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Abstract

The Kohonen self-organization map is usually considered as a classification or clustering tool, with only a few applications in time series

prediction. In this paper, a particular time series forecasting method based on Kohonen maps is described. This method has been specifically

designed for the prediction of long-term trends. The proof of the stability of the method for long-term forecasting is given, as well as

illustrations of the utilization of the method both in the scalar and vectorial cases.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Determining in advance the future evolution of a time

series is a problem of major interest in many fields of

applications as finance (forecasting returns or stock

markets), hydrology (predicting river floods), engineering

(estimating future electrical consumption), etc.

As this problem can be found in many fields, many

methods have been developed with very different

approaches, from statistics to system identification and

more recently neural networks. Most of the time, the models

are linear and perform well on a rather short-term horizon,

depending on the complexity of the problem. Their

efficiency on a longer term is more questionable. This fact

is due to the learning strategy used to fit the model to the

data. The goal is usually to optimize the performance at
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a given term, most often the next time step. There are only a

few attempts to explicitly predict values at long term, or at

least global trends (for example Cottrell, Girard, & Rousset,

1997). This problem is quite hard since the uncertainty

increases with the horizon of prediction.

Another issue generally shared by classical models

(such as ARX, ARMAX,.) is that they are used to predict

a single value of a scalar time series. In practice some

industrial applications require the prediction of a set of

values in one single step instead of several independent

values. Forecasting a vector of values requires more

complex models able to predict several components

together. If the approach is to develop several simple

models and combine them to predict a vector, one can lose

the correlation information between the vector com-

ponents. Though each model may perform well, the

forecasting accuracy could be rather poor when consider-

ing the vector of predicted values as a whole. Developing

methods able to predict several values at each step, with

the same expected performance on each value, should thus

be a major concern.
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Let us consider now the general problem of forecasting at

long term. Despite the fact that long-term predictions in real

situations will probably never be very accurate, in some

applications there is a need to have at least some ideas about

the future of the time series. For example, answers to

questions such as ‘Are there bounds on the future values?’

or ‘What can we expect in average?’ or even ‘Are the

confidence intervals on future values large or narrow?’ can

give some ideas about the time series evolution at long-

term.

In this paper, we present a forecasting method specifi-

cally designed to perform long-term forecasting in terms of

general evolution of the time series. Simulations, which are

here defined as one-step ahead predictions performed

recursively to enlarge the prediction horizon, are the real

goal. Repeating such simulations by a Monte-Carlo

procedure enables the observation of their distribution and

the computation of classical statistics such as mean,

variance, quartiles, confidence intervals, etc. In order to

achieve these goals, the method should be stochastic (to

allow Monte-Carlo repetitions) and stable (to avoid

unrealistic predictions even in the recursive case). The

stochastic nature of the method is guaranteed by the use of a

conditional probability law model. Its stability is proved in

the paper. An attractive feature of the method is that it can

be used to predict either scalar or vectorial time series, with

the same expected precision for each component in the

vectorial case; this will allow reducing the number of

recurrences in a long-term prediction.

The general problem of time series forecasting first

consists in the development of a model, which is in turn used

to predict future values. More formally, given a time series

of values x(t) with 1%t%n, the prediction can be defined as:

½xðtC1Þ;.;xðtCdÞ�Z f ðxðtÞ;.;xðtKpC1ÞÞC3t; (1)

where d is the size of the vector to be predicted, f is the

model of the data generating process, p is the number of past

values that influence the future values and 3t is a centred

noise vector. The past values are gathered in a

p-dimensional vector called regressor. Having at one’s

disposal n past values x(t) (with n[p and n[d) means

that relation (1) is known for (nKpKdC1) past time steps.

The problem is thus to model relation (1) using the past

information contained in the regressors.

The general principle of the method presented in this

paper is to segment the space of regressors, in order to build

local models. For this step of the method, the self-

organizing map (SOM) algorithm (Kohonen, 1995) is

used. This algorithm performs a vector quantization of the

data, leading to representatives (prototypes) in each portion

of the space. The idea of the method is to use two SOMs,

one to segment the regressor space, and another one to

segment the space of differences between consecutive

regressors. These differences are built to include the

temporal dependencies in the model. Once these two maps
are built and their relations characterized, simulations over a

long-term horizon can be performed. By repeating these

simulations using a Monte-Carlo procedure, it is therefore

possible to study their distribution and the statistics that give

information on the long-term distribution of the time series.

Though we mainly use the vector quantization property

of the SOMs to segment the spaces, we have chosen to use

SOMs instead of other vector quantization (VQ) methods,

since SOMs are efficient and fast compared to other VQ

methods with a similar complexity (de Bodt, Cottrell,

Letremy, & Verleysen, 2003). Furthermore, they provide an

intuitive and helpful graphical representation. As the

quantization properties (by contrast to topological proper-

ties) of SOMs are similar for one- and two-dimensional

maps, the former will be used in this work for simplicity and

illustration.

In this paper, we first briefly recall some basic concepts

about the SOMs. Then, we describe the principle of the

double vector quantization (DVQ) forecasting method. For

the sake of simplicity, the method is first presented for scalar

time series prediction (i.e. dZ1 in (1)) and detailed later on

for vector forecasting. We define the method stability and

give in full details the proof that the method is stable

according to his definition. We also show illustrative

examples for both scalar and vector predictions.
2. The Kohonen self-organizing maps

The self-organizing map (SOM) is an unsupervised

classification algorithm introduced in the 1980s by Kohonen

(1995). Self-organizing maps have often been used in many

different applications since their first description. Their

theoretical properties are well established (Cottrell, de Bodt,

& Verleysen, 1997; Cottrell, Fort, & Pagès, 1998).

