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Abstract

Self-organizing maps (SOMs) are widely used in several fields of application, from neurobiology to multivariate data analysis. In that

context, this paper presents variants of the classic SOM algorithm. With respect to the traditional SOM, the modifications regard the core of

the algorithm, (the learning rule), but do not alter the two main tasks it performs, i.e. vector quantization combined with topology

preservation. After an intuitive justification based on geometrical considerations, three new rules are defined in addition to the original one.

They develop interesting properties such as recursive neighborhood adaptation and non-radial neighborhood adaptation. In order to assess the

relative performances and speeds of convergence, the four rules are used to train several maps and the results are compared according to

several error measures (quantization error and topology preservation criterions). q 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Self-organizing maps; Vector quantization; Recursive neighborhood adaptation; Non-radial neighborhood adaptation; Topology preservation;

Topographic mapping

1. Introduction

The seminal idea leading to the principle of the self-

organizing maps (SOMs) can already be found in the work

of von der Malsburg (von der Malsburg, 1973). The goal of

his paper was to model the stochastic patterns of eye

dominance and orientation preference in the visual cortex.

After this biological introduction to the topic, the analysis of

the mathematical properties of the topographic maps only

started in the eighties when Teuvo Kohonen (Kohonen,

1982, 1989) simplified the biological model of von der

Malsburg. Kohonen also clearly stated the famous learning

rule which allows the topographic maps to organize

themselves. This learning process has widely popularized

the topographic maps under the names of SOMs or ‘self-

organizing feature maps’ (SOFMs).

Actually, the explanation of this success can be found in

the fact that SOMs are easy to understand: the task they

perform is very intuitive (but, paradoxically, it is very

difficult to express it with mathematical formulas). More

precisely, SOMs perform simultaneously the combination

of two subtasks: vector quantization and topographic

representation. This ‘magic mix’ has been used not only

as a vector quantization method, but also in other fields

where self-organization plays a key role. For example,

SOMs can be used for non-linear Blind Source Separation

(Pajunen, Hyvärinen, & Karhunen, 1996), or non-linear

projection of data (Kraaijveld, Mao, & Jain, 1995; Mao &

Jain, 1995). Considering SOMs as a special case of vector

quantization method, the difference with more classical

methods holds in some kind of predefined information given

to the neurons before the learning phase. Actually, this

predefined information may be seen as a mutual organiz-

ation of the neurons, which affects the learning process. The

result is the self-organization property which tries to

reproduce the topographic organization in the quantized

space.

In view of that combination of vector quantization and

topology preservation, this paper studies the modifications

that can be made to the classic SOM algorithm. The

proposed changes only affect the ‘heart’ of the algorithm,

i.e. the learning rule. The goal consists in defining new

learning rules which develop the same mix of interesting

properties as the traditional SOM.

After this introduction, Section 2 will review the SOM

algorithm in details, as it was stated in (Kohonen, 1989).

Section 3 presents some changes that can be made to the

traditional SOM learning rule, without altering its funda-

mental properties (vector quantization and topology preser-

vation). After a short and intuitive presentation, Section 3.1

defines a new learning rule, followed by the presentation of

one of its properties in Section 3.2. Section 4 extends the

new rule and generalizes it to a set of four rules. Opening

the experimental part of the work, Section 5 presents the

material used to evaluate practically the four rules, i.e. the

map parameters, the learning sets and the error criterions.

0893-6080/02/$ - see front matter q 2002 Elsevier Science Ltd. All rights reserved.

PII: S0 89 3 -6 08 0 (0 2) 00 0 73 -4

Neural Networks 15 (2002) 993–1003

www.elsevier.com/locate/neunet

1 Michel Verleysen is senior Research Associate of the Belgian National

Fund for Scientific Research (FNRS).

* Corresponding author. Tel.: þ32-2-47-8133; fax: þ32-2-47-2598.

E-mail address: lee@dice.ucl.ac.be (J.A. Lee).

http://www.elsevier.com/locate/neunet


Section 6 discusses the results of the experiments from two

points of view, i.e. the quantization quality and the topology

preservation. Finally, Section 7 draws some conclusions,

showing the advantages of the proposed rules with respect to

the traditional one.

