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Abstract

Results of neural network learning are always subject to some variability, due to the sensitivity to initial conditions, to convergence to local

minima, and, sometimes more dramatically, to sampling variability. This paper presents a set of tools designed to assess the reliability of the

results of self-organizing maps (SOM), i.e. to test on a statistical basis the confidence we can have on the result of a specific SOM. The tools

concern the quantization error in a SOM, and the neighborhood relations (both at the level of a specific pair of observations and globally on

the map). As a by-product, these measures also allow to assess the adequacy of the number of units chosen in a map. The tools may also be

used to measure objectively how the SOM are less sensitive to non-linear optimization problems (local minima, convergence, etc.) than other

neural network models. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Neural networks are powerful data analysis tools. Part of

their interesting properties comes from their inherent non-

linearity, in contrast to classical, linear tools. Nevertheless,

the non-linear character of the methods has also its

drawbacks: most neural network algorithms rely on the

non-linear optimization of a criterion, leading to well-

known problems or limitations concerning local minima,

speed of convergence, etc.

It is commonly argued that vector quantization methods,

and in particular self-organizing maps (SOM), are less

sensitive to these limitations than other classical neural

networks, like multi-layer perceptrons and radial-basis

function networks. For this reason, SOM (Kohonen, 1995)

are often used in real applications, but rarely studied from

the point of view of their reliability: one usually admits that,

with some ‘proper’ choice of convergence parameters

(adaptation step and neighborhood), the SOM algorithm

converges to an ‘adequate’, or ‘useful’, state.

This paper aims at defining objective criteria that may be

used to measure the ‘reliability’ of a SOM in a particular

situation (Cottrell, de Bodt, & Verleysen, 2001). Reliability

does not mean to measure the quantization error, nor the so-

called ‘topology preservation’ of the map; many such

criterions have already been published in the literature.

Rather, we are looking to measure how much confidence we

can have on the result of a SOM. This will be achieved

through statistical tools based on the bootstrap method-

ology. The use of statistical tools makes it possible to obtain

an objective measure of the confidence we may have in a

specific result, and to apply hypotheses tests on these

measures. This is different from an approach based on

Monte-Carlo simulations of a SOM on a particular database;

the last could give an idea about the variance of a numerical

result, but could not be used to test if the results of the SOM

are statistically significant.

For example, the topology preservation property of a

SOM is often used to project neighboring input vectors on

the same or on neighboring units (centroids) in the SOM

grid. We are looking to evaluate if this projection on

neighboring units is obtained by chance, or if it is really the

result of topological properties of the database. The

reliability of both the quantization and the topology

preservation of SOMs are studied. Furthermore, it will be

shown that the reliability of the quantization may be used to

assess the number of units needed in a SOM.

The study of reliability relies on the extensive use of the

bootstrap method. In this paper, we will first address the

conventional quantization and organization criteria (Section

2), then show how we use the bootstrap methodology in the

context of SOMs (Section 3). The main contribution of the
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paper is the definition of reliability criteria (Section 4); the

criteria are illustrated on artificial and real databases

(Section 5) before giving conclusions.

2. Quantization and organization errors in the SOM

2.1. Reliability measures

This section introduces the problem of the measures of

quantization and organization in SOMs. First, it should be

insisted on the fact that the purpose of this paper is not to

define new such criterions. Rather, the question we would

like to answer is to know if we can trust the result of the

SOM convergence on a particular database (both in terms of

quantization and organization).

Trusting the results of a SOM, or measuring its

reliability, does not mean that we expect the same result

for different SOMs (even of the same database, but for

example sampled differently) run on specific data. Indeed, it

is well known that a one-dimensional SOM (string) on a

two-dimensional distribution, or a two-dimensional map on

a three-dimensional distribution, will have ‘folds’ because

of the string or map trying to estimate the dataset correctly.

Even if the dimension of the map and the intrinsic

dimensionality of data match, different SOMs will lead to

different centroid locations, and even different neighbor-

hood properties, due to twists, butterfly effects, rotation and

mirroring of the map, etc. For these reasons, as most of the

‘neural network’ algorithms, SOMs are sometimes critic-

ized because one cannot be sure of the significance of the

results.

If we carefully examine what are the causes of these

variations in the results, we can see two main sources. First,

the initialization of the centroids influences their final

positions. Secondly, the final result depends on the sampling

of inputs used for learning.

In this paper, we do not consider specifically the problem

of variations of results due to the initialization of the SOM.

We have shown in previous works (Cottrell et al., 2001),

based on Monte-Carlo simulations, that the SOM algorithm

is highly insensitive to the choice of initial values. On finite

size databases, we have experimentally found that variations

due to sampling are much larger than those due to different

initial conditions of the algorithm.

We are therefore interested in assessing how much the

results (quantization, organization) depend on the specific

sample used for training the SOM; in other words, we are

interested in the sampling distribution of the performance

statistics after learning. As most often in applications, we do

not know the exact distribution; moreover, the dataset is of

limited (and frequently rather small) size. This suggests

using a non-parametric bootstrap approach in order to

generate artificial (‘bootstrapped’) samples from the

original dataset, and make repeated simulations possible

in order to estimate these statistics.