A self-organizing map places a fixed number of

prototypes in the data space, performing a rough approxi-

mation of the data density. These prototypes are linked by

neighbourhood relationships using a predefined one- or two-

dimensional grid. During the learning stage, the prototypes

are moved within the data space according to the location of

the considered data and to constraints given by the

neighbourhood relationships. After the learning stage

the set of prototypes has established a vector quantization

of the data. Each prototype is associated with a region of the

space, namely a Voronoi zone or a cluster, where data share

some similar features. Furthermore, the prototypes preserve

the topology: two similar data belong either to the same

cluster or to two neighbouring ones (on the grid). The SOM

obtained after learning also allows a graphical represen-

tation that can be interpreted intuitively.

Though the SOMs are usually considered as a classifi-

cation or recognition tool, there are a few works where

SOMs were used in forecasting tasks. For example, some

authors (Cottrell, de Bodt, & Grégoire, 1996) use SOMs to

create clusters in the regressor space, eventually associating
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each cluster with a linear local model (Vesanto, 1997;

Walter, Ritter, & Schulten, 1990) or a nonlinear one

(Dablemont et al., 2003). Other VQ algorithms like Neural

Gas (Martinetz, Berkovich, & Schulten, 1993) are also used

in combination with local linear models. Another way is to

split the problem into the prediction of a normalized curve,

and the prediction of the curve mean and standard deviation

(Cottrell, Girard, & Rousset, 1998). Recursive SOMs

(Voegtlin, 2002) and pioneer work on leaky integrators

(Chappell & Taylor, 1993) try to learn sequences of data, as

applied by Kangas (1994) for speech recognition problems.

RSOMs can be further combined with local linear models

(Koskela, Varsta, Heikkonen, & Kaski, 1998). By contrast

to these works on short-term forecasts, the method presented

in this paper uses SOMs to build a stochastic model

specifically designed to provide long-term predictions.
3. The double quantization method

The goal of the method presented in this paper is to

extract long-term information or behaviour from a time

series. The method is based on the SOM algorithm used to

characterize (or to learn) the series. In a further forecasting

step, the model previously learned is used to perform a

prediction of the long-term evolution of the time series.

As explained in the Introduction, this method can be

applied to scalar time series as well as to vectorial ones. The

method will first be described in the scalar case. Though the

generalization to the vectorial case is straightforward, some

additional details will be provided. The method will be

applied to various time series in Section 5.
3.1. Characterization (scalar case)

According to the general formulation of a non-linear

auto-regressive model (1), the method uses regressors of

past values to predict the future evolution of a time series.

Those regressors are created as follows. Having at one’s

disposal a scalar time series of n values, the latter are

converted into p-dimensional vectors, according to:

xt
tKpC1 Z fxðt Kp C1Þ;.; xðt K1Þ; xðtÞg; (2)

where p%t%n, and x(t) are the values of the original time

series at our disposal. The xt
tKpC1 are called regressors, and

nKpC1 of them are obtained from the original time series.

In the xt
tKpC1 notation, tKpC1 and t denote the first and last

time indices of the regressor, respectively; this notation will

be used throughout Sections 3 and 5 of this paper. Note that

the order of the regressor p is supposed to be optimal, i.e. it

is supposed to contain all the information that can be

obtained from the past evolution of the time series. More

considerations on the determination of an optimal regressor

in the context of non-linear prediction can be found for

example in Verleysen, de Bodt, and Lendasse (1999).
The regressors xt
tKpC1 are then manipulated so that other

vectors are created, according to:

yt
tKpC1 Z xtC1

tKpC2 Kxt
tKpC1: (3)

The yt
tKpC1 vectors are called deformations. By definition

each deformation yt
tKpC1 is associated to a single regressor

xt
tKpC1; nKp deformations can be obtained from a time

series with n values.

To clarify the situation, the space containing the xt
tKpC1

regressors will be called in the following the original space,

while the one containing the yt
tKpC1 deformations will be

called the deformation space.

The main step of the method is the application of the

SOM algorithm to each of the two spaces. The SOM

algorithm performs a vector quantization of the original and

deformation spaces, respectively. The first SOM, in the

original space, results in n1 prototypes �xi ð1% i%n1Þ:

Clusters containing all regressors associated respectively to

each prototype �xi are denoted Ci with Ci 2C; where C is the

set of clusters in the original space such that #CZn1: In the

deformation space n2 prototypes �yj ð1% j%n2Þ are obtained

by a second SOM and the corresponding clusters containing

the deformations are noted C 0
j 2C0; C0 is the set of clusters

in the deformation space such that #C0Zn2:

The double quantization of regressors and deformations

only gives a characterization of the past evolution of the

time series. This characterization is static and does not

reflect the dynamics of this past evolution. However, the

dynamics may be found in the associations between the

deformations yt
tKpC1 and their corresponding regressors

xt
tKpC1; i.e. in the characterization of how the series has

evolved between a regressor and the next one.

To model the dynamics of the time series it is thus

necessary to build a representation of the relations between

the regressors and their deformations. This representation is

a matrix fij that contains the relations between the xt
tKpC1 and

the yt
tKpC1 with respect to their clusters (Ci and C 0

j ,

respectively). Each row of the fij matrix (1%j%n2) is in

fact the conditional probability that yt
tKpC1 belongs to C 0

j

given the fact that xt
tKpC1 belongs to Ci. In practice, these

probabilities are estimated by the empirical frequencies:

fij Z
#fxt

tKpC1 2Ci and yt
tKpC1 2C 0

jg

#fxt
tKpC1 2Cig

; (4)

with 1%i%n1, 1%j%n2. As expected with such a

definition, elements fij (1%j%n2) sum to one for a fixed i.