2. Review of the SOM algorithm

Basically, there are two main classes of vector quantiza-

tion algorithms: the ‘winner takes all’ (WTA) methods and

the ‘winner takes most’ ones. In the WTA class, only one

neuron is adapted when a learning pattern stimulates the

network. This sole neuron is often called the ‘best matching

unit’ (BMU) and defined as the closest one from the pattern,

with regards to a well specified distance measure. In more

biological terms, the WTA class allows only one neuron to

fire and adapt, while several other neurons in addition to the

BMU may fire in WTM algorithms like the self-organized

map. Indeed, the strength of adaptation does not only

depend on the distance to the pattern, but also on some static

information stored in the neurons. Actually, before learning,

the neurons are given a fixed position in a Euclidian space.

As these positions are often two-dimensional (2D) and

regularly spaced, the SOM looks like a grid in what is called

the ‘grid space’. These locations also define topographic or

topological relations between the neurons, in a space well

distinguished from the one where the patterns lies. Such

relations indicates which neurons have to be adapted

simultaneously with the BMU. This means that unlike

other WTM algorithm, the SOM adapts neurons with a

strength that depends not only on the distance from the

BMU in the pattern space, but also on to the same distance

computed in the grid space. Translating all these ideas in

formulas, the map can be defined by:

(1) a matrix ~W; of which row ~wr gives the weights or

coordinates of neuron r in the pattern space;

(2) a function dðq; rÞ; measuring the grid distance between

neurons q and r in the grid space.

Notice that the distance d(q,r) may be implicitly

determined either by a true position in a grid or by another

more general mathematical structure like a weighted graph

with neurons as nodes. Anyway, this definition leaves

enough freedom regarding the shape of the map or the

structure of the neighborhood. For example, the neurons

may be placed on a one-dimensional (1D) string (straight

line) or on a 2D grid, the neighborhood may be rectangular

or hexagonal, etc. Having ~W and d(q, r), the map may begin

its learning process. Assuming that:

† vectorial pattern ~xi stimulates the map at learning time t,

† index p ¼ arg minrk~wt
r 2 ~xik points to the best-matching

unit,

then all neurons are adapted according to following rule:

~wtþ1
r ¼ ~wt

r þ D~wt
r ¼ ~wt

r þ g t
rð~xi 2 ~wt

rÞ: ð1Þ

In the last equation, g t
r is the learning rate for neuron r,

which factorizes in the following product:

g t
r ¼ atn t

r ð2Þ

where a t and n t
r are values between 0 and 1, decreasing with

time t. The first factor a t is the value of the global learning

rate, common for all neurons, while n t
r is known as the

neighborhood factor or neighborhood kernel. In order to

observe the self-organization property, the neighborhood

factor must be a decreasing function of the grid distance

dðp; rÞ between the BMU and the neuron being adapted. For

example, the neighborhood function may be the ‘Bubble’

function (Kohonen, 1995):

n t
r ¼ 1; when dðp; rÞ , lt ð3Þ

n t
r ¼ 0; when dðp; rÞ . lt ð4Þ

or a Gaussian kernel (Kohonen, 1995; Ritter, Martinetz, &

Schulten, 1992):

n t
r ¼ expð20:5ðdðp; rÞ=ltÞ2Þ: ð5Þ

In both equations, lt acts like a neighborhood radius, which

has to decrease as time goes by, in order to ensure the

convergence of the map. As mentioned above, some

freedom has already been explored regarding either the

neighborhood structure or the neighborhood function. Are

there such possibilities for the learning rule itself? Actually,

all modifications are acceptable provided two conditions are

fulfilled:

† The BMU is adapted radially towards the learning

pattern, in order to guarantee a good quantization;

† The changes made to the learning rule keep using the

distance function dðq; rÞ (i.e. the predefined topographic

information stored in the map), in order to observe self-

organization in the quantized space.

Modified learning rules are defined in Section 3.

3. Recursive neighborhood adaptation

As mentioned in Section 1, the SOM performs the

combination of two tasks: vector quantization and

topographic mapping. In the original algorithm, these

two subtasks are deeply interlaced in the learning rule.

