highly ill-conditioned problem: N ¼ 5000, n41; for this
subproblem, the mixing matrix is a Hilbert matrix multiplied
by a random Givens matrix.
4.
 Noisy mixtures problem: n ¼ 50, N ¼ 1000, white noise with
increasing variance corrupts the mixtures.

In the above problems, the Hilbert matrix of size n is defined as
Hn¼

:
½1=ðiþ j� 1Þ�1pi;jpn; its condition number grows as

Oðe3:5255n=
ffiffiffi
n
p
Þ. The Givens matrix of size n, denoted by Gnðp; q; yÞ

¼ ½gij�, is the same as the identity matrix, except for four elements:
gpp ¼ cos y, gpq ¼ sin y, gqp ¼ � sin y, and gqq ¼ cos y.

5.1. Large-scale problem

In this first subproblem, the sample size is fixed (N ¼ 5000)
and the number of sources/mixtures is growing ðn450Þ. The
proposed algorithm solves it for a quite large number of mixtures.
Graphical results in Fig. 5 shows that outstanding SIR values are
attained for more than 400 mixtures (P90 is still higher than
30 dB). Processing so many mixtures obviously requires long
computation times, even with the fastest algorithms (e.g. FastICA),
and justifies the restriction to only 20 Monte-Carlo runs. Average
order statistics are computed with q ¼ 100. For N ¼ 5000 and
n ¼ 50, the average SIR for sparse sources is around 120 dB. Most
uniform sources are recovered with a SIR higher than 25 dB.
Approximately 10% of the sources yield a SIR lower than 15 dB. In
the same set up, FastICA recovers all sources with SIR values
between 20 and 25 dB. If the number of sources increases, ICALAE
continues to extract all sparse sources correctly, whereas it
progressively fails to extract the uniform ones. Beyond approxi-
mately 175 sources, FastICA can no longer extract any source with
a SIR higher than 15 dB.
5.2. Small training set problem

In this second problem, the number of sources is kept constant
ðn ¼ 50Þ but the sample size N varies. The results are shown in
Fig. 6 for two algorithms: the proposed one and FastICA (official
version 2.5, with ‘‘gaus’’ nonlinearity and fine tuning enabled).
Average order statistics are computed with q ¼ 20. As can be seen,
less than 250 sample points are required to achieve a SIR greater
than 15dB in 90% of the cases. In practice, the uniform sources

http://mlsp2006.conwiz.dk/
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become more and more difficult to recover as the sample size
decreases, whereas a good extraction is still achieved for sparse
sources.

5.3. Highly ill-conditioned problem

In this third subproblem, the mixing matrix is the product of a
Hilbert matrix with a random Givens matrix. Hence, as the
number of mixtures is growing, the separation problem gets more
and more ill-conditioned. The results are shown in Fig. 7 for three
algorithms: the proposed one ðq ¼ 25Þ, FastICA (as above) and a
‘‘hacked’’ version of FastICA. The latter, called MyfpICA, works
with a SVD-based whitening stage and a kurtosis-driven non-
linearity (either ‘‘kurt’’ or ‘‘gaus’’ depending on the kurtosis). In
this subproblem, achieving a correct whitening is the main
difficulty. The proposed algorithm brings a significant perfor-
mance gain by using the SVD of the centered sample instead of the
EVD of the sample covariance matrix. However, beyond 10
mixtures in this problem, the determinant of the mixing matrix
A is so close to zero that no more than 10 mixtures can be
whitened properly, even with the SVD. It has been experimentally
observed that additional mixtures after whitening are actually not
white; some of them may be correlated and/or have a variance
lower than one. In this situation, the trick consists in temporarily
discarding these still correlated mixtures after whitening, as
proposed in Section 4.4, so that the separation algorithm can run
in good conditions.

5.4. Noisy mixtures problem

The value of the estimator ĈLAEðyiÞ relies on a few sample
points only, namely on q sample points with q5N. Consequently
the proposed approach is expected not to be very robust against
noise and outliers, especially with low values of q; for this
problem, q is equal to 100. As can be seen in Fig. 8, the quality of
the results is rapidly decreasing as the noise variance is growing.
From a more fundamental viewpoint, the literature indicates that
the estimation of the distribution endpoint is an intrinsically
difficult problem [6].
6. Conclusion

Contrast functions that are based on a range estimation show
interesting properties for independent component analysis (ICA)
of sources that have a support with finite width. This paper
extends this idea to sources whose support is possibly infinite but
still bounded on one side. A contrast function that involves an
estimator of the least absolute endpoint (LAE) is presented; the
LAE is the minimum of the absolute values of the infimum and
supremum of the support. The contrast owns the discriminacy
property, i.e. all local minima corresponds to solutions of the
separation problem.