This matrix will be called the transition matrix in the

following.
3.2. Forecasting (scalar case)

Having at one’s disposal two sets of prototype vectors in

the original and deformation spaces, respectively, together

with the transition matrix it is now possible to use this

characterization of the time series to perform a long-term
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evolution forecasting. Defining horizon hZ1 as the next

value, i.e. tC1 for instant t, the goal is to forecast evolutions

of the series for horizons hO1.

Consider a value x(t) for instant t. The corresponding

regressor is xt
tKpC1: Using the prototypes �xi in the original

space, the cluster of xt
tKpC1 is determined, for example k (this

operation consists in finding the nearest neighbour �xk from

regressor xt
tKpC1 according to the Euclidean distance used in

the SOM algorithm). A deformation prototype �yl is then

chosen at random among the �yj according to the conditional

probability distribution defined by row k of the transition

matrix, i.e. according to fkj, 1%j%n2. The prediction for

instant tC1 is obtained according to relation (3):

x̂tC1
tKpC2 Z xt

tKpC1 C �yl; (5)

where x̂tC1
tKpC2 is the estimate of xtC1

tKpC2 given by our model.

Note that the result x̂tC1
tKpC2 obtained here is a vector of

size p. The components of x̂tC1
tKpC2 are in fact estimations for

instants from tKpC2 to tC1. In the scalar case, and values

from tKpC2 to t being known, the scalar prediction

x̂ðtC1Þ is extracted from x̂tC1
tKpC2: The procedure is then

iterated, plugging in x̂ðtC1Þ for x(t) in (2) to compute x̂tC2
tKpC3

by (5) and extracting x̂ðtC2Þ: The same is done for x̂ðtC3Þ;

x̂ðtC4Þ;.; x̂ðtChÞ: These iterations up to horizon h are

called a simulation of the time series.

As the goal of the method is to provide some ideas about

the possible evolution of the series, we are interested in the

distribution of the simulations. The whole simulation

procedure above has thus to be repeated. Since the random

choice of deformation according to the conditional prob-

ability distributions given by the rows of the transition

matrix is stochastic, the simulation procedure is repeated

using a Monte-Carlo procedure. The observation of all these

simulations makes it possible to estimate their distribution,

and infer global information about the time series such as

the evolution of its mean, its variance, confidence intervals,

etc.
3.3. Generalization: vector forecasting

Suppose that the studied problem requires the prediction

of a vector of values in one step instead of (several) single

value(s). For example when forecasting an electrical

consumption, the problem may be to forecast hourly values

for a whole day instead of predicting each value separately.

The problem is thus to predict vectors xtCd
tC1 of future values

of the series x(t),where xtCd
tC1 is defined as:

xtCd
tC1 Z fxðt C1Þ; xðt C2Þ;.; xðt CdÞg: (6)

In such applications d is determined according to some a

priori knowledge about the series (for example the 24 hourly

values in the electrical consumption problem).
As above, regressors of this kind of time series can be

constructed according to:

xt
tKpC1 Z fx

tKpCd
tKpC1 ; x

tKpC2d
tKpCdC1;.; xt

tKdC1g; (7)

where p is considered to be a multiple of d for simplicity.

Relation (7) can be illustrated using the electrical

consumption example. Suppose that dZ24 hourly values

and that values from 3 days are needed in the regressors. The

latter thus contain pZ72 values. The regressor at time t is

thus given by:

xt
tK71 Z xðt K71Þ;.; xðt K48Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

xtK48
tK71

; xðt K47Þ;.; xðt K24Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
xtK24

tK47

;

8>>><
>>>:

xðt K23Þ;.; xðt K1Þ; xðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
xt

tK23

9>>>=
>>>;: ð8Þ

In other words, regressors xt
tKpC1 are constructed as the

concatenation of p/d d-dimensional vectors of past values

of the time series, similarly as it is the concatenation of

scalar (dZ1) past values in the scalar case. Note again

that the order p of this regressor is supposed to be a

multiple of d for simplicity, although this is not

compulsory.

Deformation regressors can also be defined for the

vectorial case, using a generalization of (3):

yt
tKpC1 Z xtCd

tKpCdC1 Kxt
tKpC1: (9)

The algorithm can therefore be generalized in a natural

way. The SOM algorithm is applied on both spaces,

classifying the vectorial regressors xt
tKpC1 and the vectorial

deformations yt
tKpC1; respectively. We obtain n1 prototypes

�xi in the original space associated to the clusters Ci 2C;

with 1%i%n1. In the deformation space, we obtain n2

prototypes �yj associated to the clusters C 0
j 2C0; 1%j%n2.

Relation (4) can be generalized straightforwardly to the

vectorial case: the vectorial definition of the fij uses the same

notations even though xt
tKpC1 and yt

tKpC1 now design vectors

of vectors instead of vectors of scalars.

The simulation forecasting procedure can be generalized

too:
†
 consider the vectorial regressor xt
tKpC1;
†
 find the corresponding vectorial prototype �xk;

†
 choose a vectorial deformation prototype �yl among the �yj

according to the conditional distribution given by

elements fkj of row k;
†
 compute the forecast as:

x̂tCd
tKpCdC1 Z xt

tKpC1 C �yl; (10)
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†
 as x̂tCd
tKpCdC1 is a p-dimensional vector, extract the vector

x̂tCd
tC1 Z ðx̂ðtC1Þ; x̂ðtC2Þ;.; x̂ðtCdÞÞ from its d last

columns;
†
 repeat h/d times until horizon h.

As for the scalar case, a Monte-Carlo procedure is used to

repeat the whole simulation procedure. Then the simulation

distribution and its statistics can be observed, which in turn

gives information about the long term of the time series.