This is due to the fact that the learning rule adapts the

neighbors of the BMU in the same way as the BMU, i.e.

in a vector quantization way, radially towards to the

stimulating vector. But fundamentally, there is no reason

to adapt neighbors with VQ in mind, because neighbors

do not play any interesting role in the coding and

decoding processes of vector quantization, where only the
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BMU is useful. Actually, the radial adaptation of the

neighbors achieves indirectly the task of topographic

mapping. Obviously, other ways exist to perform more

directly the topology preservation. For example, the

adaptation of the neighbors does not require to take into

account the stimulating vector; only the BMU and the

topographic relations stored in the neurons are important.

The same conclusions may be drawn more intuitively, as

explained below.

3.1. The fisherman’s rule

From a geometrical point of view, the traditional

SOM rule adapts neurons radially around the stimulat-

ing vector ~xi: Other possibilities clearly exist. Indeed,

the SOM may be seen intuitively as a fishing net

floating in the sea. If a fish compares to a learning

pattern, then the net will react more or less like a SOM

and the node touched by the fish corresponds to the

BMU. But at this point, neighbors of the BMU will not

move radially towards the fish mouth. Instead, neigh-

boring nodes will be pulled by each other: the BMU

pulls the direct neighbors, these neighbors pull farther

neurons and so on. Actually, neurons are adapted in a

recursive manner. All these ideas may be written more

formally into the following learning rule

D~wt
p ¼ at

~xi 2 ~wt
p

� �
ð6Þ

D~wt
r ¼ g t

r ~wtþ1
q 2 ~wt

r

� �
; ;r – p ð7Þ

where the last equation is recursive. Therefore, index q

is determined recursively and neurons may not be

adapted in random order: after the update of the BMU,

only the direct neighbors may be adapted. When this is

done, neighbors of second order are moved and so on.

More generally, if the map is defined by means of a

weighted graph, then the grid or map distance dðp; rÞ to

the BMU can be computed in advance by a shortest

path algorithm (Dijkstra, 1959) and the condition for

adaptation becomes: if all neighbors on the shortest path

between neuron r and the BMU have already been

adapted, then neuron r may also be moved.

Unlike in the original learning rule (Eq. (1)), the two

subtasks of the SOM, i.e. vector quantization and topo-

graphic mapping, have now their own learning rule. Eq. (6)

adapts the BMU in the same way as Competitive Learning,

while Eq. (7) moves neighbors without explicit use of the

learning pattern ~xi:

Although this recursive learning rule seems uselessly

complex to implement, it shows an interesting behavior.

3.2. Property of the fisherman’s rule

By comparison to the original rule, the fisherman’s rule

presents an interesting property due to its recursive

formulation. To demonstrate it simply, suppose that the

map is reduced to a string in a 1D pattern space and that its

current state is such that:

† ~wt
r ¼ r; with ~wt

p ¼ p ¼ 0;

† ~wt
r is linked with ~wt

r21;

† the stimulating pattern is ~xi ¼ 0:

If l t is set to þ1, then the neighborhood has no limit, lt
r

degenerates to a t and one can rewrite the traditional rule

into

~wtþ1
r ¼ ~wt

r þ atð~xi 2 ~wt
rÞ ¼ ð1 2 atÞr; ð8Þ

while the fisherman’s rule leads to

~wtþ1
p ¼ ~wt

p þ atð~xi 2 ~wt
pÞ ¼ ð1 2 atÞr ¼ 0; ð9Þ

~wtþ1
r ¼ ~wt

r þ atð~wtþ1
r21 2 ~wt

rÞ ¼ ð1 2 atÞr þ at
~wrþ1

r21;

;r – p;

ð10Þ

The recurrence in Eq. (10) is solved by

~wtþ1
r ¼ ð1 2 atÞ

Xr

i¼0

iðatÞr2i ¼ r 2 at 1 2 ðatÞr

1 2 at
: ð11Þ

The results of the calculations above are illustrated in Fig.

1 which is a plot of the weight ratio ~wtþ1
r = ~wt

r: Obviously,

the fisherman’s rule induces an attenuation of the

adaptation, as the grid distance dðp; rÞ to the winning

neurons grows. This behavior recalls the effects of the

Gaussian neighborhood, i.e. when a Gaussian kernel

replaces the simpler Bubble function. This property of the

fisherman’s rule is quite desirable, as it is known that

SOMs with Gaussian neighborhood often give better

results (Kohonen, 1995; Ritter et al., 1992) than with the

Bubble function.