Other resampling or subsampling procedures could be

used as well (see, for example, Horowitz, 2000) and are

appropriate modifications of standard bootstrap when this

one is shown to be inconsistent. As we do not address in this

paper the proof of consistency of the proposed approach, we

have no specific reasons to use one of those alternative

approaches. The study of consistency will be an interesting

development of the current work.

2.2. Quantization error

One of the two main goals of SOM is to quantize the data

space into a finite number of so-called centroids (or code

vectors). Vector quantization is used in many areas to

compress data over transmission links, to remove noise, etc.

The squared distance between an observed data x i and its

corresponding (nearest) centroid is the (quadratic) quantiza-

tion error. Summing this quantization error over all data

leads to the distortion or intra-class sum of squares (which

are different names for the same error, used, respectively, in

the information theory domain and by statisticians):

SSIntraðG1
;…;GUÞ ¼

XU
i¼1

X
xj[Vi

d2ðxj
;GiÞ

¼
X
xj

min1#i#Ud2ðxj
;GiÞ; ð1Þ

where U is the number of units (centroids) in the SOM, G i

the ith centroid, d the classical Euclidean distance, V i the

Voronoi region associated with G i, i.e. the region of the

space nearer to G i than to any other centroid, and the sums

on x j cover all observed data. Usually, the d distance is the

standard Euclidean distance. For the sake of simplicity, we

will omit in the following of this paper the explicit mention

of the dependency of SSIntra on the centroid locations

G1;…;GU ; nevertheless, it should never be forgotten that

this dependency exists, and furthermore that the centroid

locations are changing during the course of the SOM

algorithm. Note that the SSIntra criterion is related to the

often-used mean square error (MSE) by a constant factor

equal to the number of observations. Expression (1) is the

empirical estimation of the theoretical distortion

TDISTðG1
;…;GUÞ ¼

XU
i¼1

ð
x[Vi

d2ðx;GiÞpðdxÞ

¼
ð

X
min1#i#Ud2ðx;GiÞpðdxÞ; ð2Þ

where p is the distribution of the input and X is the input

space.

TDIST is a very complex function of the distribution p

since G1;…;GU are the centroids computed as limit points

of the stochastic algorithm and depend also on the

distribution p. SSIntra is a statistic (calculable from the
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data) but depending on the unknown distribution p, and is

precisely what we want to evaluate here.

Note also that the objective function associated with the

SOM algorithm for a constant size of neighborhood and

finite data set is the sum of squares intra-classes extended to

the neighbor classes, (Ritter, Martinetz, & Schulten, 1992).

But actually, one usually ends with no neighbor for the last

iterations of the SOM algorithm; at the end of its

convergence, the SOM algorithm thus exactly minimizes

the SSIntra function.

2.3. Measure of organization

Twists, butterfly effects, rotation and mirroring of the

map may lead to different neighborhood properties of

SOMs. However, this does not preclude the use of SOMs in

many settings, whether the intrinsic dimensionality of data

and the dimension of the map match or not. SOM users

know that, because of the twists and folds, one can rarely be

confident of the fact that two specific neighboring data will

be projected on the same or neighboring centroids.

However, one can usually be confident of the fact that:

1. the probability that two specific neighboring data will be

projected on the same or neighboring centroids is high,

and

2. in average over the dataset, pairs of neighboring data

will be projected on the same or neighboring

centroids.

The first case relates to the observation of specific data

over several runs of a SOM or several SOMs, while the last

corresponds to spatial averaging of results over a SOM.

There exist several criteria aimed to measure the second

case. However, they are not appropriate to measure the first

one. Moreover, they give no information about the fact that,

over several runs of a SOM (with for example different

sequences of presentation of data), the same pairs of data

will be, in average, projected on the same or neighboring

centroids. Having a measure of this last question is precisely

what is needed to appreciate if the user of a SOM can be

confident of the fact that what he/she observes (neighbor-

hood relations on specific data) on a single run will be

repeated (or not) if other runs were made or other SOMs

used (in other words, is the observed results on specific data

are reliable or not).

Several measures have been proposed in the literature, in

order to measure if the resulting SOM preserves the

topology or not. By preserving the topology, we mean that

observations close in the input space should be projected to

close centroids in the SOM. Among these measures, we can

quote the following ones (this list is not exhaustive).

† Demartines (Demartines & Herault, 1997) plots in a

dy–dx diagram the distance between the centroids (in the

SOM) onto which are projected two specific obser-

vations, versus the distance between these observations

in the input space; each pair of points in the database is

considered. When the topology is locally preserved, the

left of the resulting diagram is close from a straight line.

† Villmann (Villmann, Der, Herrmann, & Martinetz,

1997) who detects the topology preservation of a map

through a so-called topographic function that measures

how neighboring reference vectors in the input space

are mapped to neighboring centroids on the map.

The important point here is to notice that all these criteria

are global measures, designed to evaluate if the resulting

map is approximately unfolded, or, on the contrary, if some

twists (like the well-known butterfly effect) occur. They can

also be used to evaluate if, globally on the entire database,

local topology is preserved. However none of these criteria

is able to test if the fact that two specific observations are

projected on neighboring centroids on the SOM is mean-

ingful or not. The STAB criterion and its histogram as

defined further in this paper is an attempt to answer this

question.

