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Unfolding preprocessing for meaningful time series clustering
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Abstract

Clustering methods are commonly applied to time series, either as a preprocessing stage for other methods or in their own right. In this paper
it is explained why time series clustering may sometimes be considered as meaningless. This problematic situation is illustrated for various raw
time series. The unfolding preprocessing methodology is then introduced. The usefulness of unfolding preprocessing is illustrated for various time
series. The experimental results show the meaningfulness of the clustering when applied on adequately unfolded time series.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Time series analysis is a task encountered in many fields,
for example mathematics, statistics, econometrics, system
identification, physics and machine learning to cite only a few.
In all these fields there exist various methods of analyzing,
describing, extracting features or even forecasting time series.
Among all these data analysis tools the partitioning, vector
quantization and similarity search methods can be grouped
under the general heading of clustering methods.

Clustering is usually applied to time series in two different
ways. In the context of time series prediction, for example,
clustering can be applied to time series either as preprocessing
for another time series prediction model (Cottrell, Girard, &
Rousset, 1997; Vesanto, 1997) or (Dablemont et al., 2003) for
example) or as a prediction model in its own right ((Martinetz,
Berkovich, & Schulten, 1993; Simon, Lendasse, Cottrell, Fort,
& Verleysen, 2004; Walter, Ritter, & Schulten, 1990) to cite
only a few references). In practice most of the clustering
methods work with subsequences of the initial time series. Such
subsequences are vectors of successive past values that can
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be extracted from the series using a sliding window. In the
remainder of the text vectors of successive past values are called
regressors.

Despite the frequent use of these clustering methods on time
series very few works try to answer fundamental questions such
as the meaningfulness of time series clustering. Recently it has
been proved that in some cases clustering on time series is
meaningless (Keogh, Lin, & Truppel, 2003). Some authors used
this proof to conclude that subsequence or regressor clustering
is always meaningless (Bagnall, Janakec, & Zhang, 2003;
Hetland, 2003; Mahoney & Chan, 2005). It is shown in Struzik
(2003) that time series clustering is not meaningless but rather
difficult due to the auto-similarity of the series. It is also proved
in Denton (2004) that kernel-based clustering methods are able
to provide meaningful clustering for time series. In this paper
it will be shown that clustering is indeed meaningful once the
regressors are unfolded, i.e. when some adequate preprocessing
is performed.

In order to show the meaningfulness of clustering the
unfolding preprocessing is introduced. This methodology is
based on embedding (Sauer, Yorke, & Casdagli, 1991). The
main idea of embedding is to use delayed coordinates in the
regressors. Selection of the optimal delay can be done using
either the autocorrelation function (Abarbanel, 1997; Kantz &
Schreiber, 1997; Kaplan & Glass, 1995) or mutual information
(Abarbanel, 1997; Fraser & Swinney, 1986; Kantz & Schreiber,
1997). The limit of these two common approaches is that the
first lag is usually selected with great care but the influence
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of the other delayed components (selected using multiples of
this lag) is not taken into account. In this paper a measure is
proposed to determine whether the selected delay is sufficient
to unfold efficiently the series in a p-dimensional space of
regressors. The idea of the proposed criterion is to observe the
mean distance of a data set to the principal diagonal of its space.
The whole methodology allows creating unfolded regressors
with much more informative content than those obtained using
the simple sliding window technique. The meaningfulness of
time series clustering on these unfolded time series will then be
shown on artificial and real time series using a Self-Organizing
Map (Kohonen, 1995). Self-Organizing Maps are used here as a
clustering tool thanks to their vector quantization property. The
meaningfulness of time series clustering will be observed using
criteria that measure the relative differences between regressor
distributions.

The paper is organized as follows. Notations and definitions
are given in Section 2, which ends with a brief description
of Self-Organizing Maps. The criterion to measure the
meaningfulness of clustering is detailed in Section 3. The so-
called ’meaninglessness’ of time series clustering is shown in
the same section using graphical representations in 2- and 3-
dimensional spaces. The unfolding preprocessing methodology
is presented and illustrated in Section 4. Experimental results
are provided in Section 5. Section 6 concludes the paper.

2. Regressor clustering using Self-Organizing Maps

2.1. Time series and regressors: Definitions and notations

A time series S is a series of values xt , with 1 ≤ t ≤

n, measured from a time varying process. The xt values are
ordered according to the time index and sampled with constant
frequency. Note that, for reasons of simplicity, xt is considered
as scalar here though it could be a multidimensional vector.

In the context of time series prediction one has to build a
model of the series. For example regression models have at least
one output and some inputs corresponding either to past values
xt of the time series itself or to past values ut of other related
processes. These inputs are grouped in a vector describing the
state of the process at a given time t and defined as:

x t
t−p+1 = {xt , xt−1, . . . , xt−p+1, ut , ut−1, . . . , ut−q+1}. (1)

The p + q-dimensional vector x t
t−p+1 is called the regressor.