4. Hybrid rules

Trying to compare the traditional learning rule and the

fisherman’s one is almost impossible because their nature

is totally different. In order to make them comparable, one

has to list their differences one by one and try each

combination. Actually, there are two differences between

these two learning rules: the traditional rule is non-

recursive and purely radial, while the fisherman’s one

is recursive but not radial. This leads to four combina-

tions shown in Eqs. (12)–(15), Table 1 and Figs. 2 and 3.

The four rules can be written more or less in the same

way:

D~wt
r ¼ g t

r

���� ~xi 2 ~wt
r

���� ~xi 2 ~wt
r���� ~xi 2 ~wt
r

���� ; ð12Þ

D~wt
r ¼ g t

r

���� ~wtþ1
q 2 ~wt

r

���� ~xi 2 ~wt
r���� ~xi 2 ~wt
r

���� ; ð13Þ
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D~wt
r ¼ g t

r

���� ~xi 2 ~wt
r

���� ~wtþ1
q 2 ~wt

r���� ~wtþ1
q 2 ~wt

r

���� ; ð14Þ

D~wt
r ¼ g t

r

���� ~wtþ1
q 2 ~wt

r

���� ~wtþ1
q 2 ~wt

r���� ~wtþ1
q 2 ~wt

r

���� ; ð15Þ

In each of these four equations, the three factors from left

to right are respectively the learning rate, the norm of the

adaptation and its direction. The dynamical behavior of

these four rules are assessed by experiments described in

Section 5.

5. Experiments

In order to evaluate the learning performance of the four

rules described in Section 4, several experiments on

different map configurations have been tried. Sections

5.1–5.4 present the maps, the learning sets, the error

criterions used to evaluate the learning quality and, finally,

the learning parameters.

5.1. Maps

For the experiments, the maps have always a hexagonal

neighborhood shape, i.e. the neurons are disposed like the

cells of a honeycomb. As a result, the links between the

neurons all have the same unitary length and form

equilateral triangles. These links are used to compute the

fixed grid distances dðr; qÞ between the neurons, with a

shortest path algorithm. Therefore, such distances give not

exactly the same values as if they were computed with the

Euclidian distance in the grid. In the worst case, the

difference between both measures does not exceed 15%.2 As

the hexagonal neighborhood shape seems more natural than

the rectangular one in an Euclidian space, no experiments

were made with the latter.

Regarding the neighborhood function, the two traditional

options are tested: the bubble function (Eqs. (3) and (4)) and

the Gaussian kernel (Eq. (5)).

Finally, just before the learning phase, two methods are

also tried for the initialization of the maps: random

initialization and linear initialization. The first one consists

in choosing randomly as much vectors in the learning set as

there are neurons in map. The result is a map well placed

inside the learning cloud but heavily crumpled. The second

method is more complex but also more judicious. All

learning patterns are used to compute the principal

components of the learning cloud (for more details about

the Principal Component Analysis, see Jolliffe (1986)).

Next, the map is initialized in the plane spanned by the two

first components, i.e. the ones associated with the largest

eigenvalues of the covariance matrix of the learning set.

Contrary to the first method, the neurons are not always

right inside the cloud but in return the map is well unfolded.

5.2. Learning sets

Two artificial learning sets were chosen for the

Fig. 1. Weight ratio after and before adaptation, with at ¼ 0:75; for the traditional SOM rule (constant horizontal line) and for the fisherman’s rule (increasing

curve).

2 The worst case happens when the shortest path follows the same

number of ‘diagonal’ links (at 30 or 608) and vertical/horizontal ones,

leading to a Euclidean distance which is equal to the length of the shortest

path multiplied by cosð30Þ ¼ 0:866:
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experiments. The first one is a spiral (Fig. 4) embedded in a

2D space. The second one (Fig. 5) is called a ‘half-cube’,

because it contains three faces of a cube, which are placed

so that they form a corner. Both learning sets comprise

2400 patterns with some Gaussian noise (absolute

variance ¼ 0.01). These simple learning sets are chosen in

order to test the behavior of the two classical SOM

architecture (1D string and 2D grid).

The maps trained on the learning sets contain 48 neurons

(2% of the number of patterns). The width and length of the

maps are fitted to the shape of the learning cloud: 48 by 1 for

the spiral and 12 by 4 for the cube corner (4 £ 4 neurons per

face).