3.4. Comments

The DVQ method, as any other forecasting one, assumes

that the time series data satisfy the relationships of the

underlying model. In the case of the DVQ method, the

relationships correspond to the lines of the transition matrix,

i.e. to conditional probability laws. In other words, it is first

assumed that the knowledge of a regressor is sufficient to

build a conditional model of prediction. Secondly, it is

assumed that using discrete laws instead of continuous ones

does not penalize the prediction results.

The first assumption is common in any regressor-based

prediction model: even in AR models, it is assumed that the

regressor includes sufficient information to perform a

prediction. This question is closely related to the appli-

cation-dependent choice of the regressor size. The series to

be modelled also have to be stationary (in mean and

variance), at least over a reasonable window size. Short-

term trends or periodicities may be taken into account by

using sufficiently large regressors (it is the stationarity of the

series of regressors that is important, not the one of

individual values in the time series). More precisely,

regressors should be of a size multiple of the short-term

trends or periodicities. However, long-term trends and

periodicities should be removed from the series before

applying the method. Nevertheless, as it will be seen in the

experiments, this point may reveal not critical. Indeed long-

term variations in the series may be taken into account by a

higher number of clusters in the regressor (and

deformation).

The second assumption may be seen as a specific

implementation of the bias-variance dilemma, when a finite

number of data is available: the number of lines and

columns in the transition matrix may be increased to reduce

the bias or decreased to reduce the variance of the model. As

it will be detailed in the experimental part of this paper, the

proposed methodology suggests fixing this compromise by

cross-validation.

Compared to the use of a single SOM where the regressor

and the deformation vectors would be concatenated (even

through some weighting), the use of two SOMs enables to

build a transition matrix which is a discrete approximation

of the conditional law between regressors and deformations;

a stochastic model is obtained in each cluster in the

regressor space. Thus it is possible to repeat simulations

and compute statistics on the results (mean, variance,
confidence intervals) which are the real goals of the

procedure.

Furthermore using the SOM to quantize the xt
tKpC1 and

yt
tKpC1 vectors helps the method to reach easily the goal of

forecasting vectors with the same expected precision for

each component. Indeed while looking deeper in the SOM

algorithm, it can be noticed that all components of the xt
tKpC1

and yt
tKpC1 vectors are used in an identical way in all

computations of the algorithm. In other words, none of the

xt
tKpC1 or yt

tKpC1 components have a greater importance than

other components, for example in the adaptation of

prototypes, etc. If Eq. (1) is a reasonable model of the

series, i.e. if the prediction of d values after time t is deemed

to be feasible based on p values until time t, then the

performances on each of the d components to be predicted

are expected to be similar.

As mentioned in the description of the method in the

vectorial case, the regressor order p is supposed to be a

multiple of d. This is also the case for scalar predictions, as

any p is a multiple of 1. In both the scalar and vectorial cases

the regressors were supposed to be constituted by successive

values of the series (see Eqs. (1), (2), (6), and (7)). However,

according to some knowledge about the time series or to

some validation procedure, it could be advantageous to

consider only a limited number of past values in the

regressor. In other words, if we consider the scalar case for

illustration, the regressor may contain only specific past

values. For example, we could take:

xt
tKpC1 Z fxðt K5Þ; xðt K3Þ; xðt K2Þ; xðtÞg; (11)

instead of:

xt
tKpC1 Z fxðt K5Þ; xðt K4Þ; xðt K3Þ; xðt K2Þ; xðt K1Þ; xðtÞg;

(12)

omitting possibly unnecessary values x(tK1) and x(tK4) in

the regressor. This comment also applies to the vectorial

case.

Another comment concerns an immediate extension of

the method. The method has been presented here in a scalar

time series context, both in scalar and vectorial model cases.

Nevertheless, if a problem requires the prediction of several

scalar series simultaneously (in other words a vectorial

series), the same vectorial method could be applied in a

straightforward way. The only changes would concern the

definition of the regressors that would now become vectors

of spatially correlated values instead of temporally succes-

sive ones.

Finally, note that in practice any kind of SOM can be

used, but it is assumed here that one-dimensional maps (or

strings) are more adequate in this context, for example for

illustration purposes. More specifically, remind that each

row of the transition matrix corresponds to a conditional

probability law. If the series contains some regularities (as

assumed when building a model), all possible values of the

deformations (columns in the matrix) will not occur for
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a specific cluster in the regressor space; in other words, the

transition matrix will be sparse. Furthermore, because of the

topological property of Kohonen maps, non-zero elements

corresponding to similar deformations will appear close to

one another on a row. This last property will be less visible

if two-dimensional maps are used instead of one-dimen-

sional ones. Indeed in this case the index of the transition

matrix columns (for example) should span the two-

dimensional indices of the Kohonen map, resulting in

close indices (on the map) being separated in the column

index. This is the reason why one-dimensional maps are

preferred in the following of this paper, insisting on the fact

that nothing prevents the use of other maps besides this

visualization property.
4. Method stability

Looking at the predictions obtained by the model

described in the previous sections, the predicted values

could either be contained in the range of the learning set or

exceed this range, in particular at long term. In the first case,

the series of predicted values is said to be stable while it is

said to be unstable in the other case. We will prove in this

section that the method presented in this paper is stable

according to this definition. Stability is indeed a necessary

condition to ensure that long-term forecasts will give some

useful information about the future of the series.

To improve the readability of the proof simpler notations

will be used. In the following of this section, for a fixed d

and a fixed p, notation Xt will represent the vector xt
tKpC1:

The last known regressor will be denoted X0. The prototype

of a cluster C 0
j of deformations will be noted Yj. Finally, hats

will be omitted for simplicity as all regressors Xt are

estimations, except for tZ0.