For reasons of simplicity the regressors will be limited in this
paper to p-dimensional vectors of past values:

x t
t−p+1 = {xt , xt−1, . . . , xt−p+1}. (2)

Intuitively, the regressors can be seen as subsequences obtained
from the initial time series using a sliding window.

The question regarding how to choose the length p
of the regressor is decisive for the model. This question
can be answered elegantly for linear models using various
criteria (AIC, BIC, MDL, etc. (Ljung, 1999)) which may
be extended in a nonlinear context (Kantz & Schreiber,
1997; Ljung, 1999). Model structure selection strategies using
statistical resampling methods (like cross-validation, k-fold
cross-validation, bootstrap (Efron & Tibshirani, 1993)) are also
often used in order to find a correct value for the model
complexity p. Another approach to choose p is to estimate the
dimension of the time series using the correlation dimension,
as proposed in Ding, Grebogi, Ott, Sauer, and Yorke (1993),
Grassberger and Procaccia (1983) and Sauer et al. (1991)
and illustrated in Babloyantz, Nicolis, and Salazar (1985)
and Camastra and Colla (1999) to cite only a few. However,
this question of choosing an adequate value of p is quite
independent from the unfolding goal of this work; p will
therefore be deemed to be fixed a priori throughout the rest of
this paper.

2.2. Self-Organizing Maps

The Self-Organizing Map (SOM) algorithm is an unsuper-
vised classification algorithm proposed in the 1980s (Kohonen,
1995). Since its introduction it has been applied in many ar-
eas, from classification to robotics to cite only two (Kohonen,
1995). The intuitive graphical representations that can be ob-
tained from the SOM have made this tool a very popular non-
linear clustering method. Theoretical aspects of the SOM have
also been studied in detail (Cottrell, Fort, & Pagès, 1998).

The main concepts of the SOM algorithm can be
summarized as follows. During the learning stage, the SOM
units, or prototypes, are moved within the data distribution.
Each prototype is linked to neighbouring ones according to a
1- or 2-dimensional grid whose shape and size are chosen
a priori. The learning consists in presenting each datum
and selecting the closest prototype with respect to some
distance measure. This winning prototype is moved towards
the data while its neighbours are also moved according to
constraints given by the grid. At the end of the learning
stage, the final prototype positions represent a discrete and
rough approximation of the data density that is therefore
partitioned into clusters. Each cluster is associated with one of
the prototypes.

The two main properties of the SOM are vector quantization
and topology preservation. In this paper, the SOM is used as
a clustering tool. Data to be clustered are the p-dimensional
regressors obtained from the time series.

3. Why time series clustering may be considered as
meaningless

How can the meaningfulness of time series clustering
be observed? Consider two different time series. Once the
regressors are formed for each series one can reasonably expect
that the two sets of regressors are different as they describe two
distinct processes. Applying a clustering method like the SOM
algorithm on both sets of regressors reduces the information
encoded in the regressors such that it is now contained
in a limited number of prototypes. The meaningfulness of
the clustering will then be measured from the two sets of
prototypes. If the respective prototype distributions obtained by
the SOM clustering tool on two distinct time series regressor
sets are significantly different, it will lead to the conclusion
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Fig. 1. Plot of the time series. From left to right: Sunspot, Lorenz and Random Walk.
that the clustering is meaningful. On the other hand, if the
prototypes cannot be distinguished any more because the
information contained in the regressor sets is lost by the
clustering procedure, then the clustering will be considered
meaningless (Simon, Lee, & Verleysen, 2005).

3.1. Criterion for meaningfulness of regressor clustering

How can significant differences be detected between two
sets of prototypes? Intuitively, the prototype distributions ob-
tained on two distinct time series should be much different from
the prototype distributions obtained on a single times series in
two different settings (two random initializations for example).
The criterion for meaningfulness of clustering has thus to com-
pare the prototype distributions or, more precisely, the proto-
type positions within the p-dimensional space of the regressors.

As time series may have different value ranges it is
mandatory to scale them before computing the regressors,
otherwise the prototype comparisons will obviously not be
fair. In this paper, all time series are normalized according to
xt = (x ′

t − µS)/σS , where µS and σS are the time series mean
and standard deviation, respectively, and x ′

t are the values of the
original scalar time series.

Let us consider two (normalized) time series S1 = {xt | 1 ≤

t ≤ n} and S2 = {yt | 1 ≤ t ≤ m}, where m is not necessarily
equal to n. Applying the SOM algorithm on the respective sets
of regressors, both in a p-dimensional space with fixed p, leads
to two prototype sets denoted P1 = {x̄i | 1 ≤ i ≤ I } and
P2 = {ȳ j | 1 ≤ j ≤ I }. P1 and P2 must obviously have the
same number of prototypes otherwise any comparison would
not be fair.