5.3. Error criterions

When using a SOM, the quality of the learning phase

may be seen from two points of view: the quality of the

vector quantization or the quality of the topographic

mapping.

The quantization performance is measured as usually by

the quantization error. Formally, if the coding and decoding

operations are defined as

cod ~xi

� �
¼ arg min

r
k~xi 2 ~wrk ð16Þ

decðrÞ ¼ ~wr ð17Þ

then the vector quantization error is the quadratic error

between the initial learning patterns and the corresponding

vectors after coding and decoding. It can be written as

EVQ ¼
XL

i

k~xr 2 decðcodð~xiÞÞk
2
; ð18Þ

where index i traverses the whole learning set. The error

may be normalized by the number of patterns L or by the

variance of the learning set.

Another criterion to assess the quantization quality

consists in counting the percentage of ‘lost units’, i.e.

neurons that are never BMU for any pattern of the learning

set. Lost units are often neurons placed outside the learning

cloud; they are wasted resources for the quantization.

Regarding the topographic mapping, the topology

preservation may be measured by numerous criterions

(Bauer, Herrmann, & Villmann, 1999; Goodhill &

Sejnowski, 1996; Bauer & Pawelzik, 1992; Villman, Der,

Hermann, & Martinetz, 1997). Considering the large

number of experiments made to evaluate the maps, the

criterions giving non scalar results are discarded, i.e. scatter

plot (Demartines & Hérault, 1997) or function plot (Bauer &

Pawelzik, 1992). Three scalar criterions are retained.

The first one is the Topographic Error, mentioned in

(Kiviluoto, 1996). This criterion is data dependent, in the

sense that it uses the learning patterns. The formal definition

is as follows:

ET1 ¼ 1 2
1

L

XL

i¼1

lð~xiÞ; ð19Þ

Fig. 2. Traditional SOM rule (left) and fisherman’s rule (right).

Fig. 3. Hybrid rules: non radial non recursive (left) and recursive radial (right).

Table 1

Rules

Non-recursive Recursive

Radial Rule 12 (Fig. 2, left) Traditional SOM Rule 13 (Fig. 3, right) Hybrid

Non-radial Rule 14 (Fig. 3, left) Hybrid Rule 15 (Fig. 2, right) fisherman’s rule

J.A. Lee, M. Verleysen / Neural Networks 15 (2002) 993–1003 997



where lð~xiÞ equals 1 when the two nearest neurons from ~xi

are linked, i.e. are direct neighbors in the map; otherwise,

lð~xiÞ equals 0. Intuitively, ET1 decreases from 1 to 0 when

the two nearest neurons from a pattern are not neighbors in

the map. This situation can occur for example when the map

is folded on itself and if the two nearest neighbors are

located on the two different layers.

The second criterion is inspired from (Jones, Van

Sluyters, & Murphy, 1991). Its computation does not

require to know the learning patterns. In this case, the

Fig. 4. Learning set: the spiral.

Fig. 5. Learning set: the half-cube (three faces of a cube).
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criterion just compares if the direct neighbors of a neuron r

in the grid space are also the nearest ones to r in the sense of

the Euclidian distance measured in the feature space. To

write this formally, suppose that neuron r has n ¼ lNðrÞl
direct neighbors and that function gðrÞ , n gives the

number of direct neighbors of neuron r which are also

ranked in the n nearest neurons in the feature space:

ET2 ¼
1

P

XP

r¼1

gðrÞ

lNðrÞl
: ð20Þ

Finally, the third criterion (Lee, Donckers, & Verleysen,

2001) resembles to the second one. The idea consists in

building around each neuron r a neighborhood in the feature

space defined as a sphere with radius

RðrÞ ¼ max
s[NðrÞ

k~wr 2 ~wsk: ð21Þ

Then, for each neuron, the error criterion counts the number

of neurons which are inside this Euclidian neighborhood

while they should be located outside, because they are not

direct neighbors of neuron r in the grid. This gives:

ET3 ¼
1

P

XP

r

l{sls – r; s � NðrÞ; k~wr 2 ~wsk , RðrÞ}l: ð22Þ

5.4. Learning parameters

In order to test the sensitivity of the four rules to the

learning parameters, several thousands of experiments were

made with different values for the learning rate a t, the

neighborhood width l t and the number of epochs, i.e. the

number of stimulations of the map by the whole learning set.