The stability property is intuitively not surprising. As the

model will produce predictions that are random choices

according to an observed probability law, these predictions

will remain in the range of observed data. If, for some

reason, the prediction tends to exceed this range during the

simulation, the next deformations will then drive the

predictions back inside the range, at least with high

probability. The following of this section is intended to

give a technical proof of this intuitive result. Indeed as the

stability of the method is a primary concern, it is necessary

to prove that the method will not be unstable at long term,

even with a low probability.

The proof consists of two steps: it is first shown that the

series generated by the model is a Markov chain; secondly,

it is demonstrated that this particular type of Markov chain

is stable.

To prove that the series is a Markov chain, we consider

the starting regressor X0 of the simulation, and C0 its

corresponding SOM cluster in the initial space. The

deformation that is applied to X0 at this stage is Y0.
Then the next values of the series are given by:

X1 Z X0 CY0;

X2 Z X1 CY1 Z X0 CY0 CY1;

/

(13)

with Y0, Y1,. drawn at random among the deformation

code vectors, according to the transition matrix, for clusters

C0, C1,., respectively. The series of predicted Xt, with

tO0, is therefore a Markov chain, homogeneous in time (the

transition distributions are not time-dependent), irreducible

and defined over a numerable set (the initial Xt are in finite

number, and so are the deformations).

To show the stability of this Markov chain and thus the

existence of a stationary probability distribution, Foster’s

criterion (Fayolle, Malyshev, & Menshikov, 1995) is

applied. Note that Foster’s criterion in fact proves a stronger

result: the Markov chain will be proved to be ergodic. This

stronger condition will be satisfied; consequently the

Markov chain defined by relation (13) has a unique

stationary (limiting) distribution.

A necessary and sufficient condition, for an irreducible

numerable chain to be ergodic (and therefore stable) is that

there exists a positive function g($), a positive 3 and a finite

set U such that:

cx2U : EðgðXtC1ÞjXt Z xÞ!N; (14)

cx;U : EðgðXtC1ÞjXt Z xÞKgðxÞ%K3: (15)

The proof is done here for a two-dimensional case, but can

easily be generalized to other dimensions.

In the following proof, the function g($) is chosen to be

g($)Zk$k2 in (14) and (15).

Since the Markov chain is homogenous, it is sufficient to

observe transition Y0 from X0 to X1. The same development

is also valid for any other transition.

Before going on in further details, let us remark that, if

we consider a SOM with at least three prototypes in general

position, cluster C0 covers strictly less than half a plane.

This fact can easily be observed for any vector quantization

problem, and in particular for any quantization of the

regressor space in a time series context. In Fig. 1 for

example, the regressors of the Santa Fe A time series

(Weigend & Gershenfeld, 1994) (with pZ2) are plotted in

their respective clusters in the R
2 plane, with the

corresponding prototypes.

To prove Foster’s criterion, we distinguish two cases.

The first one is when kX0k!R0, where R0 can be any

constant. In this case we have by triangular inequality:

EðkX1kÞ!R0 CkY0k%R0 CmaxjðkYjkÞ: (16)

As the deformations Yj are in finite number, the maximum of

their norm is finite. This proves Eq. (14) in a straightforward

and obvious way in the case of a finite norm of X0 (i.e.

bounded cluster case).

The other case to be considered is therefore when

kX0k/CN. This can only happen in unbounded clusters;



Fig. 1. Two-dimensional regressors (dots), prototypes (crosses) and clusters

from the Santa Fe A time series.
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in Fig. 1 for example, all clusters are unbounded except two.

The unbounded cluster case is much more technical to

prove.

Looking at Fig. 2, we see that each unbounded cluster

is included in a cone with vertex A and delimited by the

normalized vectors a1 and a2. These vectors delimiting

the border of the cone are chosen in the direction of the

two infinite segments at the borders of the cluster. There

are two possibilities: a1 and a2 form either an acute

angle or an obtuse one, as shown in Fig. 2(a) and (b),

respectively.

In order to prove that Foster criterion can be applied, we

first prove three technical lemmas (Properties 1, 2 and 3).

Property 1. Denoting

lim
kxk/N

x

kxk
$ai Z di; (17)

we have d1 and d2 both strictly positive in the acute

angle case, while either d1 or d2 is positive for an obtuse

angle.

Indeed, consider the origin O. Vector Ox
!

is given by:

Ox
!

Z OA
!

C Ax
!

: (18)
Fig. 2. Notations for the cone containing an unbounded cluster of an SOM;

see text for details.
Using (18) in (17), we have:

x

kxk
$ai Z

Ox
!
kxk

$ai Z
OA
!
kxk

C
Ax
!
kxk

 !
$ai

Z
OA
!

$ai

kxk
C

Ax
!

$ai

kxk

Z
OA
!

$ai

kxk
C

Ax
!

k Ax
!

k

k Ax
!

k

kxk
$ai:

Considering kxk/CN, we obtain:

x

kxk
$ai ¼

OA
!

$ai

kxk|{z}
/0

þ
Ax
!

k Ax
!k

k Ax
!k
kxk|{z}
/1

$ai (19)

This proves relation (17) since the second term of the right

member can be bounded below by a strictly positive

constant.

As shown in Fig. 2, this property is true for both iZ1 and

2 for an acute angle ;(a1, a2) and for at least iZ1 or 2 for

an obtuse angle.

Property 2. We define b1, such that the angle ;(a1, b1) is

Cp/2. Similarly b2 is defined such that the angle ;(b2, a2)

is also Cp/2. Then, for both the acute and obtuse angle

cases, we have:

inf
x2C

Ax
!
kxk

$bi Z riO0; (20)

where C is the considered cone which has border vectors a1

and a2.