3. Bootstrap

The main idea of the classical bootstrap (Efron, 1979;

Efron & Tibshirani, 1986, 1993) is to use the so-called

‘plug-in principle’. Let F be a probability distribution

depending on an unknown parameter vector u. Let x ¼

x1; x2;…; xn be the observed sample of data and û ¼ TðxÞ an

estimate of u. The bootstrap consists in using artificial

samples (called bootstrapped samples) with the same

empirical distribution as the initial data set in order to

guess the distribution of û: Each bootstrapped sample

consists in n uniform drawings with replacements from the

initial sample. If xp is a bootstrapped sample, TðxpÞ will be a

bootstrap replicate of û:
This main idea of the bootstrap may be declined in

several ways. In particular, when the evaluation of a statistic

VðxÞ requires non-linear optimization, the well-known

problems, or limitations, related to local minima and

convergence are met. It may thus happen that different

local minima are reached when VðxpÞ is evaluated for

different bootstrapped samples. To avoid this problem,

various bootstrap settings can be used. We can speak about

(Zapranis & Refenes, 1999):

† Common Bootstrap (CB) when each evaluation of VðxÞ

is initialized at random;

† Local Bootstrap (LB) when the initial values of each

evaluation are kept fixed;

† Local Perturbed Bootstrap (LPB) when a small pertur-

bation is applied to the initial conditions obtained as with

the LB.

As our purpose is to examine the variability (or the
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sampling distribution) of some parameters when they are

evaluated through different (bootstrapped) samples, but

keeping all other conditions (including initial conditions)

unchanged, we will use LB. Moreover, as mentioned earlier

(Section 2.1), previous works Cottrell et al. (2001) based on

Monte-Carlo simulations have shown that the SOM

algorithm is highly insensitive to initial conditions.

In our case, the statistics to evaluate are the distribution

of SOM quality criteria (both quantization and organiz-

ation). We know that SSIntra is a measure of the quality of

quantization; nevertheless, when running a single SOM on a

dataset, one cannot be sure if the resulting SSIntra value is

reliable or not. In our case, it is not possible to have an a

priori about the shape of the SSIntra distribution. Indeed,

having a finite-size database and without knowledge of the

exact distribution of observations x i, it is impossible to

establish the exact sampling distribution of SSIntra. The

non-parametric bootstrap is therefore used to estimate

empirically the distribution of SSIntra and, on this basis,

to make it possible to evaluate the level of confidence in

SSIntra.

4. Reliability criteria

In this section, we will define the original criteria to

assess the reliability of the conclusions drawn from the

convergence of a SOM on a specific database. Section 4.1

examines the stability of the quantization in a SOM, and

how this concept can be taken into consideration to estimate

the number of units necessary in the map. Section 4.2

defines the concept of neighborhood relation between two

specific observations, and how to use this concept to

evaluate the reliability of the topology preservation.

4.1. Stability of the quantization in the SOM

The question here is to evaluate the stability of the

quantization error in a SOM. In that purpose, we define the

relative error, i.e. the coefficient of variation, of the SSIntra

quantization error, as

CVðSSIntraÞ ¼ 100
sSSIntra

mSSIntra

: ð3Þ

The mean mSSIntra and the standard deviation sSSIntra are

calculated on the different values of the SSIntra error

obtained for each bootstrapped case. Obviously, a small CV

means that the different values of SSIntra are close from one

another, and therefore we may have confidence in these

values. Note that when repeating the convergence of the

SOM, we are not looking for the location of the centroids

themselves, but on how they quantify the space in average.

As it will be shown through experimental results in

Section 5, drawing CVðSSIntraÞ with respect to the number

of units in the SOM can help to assess an adequate number

of units in the map. Indeed a sudden increase in the curve

usually reveals the fact that some centroids switch from one

cluster of the input distribution to another, in other words

that there is some instability in the placement of the

centroids. A natural consequence is thus to choose a number

of centroids immediately below the location of this increase

in the curve. This kind of graphical method is very

empirical, but very useful and used in other areas, as for

instance to choose the number of components to be kept

after a Principal Component Analysis, or the number of

classes in an ascending hierarchical classification.

The number B of bootstrap replications, needed for a

sufficiently accurate evaluation of CVðSSIntraÞ; has not

been discussed so far. Efron (Efron & Tibshirani, 1993)

suggests to take between B ¼ 50 and 200. Our experiments

were made with B ¼ 100; we did not find any improvement

in taking a larger value. An example will illustrate this

choice in Section 5.

4.2. Stability of the neighborhood relations in the SOM

4.2.1. Stability of the neighborhood for a specific pair of

observations

Besides quantization, the second main goal of the SOM

is the so-called topology preservation, which means that

close data in the input space will be quantized by either the

same centroid, either two centroids that are close from one

another on a predefined string or grid. Often, for example

when the SOM is used as a visualization tool, it is desirable

to have an objective measure of this neighborhood property.

We first define

NEIGHb
i; jðrÞ ¼

0 if xi and x j are not neighbor within radius r

1 if xi and x j are neighbor within radius r

( )
:

ð4Þ

Being neighbors within radius r means that the two

observations x i and x j are projected on two centroids in

the SOM, the distance between these centroids being

smaller or equal to r. If the radius r is 0, it means that we

evaluate if the two data are projected on the same centroid;

if r ¼ 1; it means that we evaluate if the two data are

projected on the same centroid or on the immediate

neighboring centroids on the string or grid (2 on the string,

8 on the grid), etc. Superscript b in Eq. (4) means that this

result is obtained on the bootstrap sample b; of course it may

happen that two observations x i and x j are projected on

neighboring centroids after one simulation and not after

another; this is exactly what we are looking to evaluate.