A specific optimization procedure is proposed; it extracts
sources one by one, following a deflation procedure. For each
source to be estimated, the LAE is minimized using a simple
gradient descent. This allows the proposed algorithm to be quite
competitive in terms of speed. The computational cost of a single
update is low, as for a fixed-point algorithm, though the latter
requires less iterations and converges much faster. The algorithm
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also relaxes the orthogonality constraint on the separation matrix;
it merely checks that all source estimates are distinct. The main
advantage of this milder constraint is that a deflation approach
can be used without accumulating errors in the successive source
estimates. Finally, the optimization of the whitening step also
improves the performances of the algorithm, especially for ill-
conditioned mixtures.

The proposed contrast and algorithm are shown to perform
efficiently on at least three ICA problems from the IEEE MLSP 2006
competition presented by A. Cichocki and D. Erdogmus.

References

[1] Y. Blanco, S. Zazo, An overview of BSS techniques based on order statistics:
formulation and implementation issues, in: C. Puntonet, A. Prieto (Eds.),
Proceedings of the International Conference on Independent Component
Analysis and Blind Signal Separation (ICA), Lecture Notes in Computer
Science, vol. 3195, Springer, Granada (Spain), 2004, pp. 73–80.

[2] J.-F. Cardoso, A. Souloumiac, Blind beamforming for non-Gaussian signals,
IEEE Proc. F 140 (6) (1993) 362–370.

[3] S. Cruces, I. Duran, The minimum support criterion for blind source
extraction: a limiting case of the strengthened Young’s inequality, in:
C. Puntonet, A. Prieto (Eds.), Proceedings of the International Conference
Independent Component Analysis and Blind Signal Separation (ICA 2004),
Lecture Notes in Computer Science, vol. 3195, Springer, Granada (Spain),
2004, pp. 57–64.

[4] H. David, Order Statistics, Wiley Series in Probability and Mathematical
Statistics, Wiley, New York, 1970.

[5] A. Erdogan, A simple geometric blind source separation method for bounded
magnitude sources, IEEE Trans. Signal Process. 54 (2) (2006) 438–449.

[6] A. Goldenshluger, A. Tsybakov, Estimating the endpoint of a distribution in
the presence of additive observation errors, Stat. Probab. Lett. 68 (2004)
39–49.

[7] P. Gruber, K. Stadlthanner, M. Bohm, F.J. Theis, E.W. Lang, A. Tome, A.R.
Teixeira, C.G. Puntonet, J.M. Gorriz Saez, Denoising using local projective
subspace methods, Neurocomputing 69 (13–15) (2006) 1485–1501 Blind
Source Separation and Independent Component Analysis—Selected papers
from the ICA 2004 meeting, Granada, Spain, Blind Source Separation and
Independent Component Analysis.

[8] P. Hall, On estimating the endpoint of a distribution, Ann. Stat. 10 (1982)
556–568.

[9] S. Haykin, Z. Chen, The cocktail party problem, Neural Comput. 17 (2005)
1875–1902.

[10] A. Hyvärinen, Fast and robust fixed-point algorithms for independent
component analysis, IEEE Trans. Neural Networks 10 (3) (1999) 626–634.

[11] A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis, Wiley
Series on Adaptive Learning Systems for Signal Processing, Communications,
and Control, Wiley, New York, 2001.

[12] A. Hyvärinen, E. Oja, A fast fixed-point algorithm independent component
analysis, Neural Comput. 9 (7) (1997) 1483–1492.

[13] C.J. James, C.W. Hesse, Independent component analysis for biomedical
signals, Physiol. Meas. 26 (2004) R15–R39.

[14] J. Lee, F. Vrins, M. Verleysen, A simple ICA algorithm for non-differentiable
contrasts, in: Proceedings of the European Signal Processing Conference
(EUSIPCO), Antalya, Turkey, 2005, pp. cr1412.1–4.

[15] J. Lee, F. Vrins, M. Verleysen, Non-orthogonal support width ICA, in: M.
Verleysen (Ed.), Proceedings of the European Symposium on Artificial Neural
Networks (ESANN), Bruges, Belgium, 2006, pp. 351–358.

[16] A. Mansour, C. Jutten, What should we say about the kurtosis, Signal Process.
Lett. 6 (12) (1999) 321–322.

[17] D.-T. Pham, Blind separation of instantaneous mixtures of sources based on
order statistics, IEEE Trans. Signal Process. 48 (2) (2000) 363–375.

[18] D.-T. Pham, Contrast functions for blind separation and deconvolution of
sources, in: T. Lee, T. Jung, S. Makeig, T. Sejnowski (Eds.), Proceedings of the
International Conference on Independent Component Analysis and Blind
Signal Separation (ICA), San Diego, CA, 2001, pp. 37–42.

[19] D.-T. Pham, Mutual information approach to blind separation of stationary
sources, IEEE Trans. Inf. Theory 48 (7) (2002) 1935–1946.

[20] M. Plumbley, Algorithms for nonnegative independent component analysis,
IEEE Trans. Neural Networks 4 (3) (2003) 534–543.

[21] C. Rose, M. Smith, Order Statistics, Mathematical Statistics with Mathematica,
Springer, New York, 2002.

[22] F. Vrins, Contrast properties of entropic criteria for blind source separation:
a unifying framework based on information-theoretic inequalities,
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