Indeed, we can rewrite the first term of (20) as:

inf
x2C

Ax
!
kxk

$bi Z inf
x2C

Ax
!

k Ax
!

k

k Ax
!

k

kxk
$bi: (21)

Since ðk Ax
!

k=kxkÞ/1 when kxk/CN, we have:

inf
x2C

Ax
!

k Ax
!k

k Ax
!k
kxk|{z}
/1

$biO0: (22)

This property is valid for iZ1 and 2 both in the acute and

obtuse angle cases.

Property 3. Assume for the moment that:

Em0
ðY0Þ$a1!0 and Em0

ðY0Þ$a2!0; (23)

where m0 is the empirical distribution corresponding to an

unbounded cluster C0 in the transition matrix. Let us denote:

Em0
ðY0Þ$ai ZKgi!0; (24)

with giO0. As shown in Fig. 3, we have that:

Em0
ðY0Þ$bi!0; (25)



Fig. 3. Third geometrical property, see text for details.
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for at least iZ1 or 2 in case of an acute angle (Fig. 3(a)) and

for both iZ1 and 2 in the obtuse case (Fig. 3(b)).

To be convinced of the initial assumption (23), it suffices

to realize that, in average, the deformations will point to the

interior of the distribution, as illustrated in Fig. 3. This can

easily be verified numerically too. In particular it has been

verified for the Santa Fe A time series example, the result

being shown in Fig. 4.

Foster’s criterion. Now we can apply Foster’s criterion in

the case of an unbounded cluster; remember that the case for

bounded clusters has already been solved in the discussion

after (16). Considering cluster C0 such that its prototype is the

nearest from data X0, and considering its corresponding

transition distribution, with g($)Zk$k2, we have:

EðgðX1ÞjX0 Z xÞKgðxÞ Z EðgðX0 CY0ÞjX0 Z xÞKgðxÞ

Z EðkX0 CY0k
2jX0 Z xÞKkxk2

Z Em0
ðkX0 CY0k

2ÞKkX0k
2

Z kX0k
2 C2Em0

ðX0$Y0ÞCEm0
ðkY0k

2ÞKkX0k
2

Z 2X0$Em0
ðY0ÞCEm0

ðkY0k
2Þ:
Fig. 4. Two-dimensional regressors (dots), prototypes (crosses) and clusters

from the Santa Fe A time series, and expected deformations in each

unbounded cluster (arrows).
Thus we obtain:

EðgðX1ÞjX0 Z xÞKgðxÞ Z 2kxk
x$Em0

ðY0Þ

kxk
C

Em0
ðkY0k

2Þ

2kxk

" #
:

(26)

First let us have a look at the second of the two terms between

the brackets in (26). Since kY0k
2 is finite, we have:

sup
x2C0

Em0
ðkY0k

2Þ!M0!N:

Thus, for a0O0 and kxkOM0/a0, we have:

1

kxk
Em0

ðkY0k
2Þ!a0: (27)

Now we still have to cope with the first term between the

brackets of (26). We choose either iZ1 or 2 such that:

limkxk/CN
x

kxk
$ai Z diO0;

Em0
ðY0Þ$bi!0:

(
(28)

In the case of an unbounded cluster, it is always possible to

find either iZ1 or 2 such that those two conditions are

fulfilled, according to Properties 1 and 3.

We suppose for now that iZ2 satisfies those two

conditions (28). Looking closer to the first term between

the brackets of relation (26), we can decompose Em0
ðY0Þ in

the (b2, a2) basis as:

Em0
ðY0Þ Z ðEm0

ðY0Þ$a2Þa2 C ðEm0
ðY0Þ$b2Þb2; (29)

thus obtaining, for iZ2:

x

kxk
$Em0

ðY0Þ Z ðEm0
ðY0Þ$a2Þ

x

kxk
$a2

� �

C ðEm0
ðY0Þ$b2Þ

x

kxk
$b2

� �
: (30)

According to Property 1, we know that:

lim
kxk/CN

x

kxk
$a2 Z d2O0;

and thus:

x

kxk
$a2O

d2

2
; (31)

for kxk sufficiently large.

Furthermore, from Property 3 we have Em0
ðY0Þ$a2Z

Kg2!0 (23), and Em0
ðY0Þ$b2 !0 from (28). The last

parenthesis in (30) can be developed as:

x

kxk
$b2 Z

OA
!
kxk

C
Ax
!
kxk

 !
$b2: (32)

For x sufficiently large in the unbounded cluster, that is for

kxk/CN, OA
!

=kxk$b2/0:
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Furthermore, by Property 2, we have:

Ax
!
kxk

$b2 Rr2O0: (33)

Eq. (32) can thus be simplified in:

x

kxk
$b2R

r2

2
O0; (34)

for kxk sufficiently large.

Replacing all those results in Eq. (30) we obtain:

x

kxk
Em0

ðY0Þ% ðEm0
ðY0Þ$a2Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ZKg2 by ð24Þ

x

kxk
$a2

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

O
d2
2

by ð31Þ

C ðEm0
ðY0Þ$b2Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

!0 by ð28Þ

x

kxk
$b2

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

R
r2
2

by ð34Þ

;

which finally results in:

x

kxk
Em0

ðY0Þ!Kg2

d2

2
; (35)

when kxk is large enough, denoted here kxkOL0.

The above development has been made under the

hypothesis that iZ2 in (28). If on the contrary iZ1 satisfies

the two conditions (28), we obtain by the same develop-

ment:

x

kxk
Em0

ðY0Þ!Kg1

d1

2
; (36)

when kxkOL 0
0.