Practically, for each

† learning set (spiral or half-cube),

† neighborhood function (Bubble or Gaussian),

† initialization method (random or PCA),

† number of epochs (2, 5 or 10),

† rule (classic, fisherman’s, hybrid 1 and 2),

the initial parameters values are chosen randomly 10000

times between 0 and 1 for lt¼1; and between 0 and 48 for

lt¼1: The final values are the initial ones divided by the

Fig. 6. Graphical comparison between the four rules: mean error surfaces are drawn for each learning rule; from left to right: the traditional rule, the non-radial

non-recursive rule, the radial recursive rule and the fisherman’s rule; from top to bottom: the topology preservation criterions ET3, ET2, ET1 and the vector

quantization error EVQ. The results are averaged for 10 000 string maps trained on the spiral learning set with randomly chosen parameters (0 , at¼1 , 1 on

the Y axis, 0 , lt¼1 , 48 on the X axis), after two epochs, with random initialization.
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number of epochs and the intermediate values are

interpolated by an exponential function. All these choices

are maybe quite arbitrary, but even if they are not

exhaustive, they cover a wide range of possibilities. Shortly

said, the conducted experiments illustrate the robustness of

the different rules against a naive choice of the parameters,

more than ‘best-case performances’.

6. Results and discussion

Due to the large number of experimental results and their

difficulty to be interpreted, this section includes only a few

tables and figures. For example, Figs. 6 and 7 show the

averaged results of the 10 000 maps, as a function of the

learning parameters. The maps are trained with the spiral

(Fig. 6) and with the half-cube (Fig. 7); after a random

initialization, each map ran during 2 (Fig. 6) or 5 epochs

(Fig. 7), with randomly chosen learning parameters. The

whole set of numerical results are available on request to the

authors.

6.1. Random vs linear initialization

During the first epochs of the learning phase, the map has

to unfold itself inside the learning cloud. Linear initializa-

tion fasten this important task. Unfortunately, PCA is not

exactly a neural method, so what happens when the simpler

random initialization is used instead? In this case, visible

differences appear between the recursive and the non-

recursive learning rules. More precisely, when the map is

still heavily crumpled, just after the initialization, the

following situation can often occur (Fig. 8): second order

neighbors of the BMU are not behind the BMU ~wt
p; but they

lie far beyond the pattern ~xi: Now, with the equations of the

learning rules in mind, it is easy to see that the fisherman’s

rule (solid arrows) unfolds the map stronger than the

traditional one (dotted arrows). Intuitively, the reason is

simple: the traditional rule realizes topology preservation as

Fig. 7. Graphical comparison between the four rules: mean error surfaces are drawn for each learning rule; from left to right: the traditional rule, the non-radial

non-recursive rule, the radial recursive rule and the fisherman’s rule; from top to bottom: the topology preservation criterions ET3, ET2, ET1 and the vector

quantization error EVQ. The results are averaged for 10 000 grid maps trained on the half cube learning set with randomly chosen parameters (0 , at¼1 , 1 on

the Y axis, 0 , lt¼1 , 48 on the X axis), after five epochs, with random initialization.

Fig. 8. Comparison between the traditional rule and the fisherman’s one: the

fisherman’s rule unfolds better the map by moving the second order

neighbor ~wt
r (solid arrow) farther than the traditional rule (dotted arrow).
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an indirect consequence of a particular vector quantization

method while the fisherman’s rule tries to reach topology

preservation more explicitly than the traditional rule

(Section 3). Practically, the difference is clear, since the

traditional rule moves the neighbors towards the learning

pattern (Fig. 8), while the fisherman’s rule pulls the second

order neighbors towards the direct neighbors.

For the unfolding of the spiral with a string map, the best

results for all criterions are performed by the fisherman’s

rule (Fig. 6, Table 2). The fisherman’s rule and the radial

recursive one work well for the grid map used with half-

cube (Fig. 7, Table 5).

6.2. Gaussian vs Bubble neighborhood function

When the number of epochs grows, the recursive rules

keep their performance advantages if the neighborhood is

computed with the Bubble function (see Tables 2–5 for the

Bubble function). As already stated, the fisherman’s rule

works better for the spiral and the radial recursive for the

half cube.