Fig. 1 shows a simple example of a 4 £ 5 rectangular

Kohonen map, where four observations x1 –x4 are projected;

the four observations are mentioned in the box correspond-

ing to their respective nearest centroid. Table 1 shows a few

examples of NEIGHi; jðrÞ calculated from this map; the

infinite-norm distance (i.e. the maximum of the distances in

each direction) is used to measure the distance r between

centroids on the map.
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We then define STABi; j as the average of NEIGHi;j over

all bootstrap samples:

STABi; jðrÞ ¼

XB

b¼1

NEIGHb
i; jðrÞ

B
; ð5Þ

where B is the total number of bootstrapped samples.

Still considering the two observations x i and x j, we are

looking to see if the fact that these two specific observations

are projected on neighboring centroids on the SOM is

meaningful or not. One way to evaluate this stability is to

see if the NEIGHi;iðrÞ measure always, or often, takes the

same value (0 or 1) over all bootstrap samples. A perfect

stability would thus lead STABi; jðrÞ to be always 0 (xi and xj

are never neighbors) or 1 (they are always neighbors).

4.2.2. Significance of the neighborhood for a specific pair of

observations

The further step is to study the significance of the

STABi; jðrÞ statistics, by comparing it to the value it would

have if the observations fell in the same class (or in two

classes distant of less than r) in a completely random way

(unorganized map). Unorganized maps are taken here as a

reference for a specific pair of observations i; j; indeed if this

specific pair of observations only falls in the same class (or

in two classes distant of less than r) by chance, then the

STABi; jðrÞ statistic will be approximately equal to the value

it would take in unorganized maps. Comparing the

STABi; jðrÞ values in these two situations (organized and

unorganized maps) is thus a way to make possible the use of

a conventional statistical test to check if the STABi; jðrÞ

statistic in the organized case is significant or not.

Let U be the total number of classes and n the size of

the considered neighborhood. The size n of the neighbor-

hood can be computed from the radius r by n ¼ ð2r þ 1Þ

for a one-dimensional SOM map (a string); and n ¼

ð2r þ 1Þ2 for a two-dimensional SOM map (a grid), if

edge effects are not taken into account, or in other words

if n is small compared to U; this assumption is reasonable,

as there is no reason to study the significance of a

neighborhood relation if the neighborhood covers a too

large part of the map. For a fixed pair of observations x i

and x j, with random drawings, the probability of being

neighbor in the random case is therefore n/U, (it is the

probability for x j to be neighbor of x i by chance, once the

class in which x i falls is determined).

If we define a Bernoulli random variable with

probability of success n=U; (where success means: x i

and x j are neighbors), the number Y of successes on B

independent bootstrapped trials is distributed as a

Binomial distribution, with parameters B and n=U:

Therefore, it is possible to build a test of the hypothesis

H0 x i and x j are only randomly neighbors against the

hypothesis H1 the fact that x i and x j are neighbors or

are not neighbors is meaningful.

In order to approximate the binomial random variable

by a Gaussian variable, making the hypothesis test easier,

we have to check the classical conditions: B has to be large

enough (i.e. greater than 30, which is true since we took

B ¼ 100), Bn=U . 10 and Bð1 2 n=UÞ . 10). For example,

for U ¼ 49; r ¼ 1; B has to be greater than 50 for the first

condition, and greater than 13 for the second one. For U ¼

49; r ¼ 0; the conditions lead to B . 500; what becomes

too large: the exact binomial distribution of Y must be

used. Note that with our B ¼ 100 choice, the above

conditions hold when n . U=10 and n , 9U=10; corre-

sponding to a neighborhood size that is neither too small

not too large; a too large neighborhood is not realistic (it

would mean to check the significance of a neighborhood

relation when the neighborhood covers most of the map,

etc.), while a too small one leads to the necessity of using

the original Binomial distribution instead of the approxi-

mate Gaussian one.

Next, we can build the rejection region of the H0

against H1 test; for example if the Gaussian approxi-

mation is valid, we conclude with a test level of 5% to

H1 if Y is less than

B
n

U
2 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B
n

U
1 2

n

U

� �s

or greater than

B
n

U
þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B
n

U
1 2

n

U

� �s
:

It must be mentioned that, because of the random

drawing process in the bootstrap, B depends on the pair

ðxi; xjÞ: Indeed the NEIGHi; jðrÞ only exists if the

bootstrap sample contains both observations x i and x j.

We follow the same approach as in Efron and

Tibshirani (1986), which consists in evaluating

Fig. 1. Four observations projected on a 4 £ 5 rectangular SOM.