Using relations (27) and (35) or (36), we can now rewrite

(26) as:

EðgðX1ÞjX0 Z xÞKgðxÞ

Z 2kxk
x$Em0

ðY0Þ

kxk
C

Em0
ðkY0k

2Þ

2kxk

" #

!2kxk Ka0 C
1

2
a0

� �
ZK2kxk

a0

2
; ð37Þ

where kxkOK0 ZmaxðL0;L
0
0Þ and a0 in (27) is chosen such

that a0 Zminðg1d1=2; g2d2=2Þ:

This whole development has been done for one cluster

C0. The value a0 depends on this cluster C0, as well as

vectors a1, bl, a2, b2 and values M0, L0, K0. If we now

consider all possible unbounded clusters Ci, taking

aZ infCi
ai and KZsupCi

Ki; we have:

ckxkRK :
xEm0

ðY0Þ

kxk
C

Em0
ðkY0jj

2Þ

2kxk
!K

a

2
!0: (38)

By (26) and (38), we finally obtain:

EðgðX1ÞjX0 Z xÞKgðxÞ!Kakxk: (39)
The right member of this inequality tends to KN for kxk

increasing to CN.

To conclude, let us now define precisely the set U that

must be used in Foster’s criterion, i.e. relations (14)

and (15):

U Z g
i2I

Ci

� �
g fX0jkX0k!Kg; (40)

where I denotes the set of bounded cluster indexes as

discussed in the introduction to the proof. With this

definition, the above developments prove Foster’s criterion

(14) and (15). Thus the chain defined in relation (13) is

ergodic, and admits a unique stationary distribution.
5. Experimental results

In this section, results obtained with the DVQ method are

described. The method is illustrated on two time series. The

first one is the well-known Santa Fe A benchmark presented

by Weigend and Gershenfeld (1994). This application of the

method illustrates the scalar case. The second time series is

the Polish electrical consumption (Osowski, Siwek, & Tran

Haoi, 2001) from 1989 to 1996. This real-world problem

requires the prediction of vectors of 24 hourly values and

illustrates the vectorial case.
5.1. Methodology

The choice of constants n1 and n2, representing the

number of prototypes in each SOM, has not been discussed

yet. Different values of n1 (n2) lead to different segmenta-

tions of the regressors (deformation) space. This means in

fact different models of the time series since the conditional

distribution in the transition matrix are constructed accord-

ing to the segmentations obtained with the two SOMs.

In the following applications we use a simple validation

procedure to fix n1 and n2. For that purpose, we divide the

set of data in three parts: a learning, a validation and a test

set. The learning set is used to fix the values of the model

parameters, such as the prototypes in the SOMs and the

frequencies in the transition matrix. The validation set is

used to fix meta-parameters, such as n1 and n2. The test set

aims at seeing how the model behaves on unused data that

mimic real conditions. More elaborated validation pro-

cedures such as cross-validation, leave-one-out or bootstrap

(all described by Efron & Tibshirani, 1993) could be used to

fix the meta-parameters, but no significant difference was

observed in these cases on the two examples illustrated in

this paper.

The selection of n1 and n2 must be made according to an

error criterion. We have chosen a one-step ahead mean



Fig. 6. Comparison for the first 30 values between the mean of the 1000

simulations (solid) and the true values of the test set (dashed), together with

confidence intervals at 95% level (dotted).
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square error criterion computed over the validation set:

eMSE Z
X

xðtC1Þ2Valid set

ðxðt C1ÞK x̂ðt C1ÞÞ2: (41)

Note that once numbers n1 and n2 have been set, a new

learning is done on the reassembled learning and validation

sets. This new learning is only performed once for the

selected model with optimal n1 and n2.

5.2. Scalar forecasting: Santa Fe A

The Santa Fe A time series (Weigend & Gershenfeld,

1994) has been obtained from a far-infrared-laser in a

chaotic state. This time series has become a well-known

benchmark in time series prediction since the Santa Fe

competition in 1991.

The completed data set contains 10,000 data. This data

set has been divided here into three parts: the first 6000 data

in the learning set, the 2000 following ones in the validation

set, and the 100 next ones in the test set. Though a larger

training set is used here, the same time horizon (hZ100) as

in the competition is used as it is a rather long-term horizon

for this time series (Weigend & Gershenfeld, 1994).

According to previous experiments on this series

(Weigend & Gershenfeld, 1994), the regressors have been

constructed according to:

xt
tK6 ¼ fxðtÞ; xðt K1Þ; xðt K2Þ; xðt K3Þ; xðt K5Þ; xðt K6Þg:

(42)

In other words, in this example dZ1, pZ7 and hZ100.

Note that x(tK4) is missing from the regressor.

Kohonen strings of 1–200 prototypes in each space have

been used. All the 40,000 possible models have been tested

on the validation set. The best model among them has 179

prototypes in the regressor space and 161 prototypes in the

deformation space. After re-learning this model on the

joined learning and validation sets, 1000 simulations were
Fig. 5. Comparison between the mean of the 1000 simulations (solid) and

the true values (dashed), together with confidence intervals at 95% level

(dotted).
performed on a horizon of 100 values. Then, the mean and

confidence interval at 95% level were computed, giving

information on the possible long-term evolution of the time

series. Fig. 5 shows the mean of the 1000 simulations

compared to the true values contained in the test set,

together with the confidence interval at 95% level. Fig. 6

shows a zoom on the first 30 values. In Fig. 7, we can see

100 simulations picked up at random for the same 30 values.

Note the stability obtained through the replications. For a

simpler model with n1Z6 and n2Z8 (used for illustrations

purposes), Fig. 8 shows the code vectors and regressors

(resp. deformations) in each cluster; Table 1 shows the

corresponding transition matrix. As expected (see details in

Section 3.4), the transition matrix is sparse and most non-

zero elements on a row are grouped together.

From Fig. 6, it should be noted that the method gives

roughly the first 25 values of the time series, a result that is

not so far from those usually obtained with other neural
Fig. 7. Hundred simulations picked out at random from the 1000

simulations made for the Santa Fe A long-term forecasting.