Once the neighborhood function becomes a Gaussian

kernel, the tendency is reversed: the traditional rule works

better (see Tables 6 and 7). A possible explanation is that the

combination of the Gaussian kernel and the recursive

adaptation causes a very fast decrease of the neighborhood

adaptations as the grid distance to the BMU grows. As a

consequence, the recursive rules favor the vector quantiza-

tion (they give a lower error than the traditional learning

rule), but they are not as good with respect to topology

preservation. The advantage of the traditional rule is clearly

visible for the spiral (Table 6), while the best choice is not so

Table 2

Mean (m) and standard deviation (s) for 10 000 experiments; after random initialization, the string maps are trained on the spiral learning set, during 2 epochs,

with the Bubble function and with randomly chosen parameters ð0 , at¼1 , 1; 0 , lt¼1 , 48Þ

Rule mET3 mET2 mET1 mEVQ sET1 sET2 sET3 sEVQ

Traditional 4.325 0.496 0.221 0.397 3.109 0.190 0.120 0.231

Non-rad. non-rec. 4.765 0.544 0.220 0.449 3.049 0.188 0.148 0.250

Rad. rec. 1.559 0.264 0.197 0.257 1.826 0.200 0.143 0.137

Fisherman 0.319 0.074 0.060 0.227 0.619 0.063 0.032 0.114

Table 3

Mean (m) and standard deviation (s) for 10 000 experiments; after random initialization, the grid maps are trained on the half cube learning set, during 2

epochs, with the Bubble function and with randomly chosen parameters ð0 , at¼1 , 1; 0 , lt¼1 , 48Þ

Rule mET3 mET2 mET1 mEVQ sET3 sET2 sET1 sEVQ

Traditional 27.948 0.806 0.182 0.269 15.559 0.242 0.204 0.136

Non-rad. non-rec. 27.453 0.768 0.177 0.284 15.130 0.252 0.213 0.128

Rad. Rec. 5.693 0.347 0.196 0.139 4.871 0.154 0.111 0.052

Fisherman 4.037 0.348 0.136 0.161 1.901 0.076 0.081 0.057

Table 4

Mean (m) and standard deviation (s) for 10 000 experiments; after random initialization, the string maps are trained on the spiral learning set, during 5 epochs,

with the Bubble function and with randomly chosen parameters ð0 , at¼1 , 1; 0 , lt¼1 , 48Þ

Rule mET3 mET2 mET1 mEVQ sET3 sET2 sET1 sEVQ

Traditional 1.424 0.268 0.154 0.147 0.710 0.093 0.104 0.109

Non-rad. non-rec. 1.723 0.315 0.128 0.191 0.737 0.099 0.084 0.130

Rad. Rec. 0.674 0.167 0.158 0.108 0.592 0.096 0.102 0.073

Fisherman 0.415 0.085 0.064 0.101 0.635 0.061 0.034 0.061

Table 5

Mean (m) and standard deviation (s) for 10 000 experiments; after random initialization, the grid maps are trained on the half cube learning set, during 5

epochs, with the Bubble function and with randomly chosen parameters ð0 , at¼1 , 1; 0 , lt¼1 , 48Þ

Rule mET3 mET2 mET1 mEVQ sET3 sET2 sET1 sEVQ

Traditional 8.126 0.496 0.287 0.117 4.274 0.197 0.145 0.069

Non-rad. non-rec. 9.028 0.452 0.288 0.154 3.411 0.108 0.179 0.087

Rad. Rec. 2.393 0.198 0.156 0.076 2.756 0.112 0.103 0.040

Fisherman 3.384 0.307 0.120 0.097 1.932 0.076 0.085 0.048
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evident for the half-cube (Table 7), for which the fish-

erman’s rule performs very well. In brief, the recursive

neighborhood adaptation and the Gaussian kernel play the

same role: they smooth the neighborhood adaptations

around the BMU. But the combination of both techniques

decreases their efficiency.

From this point of view, it would be interesting to

compare the traditional rule with Gaussian kernel and the

fisherman’s rule with the Bubble function. Unfortunately,

this raises some practical difficulties. Indeed, the slope of

the Gaussian kernel is dynamically adjustable by tuning its

width l t. On the contrary, the shape of the recursive

adaptation is statically fixed on the basis of the distances

dðp; rÞ and the only dynamical feature consists in skipping

some of the weakest adaptation with the Bubble function.