Table 1

Some examples of NEIGH measures on the map shown in Fig. 1

NEIGH1;2ð0Þ ¼ 1 NEIGH3;4ð0Þ ¼ 0 NEIGH1;3ð0Þ ¼ 0

NEIGH1;2ð1Þ ¼ 1 NEIGH3;4ð1Þ ¼ 1 NEIGH1;3ð1Þ ¼ 0

NEIGH1;2ð2Þ ¼ 1 NEIGH3;4ð2Þ ¼ 1 NEIGH1;3ð2Þ ¼ 1

NEIGH1;2ð3Þ ¼ 1 NEIGH3;4ð3Þ ¼ 1 NEIGH1;3ð3Þ ¼ 1

NEIGH1;2ð4Þ ¼ 1 NEIGH3;4ð4Þ ¼ 1 NEIGH1;3ð4Þ ¼ 1
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STABi; jðrÞ only for the samples that contain both

observations x i and x j.

4.2.3. Histogram of the stabilities over all pairs of

observations

Finally, while the STABi; jðrÞ is designed to examine

a single pair of observations x i and x j, it is possible to get

an idea of the average stability of the map by drawing an

histogram of the STABi; jðrÞ indicator taken over all pairs of

observations (the value of r must still be fixed in advance).

As mentioned earlier, a perfect stability would lead

STABi; jðrÞ to be always 0 or 1; a perfectly stable map

would thus lead to an histogram with a first peak at 0, a

second peak at 1, and a flat zero curve between these two

values. Note that even in such ideal case, the two peaks will

not have equal heights; for example when the map is large

and the value of r is small, the number of no neighbor pairs

is much larger than the number of neighbor ones, leading to

a higher peak at 0 in the histogram.

To assess the histogram obtained on a real—not ideally

organized—map, one should compare it to the histogram

obtained on an unorganized map: in this case there is no

reason that neighboring input vectors will be projected on

neighboring centroids in such a map, except by chance.

The SOM is organized if its STABi; jðrÞ histogram is far

from the histogram of an unorganized map. The same

arguments as above lead to the conclusion that the

distribution of STABi; jðrÞ in an unorganized map will

follow a Binomial distribution. Nevertheless, the parameters

of this Binomial distribution should be chosen carefully for

a faithful comparison:

† The probability of success n=U should be modified due to

the edge effects on the map: only the centroids in the

center of the map have n ¼ ð2r þ 1Þ2 neighbors, those on

the edges having less neighbors. This modification may

be neglected for large maps and small r, but not in other

cases. As an example, n=U should be replaced by 0.15 for

a 7 £ 7 map with r ¼ 1:

† The number of trials B depends on the pair of

observations. The value of B considered for the

histogram should thus be the mean of all values of B

obtained after simulation.

† As a Binomial distribution takes values between 0 and

B, the x-axis of its histogram must be resized by a

factor B in order to be compared to the histogram of

the STABi; jðrÞ indicator.

In the simulation section, we will use the cumulative

histograms for a reliable comparison.

4.3. Computational complexity

As with all procedures involving bootstrap and resampling,

the computational complexity cannot be ignored. In

particular, the number of operations needed to compute

the whole set of STAB indicators, with N samples in the

dataset, U centroids in the map, and B bootstrapped samples,

is in OðNUB þ N2BÞ (the first term accounts for searching

the winning unit for each data in a bootstrapped sample, and

the second term for checking if each pair of data is projected

on neighboring centroids or not); moreover, it is necessary

to train B SOMs. A few comments can however be done:

† if the STABi; jðrÞ value is looked for only a specific pair

of observations xi; xj; the complexity reduces to OðUBÞ

(training B SOMs remains necessary);

† if the number N of samples in the dataset is large, and if

only the histograms of the STAB indicators are needed

(no information about a specific pair of observations),

then it is not needed to use all N samples to estimate these

histograms; the number of samples used though should

remain much larger than U;

† more generally, the STAB indicators and histograms

may be used to assess the reliability of SOMs in a class of

situations (characterized by the complexity and intrinsic

dimensionality of data, the size of the dataset, the size of

the map, etc.) through a limited number of trials, and

extending the conclusions to similar situations; though

approximate, this way of working can give some insights

about the question whether or not it is necessary, for a

specific map on a specific database, to calculate in depth

the measures presented in this paper, in order to have an

idea about the reliability of the results.

5. Experiments

We describe in this section a number of experiments that

have been carried out on real and artificial databases, in

order to illustrate the concepts introduced in Section 4.

All databases used for these simulations are available on

the Web site.2 Simulations have been carried out with one-

dimensional SOM strings or two-dimensional SOM grids.

Results have been obtained with the LB method.

5.1. Real database: macroeconomic situation of countries

The POP_96 database contains seven ratios measured in

1996 on the macroeconomic situation of 96 countries:

annual population growth, mortality rate, analphabetism

rate, population proportion in high school, GDP per head,

GDP growth rate and inflation rate. This dataset has been

first used by Blayo and Demartines (1991) in the context of

data analysis by SOMs.

5.1.1. Stability of the quantization

Fig. 2 shows the CVðSSIntraÞ values obtained on the

POP_96 database, with increasing number of centroids used

in a two-dimensional map.

2 Available from http://www.dice.ucl.ac.be/neural-nets/.
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As expected, CVðSSIntraÞ increases with the size of the

map: a larger variability in the quantization error is observed

for large maps, due to the fact that input vectors switch from

one Voronoi region to the other between simulations (a

Voronoi region is the portion of the space nearer from one

centroid than from any other one).