Fig. 8. The code vectors and associated curves in the regressor (top) and

deformation (bottom) spaces (when n1Z6 and n2Z8). The code vectors are

represented in white as six-dimensional vectors (according to (42)).

Regressors (resp. deformations) belonging to each cluster are shown in

black.

Fig. 9. The Polish electrical consumption time series, between 1989 and

1996.
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network models (Weigend & Gershenfeld, 1994). One

exception is the winner of the Santa Fe A competition, a

specifically designed time delay neural network (Weigend

& Gershenfeld, 1994).

Although the confidence intervals give less information

at long term, Fig. 5 illustrates the conclusion of the stability

proof: despite the fact that at some horizon this (as any)

model will not provide any useful information anymore, the

prediction will remain stationary and within the scope of the

original series.
5.3. Vector forecasting: the Polish electrical consumption

This second example concerns the Polish electrical

consumption time series (Osowski, Siwek, & Tran Haoi,

2001). This series contains hourly consumption values from

1989 to 1996. The whole dataset contains about 72,000 hourly

data and is plotted in Fig. 9. Due to the daily periodicity of the

time series, we are interested in daily predictions. This is a

vectorial case with dZ24, since it seems natural to forecast the

24 next values (the next day) in one step.

The 3000 xt
tK23 data of dimension 24, considered without

any preprocessing, have been divided in three sets as

follows: we use the first 2000 data as the learning set, the

next 800 ones as the validation set and the last 200 as the test
Table 1

Example of transition matrix, here with n1Z6 and n2Z8 as in Fig. 8

0.12 0 0 0 0 0 0.23 0.66

0.67 0.30 0 0 0 0 0.02 0.01

0.05 0.55 0.40 0 0 0 0 0

0.03 0 0.30 0.54 0.13 0 0 0

0 0 0 0 0.50 0.48 0.02 0

0.06 0 0 0 0.0 0.34 0.56 0.04

Note that in each row, the frequency values sum to one.
set. Since the optimal regressor is unknown, many different

regressors were tried, using intuitive understanding of the

process. The final regressor that has been selected is:

xt
tKpþ1 ¼ fxt

tK23; x
tK24
tK47; x

tK48
tK71; x

tK144
tK167; x

tK168
tK191g: (43)

This regressor contains the 24 hourly values of today,

yesterday, of 2, 6 and 7 days ago. While there is no proof

that this regressor could be the optimal one, it is the one that

makes the lowest error (41) on the validation set. Since the

regressor contains 5 data of dimension dZ24, we work in a

120-dimensional space. The algorithm is run on the learning

set with values for n1 and n2, each varying from 5 to 200

prototypes by steps of 5. The lowest error is made by a

model with n1Z160 and n2Z140, respectively.

As above, a new learning is performed for the model with

n1Z160 and n2Z140 with a new learning set now

containing 2000C800 data. Then 1000 complete forecasts

are performed with this model. Fig. 10 presents the mean of
Fig. 10. Mean of the 1000 simulations at long term (hZ40).



Fig. 11. Comparison between the true values (dashed), the mean of the

predictions (solid) and the confidence interval at 95% level (doted).
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the 1000 simulations obtained with 24-dimensional vectors

and with horizon h limited to 40 days (a single plot of the

whole 24!200 predicted values becomes unreadable). For

convenience, Fig. 11 shows a zoom and a comparison

between the mean of those 1000 long-term predictions and

the real values. A confidence interval at 95% level is also

provided.

From Fig. 11, it is clear that the mean of the predictions at

long term will show the same periodicity as the true time

series and that the values will be contained in a rather

narrow confidence interval. This fact denotes a probable low

variability of the series at long term. This also extends the

good results for short-term forecasting obtained by Cottrell,

Girard, and Rousset (1997), Osowski, Siwek, & Tran Haoi,

2001 or Lendasse, Cottrell, Wertz, and Verleysen (2002),

for a single day ahead, to a much longer term.
Fig. 12. Plot of 100 simulations chosen at random from the 1000

simulations performed on the series.
Fig. 12 shows 100 predictions picked up at random from

the Monte-Carlo procedure. It is visible that most

simulations have almost the same shape; this is a major

argument for having some ideas about the long-term

evolution of the series.
6. Conclusion

In this paper, we have presented a time series forecasting

method based on a double use of the SOM algorithm

respectively in the original space (containing the regressors

of the time series) and in the deformation space (containing

the deformation regressors). The links between the two

SOMs are characterized by a transition matrix. The

stochastic behaviour of the method in the forecasting

stage allows repeating the simulations using a Monte-

Carlo procedure. These repetitions make it possible to

compute statistics (mean, variance, confidence intervals,

etc.) on the long-term predictions.

The utilization of the SOM helps the method to reach the

goal of forecasting a vector of values with the same

expected accuracy on each of its components, making the

method applicable to vectorial time series forecasting.

Spatial and temporal vectors are possible; it is possible to

use the vectorial method to predict several scalar series

together or to predict several future values of a scalar series

in one block.

A stability concept is defined for long-term forecasts.

According to this definition, this paper includes a detailed

proof of the method stability. This method could be used in

many contexts. This paper illustrates its utilization on a

standard benchmark (Santa Fe A series) and on a real-world

problem of electrical load forecasting. The method can

easily be used on other applications like financial series.

Future work includes experiments on series of spatial

vectors (interest rates, biomedical signals such as electro-

encephalograms, etc.). From a methodological point of

view, the properties of the transition matrix may be further

studied using the theory of Markov chains. Finally, the

compromise between the length of the predicted vectors and

the number of recurrences needed to reach a specific time

horizon may be studied both theoretically and

experimentally.
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