Consequently, a promising idea for future work would be

the comparison between the traditional SOM learning rule

with the following one:

D~wt
p ¼ at

~xi 2 ~wt
p

� �
ð23Þ

D~wt
r ¼ lt

~wtþ1
q 2 ~wt

r

� �
; ;r – p: ð24Þ

With respect to the traditional learning rule, the neighbor-

hood factor g t
r is simplified by deleting the global learning

rate a t and by replacing the neighborhood function by l t.

This last rule makes the vector quantization and the

topographic mapping even more independent than the

fisherman’s rule.

6.3. Robustness

Considering the different quality criterions as a function

of the learning parameters a t and l t, the fisherman’s rule

and the radial recursive one are robust in the sense that

‘extreme’ values of the learning parameters do not degrade

dramatically the learning efficiency. Actually, the recursive

rules give error surfaces which are relatively flat and present

wide minima (see Figs. 6 and 7). This is an advantage when

the algorithm has to be parameterized by an inexperienced

user. Not only the averaged results are satisfying, but the

standard deviations are also lower (see Tables 2–5 and 7).

The non-recursive rules outperform the recursive ones

when the goal consists in minimizing simultaneously both

quantization and topology errors. But this objective often

needs a careful choice of the learning parameters.

6.4. Speed

Until here, the relative speeds of the four different

learning rules have not been mentioned. Indeed, speed is not

a real problem compared to quality issues like quantization

error and topology preservation. Nevertheless, it is worth to

notice that the fisherman’s rule with the Bubble function

behaves like the traditional rule with a Gaussian kernel.

From a computational point of view, this avoids to compute

for each adaptation an exponential function depending on

the dynamical parameter l t. Actually, the fisherman’s rule

replaces this demanding task by the computation of the grid

distances dðq; rÞ; which can be achieved statically before

learning.

7. Conclusion

This paper shows on simple examples that some changes

can be made to the traditional SOM learning rule. Indeed,

well chosen modifications do not alter the subtle mix of

vector quantization and topographic mapping performed by

the traditional SOM algorithm. On the contrary, the

proposed learning rules try to supervise each subtask as

independently as possible, giving the possibility to put the

emphasis on one or the other subtask of the SOMs.

Table 7

Mean (m) and standard deviation (s) for 10 000 experiments; after random initialization, the grid maps are trained on the half cube learning set, during 2

epochs, with the Gaussian function and with randomly chosen parameters ð0 , at¼1 , 1; 0 , lt¼1 , 48Þ

Rule mET3 mET2 mET1 mEVQ sET3 sET2 sET1 sEVQ

Traditional 2.793 0.364 0.196 0.285 1.248 0.132 0.125 0.102

Non-rad. non-rec. 4.512 0.465 0.153 0.300 1.426 0.071 0.187 0.098

Rad. Rec. 4.078 0.296 0.170 0.139 4.026 0.155 0.098 0.043

Fisherman 3.149 0.330 0.124 0.161 1.067 0.075 0.059 0.048

Table 6

Mean (m) and standard deviation (s) for 10 000 experiments; after random initialization, the string maps are trained on the spiral learning set, during 2 epochs,

with the Gaussian function and with randomly chosen parameters ð0 , at¼1 , 1; 0 , lt¼1 , 48Þ

Rule mET3 mET2 mET1 mEVQ sET3 sET2 sET1 sEVQ

Traditional 0.039 0.009 0.008 0.574 0.174 0.033 0.017 0.291

Non-rad. non-rec. 0.273 0.081 0.022 0.586 0.254 0.062 0.026 0.297

Rad. Rec. 2.271 0.331 0.225 0.313 2.837 0.273 0.165 0.151

Fisherman 0.151 0.050 0.056 0.248 0.240 0.044 0.025 0.119
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From a theoretical point of view, the proposed rules

introduce the concept of recursive neighborhood adaptation,

inspired by physical ideas. Concerning speed, the recursive

neighborhood adaptation allows the algorithm to mimic the

properties of a Gaussian neighborhood function, without the

need to compute Gaussian kernels for each neuron at each

pattern presentation.

Considering the performances, the new learning rules

provide a robust behavior against the choice of the learning

parameters. The recursive neighborhood adaptation works

particularly well for the initial unfolding of the map.
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