Nevertheless, it is clear in Fig. 2 that a larger increase in

CVðSSIntraÞ is observed at the transition between a 7 £ 7

and a 8 £ 8 map. In order to use a sufficiently large map and,

at the same time, to limit the variability of the results, we

choose from Fig. 2 to use a 7 £ 7 SOM on the POP_96

database.

As mentioned earlier, a number B ¼ 100 of bootstrap

replications has been chosen in our simulations. Fig. 3

shows this choice, in the particular case of CVðSSIntraÞ; on

the POP_96 database. The value of CVðSSIntraÞ has been

computed 30 times, for each B between 20 and 200 by steps

of 20, the purpose being to evaluate if different estimates of

CVðSSIntra1Þ (for a specific value of B) will lead to similar

values. If this is the case, the specific value of B may be

considered as large enough; if not, it must be increased. Fig.

3 shows the standard deviation of CVðSSIntraÞ estimated on

30 trials, for each value of B; it clearly shows that this

standard deviation decreases with B until B ¼ 100; and

remains approximately constant for larger values, justifying

the choice. Similar behaviors were observed on other

databases and with other reliability criteria than

CVðSSIntraÞ:

5.1.2. Stability of the neighborhood relations

Table 2 shows the STABi; jðrÞ values obtained on a subset

of pairs of countries in the POP_96 database. The values

marked with p are those which are significant at a test level

of 5% ( p 20 if the result is close from 0—countries are not

neighbors on the map—and p 21 if they are close from 1—

they are neighbors—). A 7 £ 7 square map has been used for

all simulations.

Pairs of countries like Israel–Singapore and Bolivia–

Tunisia are easy to interpret: if the neighborhood concept is

measured with r $ 1; both pairs are clearly identified as

‘neighboring’ countries, i.e. in this case as countries with

similar macroeconomic standards; taking a smaller radius

for the neighborhood concept ðr ¼ 0Þ does not lead to any

conclusion. The Finland–Ireland pair shows the same

behavior, reinforced by the fact that the conclusion can

already be taken with r ¼ 0: The South Korea–Israel pair

are identified as neighboring countries too, but only when

taking a large neighborhood concept ðr ¼ 2Þ:

On the contrary, countries like Namibia–Uruguay really

have different macroeconomic standards, as they are

significantly identified as ‘non-neighbors’ even with r ¼ 2:

Conclusions on pairs like Guyana – Salvador and

Greece–Italy are different. Countries in these pairs are

significantly identified as non-neighbors when r ¼ 0; and as

‘neighbors’ when r $ 1: This result may seem surprising at

first sight. Nevertheless, this can be interpreted as the fact

that these countries are always close on the map, but—

always too—not close enough to be projected on the same

centroid.

In average, there are 4.7, 82.4, and 83.1% of pairs with a

‘significant’ neighborhood relation, i.e. that are marked as

p20 or p 21, respectively, for r ¼ 0; 1, and 2. If the

neighborhood relations were at random, the probability that

a pair would be marked with a p 20 or p 21 would be 5%,

so the average percent of marked pairs would be 5% too.

Thus we see that in this case the results are not significant

for r ¼ 0; but highly significant for r ¼ 1 or 2.

Fig. 4 shows the cumulated histograms of the STABi; jðrÞ

indicator obtained with a 7 £ 7 SOM on the POP_96

Fig. 2. Evolution of CVðSSIntraÞ with increasing numbers of centroids in a

two-dimensional SOM. The x-axis shows the number of units in each

direction of the map (4 £ 4–9 £ 9 units).

Fig. 3. sðCVðSSIntraÞÞ as a function of the number B of bootstrap

replications.

Table 2

Some examples of NEIGH measures on POP database

STABi; jðrÞ/pairs of countries r ¼ 0 r ¼ 1 r ¼ 2

Israel–Singapore 0.023 0.7 p 21 0.95 p 21

Albania–Ivory Coast 0 p 20 0.17 0.59

Guyana–Salvador 0 p 20 0.57 p 21 0.86 p 21

Finland–Ireland 0.51 p 21 0.92 p 21 1 p 21

Namibia–Uruguay 0 p 20 0 p 20 0.15 p 20

Bolivia–Tunisia 0.02 0.33 p 21 0.73 p 21

South Korea–Israel 0.03 0.31 0.72 p 21

Greece–Italy 0 p 20 0.58 p 21 0.87 p 21
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database. Fig. 4(a)–(c) correspond to r ¼ 0–2; respec-

tively. We used the cumulated histograms rather than the

histograms themselves, for the clarity of the figures. The

plain line shows the cumulated histogram of organized

SOM, the dashed line the cumulated histogram of an

unorganized map; the latter is calculated taking into account

the comments at the end of Section 4.2. As detailed in

Section 4.2, we conclude that a map is significantly

organized if the plain and dashed lines are well separated.

As expected on this example, the organization is more

significant when the radius r considered for the neighbor-

hood relation is larger. Indeed, when taking r ¼ 0 for

example, one cannot expect the map to be significantly

organized; this would mean that two predefined countries

would be either always projected on the same centroid (as

r ¼ 0), or never on the same one. As the number of units in

the map (49) is of the same order of magnitudes as the

number of countries (96), one easily understands that the

discretization of the space is too small to expect such a

result. On the contrary, when taking a larger radius for the

neighborhood relation (r ¼ 1 means to consider groups of

nine centroids instead of single ones), the significance of the

organization increases (Fig. 4(b) and (c)).

5.2. Real database: abalones

The abalone database contains eight numerical indicators

measured on more than 4000 abalone shells; indicators

include their sizes, weights, age, etc. This database is often

used in function approximation benchmarks, where the goal

is to predict the age of the abalone as a function of the other

variables. In our study, we used the eight numerical

indicators (including the age) for the SOM learning. A

supplementary, non-numerical indicator (the sex of the

abalone) contained in the database has not been used. This

dataset is available from the UCI repository of machine

learning databases (Blake & Merz, 1998).

5.2.1. Stability of the quantization

A similar study as the one performed on the POP

database has been carried out on the abalone one,

concerning the evolution of CVðSSIntraÞ as the size of the

SOM increases. Fig. 5 shows a rather continuous increase in

CVðSSIntraÞ and therefore, gives no clear indication about

the appropriate size of the map. This result is not surprising

at the light of Section 5.3.1. We choose using a 6 £ 6 size in

the sequel.

Fig. 4. Cumulated histograms of the STABi; jðrÞ indicator on the POP_96 database, for a 7 £ 7 SOM. (a) r ¼ 0; (b) r ¼ 1; (c) r ¼ 2: The plain line shows the

cumulated histogram of organized SOM, the dashed line the cumulated histogram of an unorganized map. See text for details.

Fig. 5. Evolution of CVðSSIntraÞ with increasing numbers of centroids in a

two-dimensional SOM. The x-axis shows the number of units in each

direction of the map (4 £ 4–9 £ 9 units).
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5.2.2. Stability of the neighborhood relations

Fig. 6 shows the cumulated histograms of the STABi; jðrÞ

indicator obtained with a 6 £ 6 SOM on the Abalone

database. Fig. 6(a)–(c) correspond to r ¼ 0 to 2, respec-

tively. The plain line shows the cumulated histogram of

organized SOM, the dashed line the cumulated histogram of

an unorganized map; the latter is calculated taking into

account the comments at the end of Section 4.2.

We see in the three figures that the organization of the

SOM, on the Abalone database, is far from being as good as

with the POP database. In all the three figures, the plain and

dashed lines are close to each other; we may conclude that

neighborhood relations between the majority of pairs of data

are not significant, i.e. that one cannot have confidence on

the fact that, after a specific SOM run, two observations

projected on close centroids on the map is not the result of

chance. This is due to the nature of the data, which are not

well separated into different classes.

5.3. Artificial databases: Gaussian distributions

In order to illustrate the concepts on simpler databases,

three mono- or multi-modal Gaussian distributions have

been used. Gauss_1 contains one cluster of observations.

Gauss_2 and Gauss_3 both contain three clusters; the

clusters in Gauss_2 have equal variance and some overlap,

while those in Gauss_3 have different variance but no

overlap. The three distributions are shown in Fig. 7(a)–(c),

respectively.

5.3.1. Stability of the quantization

Table 3 shows the CVðSSIntraÞ values obtained on the

three Gaussian databases, with SOM strings of 3, 6, and 9

units, respectively.

An expected result is that the CV is low in each case (we

remind that the CV—Eq. (3)—is expressed as a percentage).

This enforces the idea that the SOM is a reliable method, not

falling too much into the traps of local minima encountered

with other neural network models (see, for example,

Zapranis & Refenes, 1999 for opposite results obtained

with MLP). We also notice that the CV increases with the

number of units, in the databases with several clusters

(Gauss_2 and Gauss_3). This is due to the fact that some

centroids switch from one cluster to another between the

different trials, leading to an increase in the variability of the

results. We can take advantage of this behavior to have an

idea about the number of clusters in a database, and

therefore to choose an appropriate number of centroids.

Indeed let us have a look at Fig. 8, where we detailed the

CVðSSIntraÞ for the Gauss_1 and Gauss_3 databases.

The plain line in Fig. 8 shows the CVðSSIntraÞ for the

Gauss_3 database, with 3–15 units in a SOM string. This

line clearly shows that the CVðSSIntraÞ strongly decreases

at the 5–6 units and the 8–9 units transition. The reason is

Fig. 6. Cumulated histograms of the STABi; jðrÞ indicator on the Abalone database, for a 6 £ 6 SOM. (a) r ¼ 0; (b) r ¼ 1; (c) r ¼ 2: The plain line shows the

cumulated histogram of organized SOM, the dashed line the cumulated histogram of an unorganized map. See text for details.

Table 3

Coefficient of variation (CV) of the SSIntra quantization error, on three

Gaussian databases (see text), with one-dimensional SOM strings and

variable number of units

Database/#units 3 units 6 units 9 units

Gauss_1 2.04 1.85 2.40

Gauss_2 1.35 2.73 2.27

Gauss_3 1.46 8.91 5.96
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that with 5 and 11 units, some centroids switch from one

cluster to another between different trials, as already

mentioned. However, with 6 and 9 units, the SOM always

converges to a situation where there are, respectively, 2 and

3 units in each of the three clusters. All trials give thus

similar results, leading to a lower CVðSSIntraÞ value.

Diagrams as Fig. 8 may be used to evaluate the number of

separated clusters in the database (here 3), and to choose an

appropriate number of centroids (here a good choice would

be a multiple of 3, depending on the expected granularity of

the quantization). Of course, this property is not visible in

the CVðSSIntraÞ for the Gauss_1 database (dashed line in

Fig. 8), as there is only one cluster in this case.

Since the results concerning the stability of the

neighborhood relations are qualitatively similar to those

obtained on the previous and the next examples, and since

more conclusions can be drawn from the comparison

between two databases in the next example, we omit here

the results of the neighborhood relations on the Gauss

databases.

5.4. Artificial databases: three-dimensional uniform and

horseshoe distributions

A third set of databases has been chosen in order to show

that two-dimensional SOMs (as commonly used in most

situations) perform better (what concerns the quality of the

neighborhoods) on databases where the intrinsic dimension-

ality of data is 2. By intrinsic dimensionality, we mean the

effective number of degrees of freedom of the observations.

The database chosen for this example is the well-known

horseshoe distribution in a three-dimensional space; its

intrinsic dimension is 2, as all observations are situated on a

Fig. 7. (a) Gauss_1, (b) Gauss_2, (c) Gauss_3 distributions.

Fig. 8. CVðSSIntraÞ for the Gauss_1 (squares and dashed line) and Gauss_3

(triangles and plain line) databases, versus the number of centroids in a

SOM string. Fig. 9. Horseshoe distribution in a three-dimensional space.

E. de Bodt et al. / Neural Networks 15 (2002) 967–978976



folded two-surface. The horseshoe distribution is shown in

Fig. 9. We used a 7 £ 7 SOM grid for the simulations.

In order to compare the results to a situation where

the intrinsic dimensionality of data is larger than 2, we

generated a second distribution, where the three-dimensional

points are randomly situated in the whole space. The

intrinsic dimensionality of this database is thus 3.

Fig. 10 shows the cumulative histograms of STAB

measures on these two databases (plain lines); dashed

lines correspond to the histograms on unorganized maps

for comparisons. Fig. 10(a) and (b) shows the results on

the uniform distributions, and Fig. 10(c) and (d) on the

horseshoe distribution. Fig. 10(a) and (c) have been

calculated with a small radius r ¼ 1 for the definition of

the neighborhood relations, while Fig. 10(b) and (d) have

been calculated with a larger radius r ¼ 2: Horizontal

axes of all figures have been scaled to 1.

As expected, plain and dashed lines are more different in

Fig. 10(c) and (d) (horseshoe distribution) than they are in Fig.

10(a) and (b); the difference is more visible between Fig. 10(b)

and (d). This means that the neighborhood relations (in

particular the larger neighborhoods, i.e. r ¼ 2), are better

preserved by the SOM on the distribution with intrinsic

dimension of 2, than on the distribution with intrinsic

dimension of 3. This is nothing else than the phenomenon

already mentioned: when the topology of the map does not

correspond to the intrinsic dimension of the observations, the

SOM has more difficulties to preserve the relations between all

pairs of points close in the input space. Evaluating the

difference between the histograms of STAB in organized and

unorganized maps is an attempt to measure objectively to what

extent the respect of topology is an effective consequence of

the convergence of the SOM.

6. Conclusions

This paper describes a set of tools (measures and graphs)

to assess the reliability of SOM. By reliability, we mean the

confidence we may have in the result of a specific SOM

(after learning) on a specific database. The bootstrap

methodology is used as a way to obtain objective tests of

statistical significance, that can be used for hypotheses tests

in some cases.

Concerning the vector quantization property of SOMs,

the reliability is measured by the coefficient of variation of

the quantization error. This allows:

† to assess if the value of the quantization error found after

the SOM learning is reliable or not, i.e. is reproduced if

the same experiment is made again but with different

samples;

† as a by-product, to assess if the number of units

(centroids) chosen in the map is adequate with respect

to the clusters in the data (a bad choice will lead to an

sudden increase in the coefficient of variation).

An original result of this paper is to measure the

topological property of SOMs separately for each pair of

observations, in order to check if the fact that they are

neighbors (or not) in a SOM (after learning) is meaningful

or not. The bootstrap methodology is used to average over a

Fig. 10. Cumulative histograms of STAB measures, on a uniform three-dimensional database ((a) and (b)) and on a horseshoe distribution ((c) and (d)). Plain

lines are the result of a 7 £ 7 organized Kohonen map, while dashed lines correspond to unorganized maps. (a) and (c) have been calculated with r ¼ 1; (b) and

(d) with r ¼ 2: See text for details.
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set of simulations, a measure of the neighborhood relation

on a specific pair of observations. This allows:

† to check if the fact that two observations are projected on

the same or on neighboring centroids on the SOM is a

meaningful result (against the fact that it is a random

result);

† by looking at the results of a larger set of pairs, to assess a

reasonable size to define the neighborhood concept

between two observations.

Concatenating the information about the neighborhood

relations on all pairs of observations in a database, in the

form of a histogram, and comparing this histogram to the

one that would be obtained if the map was not organized,

allows:

† to have an overall measure of the organization of the map

and a point of comparison to assess if this measure is

conclusive or not;

† to assess if the dimension of the map (usually dimension

2—grid—or dimension 1—string—) is adequate for the

database (according to its intrinsic dimension) or if it will

lead to a folded map in the input space (for which

topology is not optimally preserved).
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