To compare these sets of prototypes, the following measure
can be used:

position difference(P1, P2) =

I∑
i=1

min
j

(dist(x̄i , ȳ j ))

with 1 ≤ j ≤ I. (3)

This measure sums, for each prototype in P1, the distance to
its closest corresponding prototype in P2. As defined here, the
measure is not a one-to-one relation between prototypes in P1
and P2: some prototypes in P2 may be selected more than once
and some may not be selected. Other measures respecting a one-
to-one relation could also be used. However experiments made
with variants of the measure (3) lead to similar conclusions at
the price of an increased computational burden. They will thus
not be considered in this paper.

As already mentioned above, prototype sets obtained on the
regressors from the same time series should be more or less
identical. To avoid a possible influence of the initialization, the
clustering is repeated K times leading to sets of prototypes sets:

P1 = {Pk
1 | 1 ≤ k ≤ K , with Pk

1 = {x̄k
i | 1 ≤ i ≤ I }}, and (4)

P2 = {P l
2 | 1 ≤ l ≤ K , with P l

2 = {ȳl
j | 1 ≤ j ≤ I }}. (5)

The difference between prototype sets obtained through
many runs of the SOM clustering algorithm, on a single time
series on one side and on two distinct ones on the other
side, can now be evaluated through the two following criteria,
respectively:

within(P1) =

K∑
k=1

K∑
l=1

position difference(Pk
1 , P l

1), and (6)

between(P1,P2) =

K∑
k=1

K∑
l=1

position difference(Pk
1 , P l

2). (7)

These criteria have been measured on three time series and
the results are given in Fig. 2. The three times series are a real
one (the sunspot series from January 1749 to February 2005
(SIDC, 2005)), an artificial one (generated using the Lorenz
differential equations (Alligood, Sauer, & Yorke, 1996; Kantz
& Schreiber, 1997; Kaplan & Glass, 1995)) and a random
walk (generated from Gaussian white noise). Fig. 1 shows a
plot of these three series. Increasing numbers of prototypes
have been used in the SOM in order to observe the impact
of the cluster sizes on the meaningfulness of clustering. The
number of prototypes in the SOM varies between 5 and 100
by increments of 5. The prototypes and the regressors are 3-
dimensional vectors; the dimension has not been optimized
for prediction purposes (it is not the goal of the study) and is
common to all series for comparison purposes.

The values have been computed for both criteria using
successively the three series as reference. Consider for example
that Sunspot is the reference time series. In that case
the values within(Sunspot), between(Sunspot, Lorenz) and
between(Sunspot, Random Walk) are plotted. Then the Lorenz
and Random Walk time series are considered as references; the
results are plotted in Fig. 2 from left to right.
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Fig. 2. Comparisons of the within(.) and between(., .) criteria on the three time series. From left to right, the Sunspot, Lorenz and Random Walk time series are
successively used as reference. See text for details.
Fig. 3. Two-dimensional regressor distributions. From left to right: Sunspot, Lorenz and Random Walk.
Fig. 2 supports the meaningless character of regressor
clustering. First, whatever the time series used as reference, the
increase of the within(.) criterion with the number of prototypes
remains limited. Second, the same phenomenon is noticeable
for the between(., .) criteria. Finally, considering each plot
separately, the number of prototypes does not really help in
distinguishing the series. Indeed when the number of prototypes
increases it is expected that the clustering should be more
accurate as smaller clusters help to detect local differences. On
the contrary Fig. 2 shows that this property is not verified: the
within(.) and between(., .) criteria drive apart at a rate simply
proportional to the number of prototypes in the SOM instead
of to the (much larger) increase of respective distances between
prototypes. The conclusion of meaningless clustering confirms
the results in Bagnall et al. (2003), Hetland (2003), Keogh et al.
(2003) and Mahoney and Chan (2005).

3.2. Illustration of the regressor clustering limitations

To understand how such a counterintuitive conclusion has to
be stated from the results illustrated in Fig. 2, it is instructive
to observe the regressor distributions of the three time series.
Fig. 3 shows the corresponding 2-dimensional regressors.

The regressor building according to Eq. (2) is indeed
problematic. If the time series is smooth the variations between
successive values are small. The components of the regressors
are thus highly correlated, so that the latter will concentrate
around the diagonal, as shown in Fig. 3. This is clearly the
case for the Sunspot and the Lorenz time series. For the
Random Walk series two consecutive values are also highly
correlated, by construction. It is thus not really surprising
that the SOM provides a meaningless clustering as noticed
from Fig. 2. In fact any method will fail to differentiate the
series from such regressors because the portion of the space
filled by the respective regressors is more or less the same,
and very limited with respect to the available space. This is
even worse in higher dimensions, as illustrated in Fig. 4 for
the 3-dimensional regressors. These regressors still concentrate
around a line that is, more generally, a 1-dimensional object in
the p-dimensional space. The relative part of space filled by
the regressor distribution will thus decrease dramatically as the
regressor space dimension increases. Comparisons of regressor
distributions in higher dimensions will be even more difficult
than in dimension two.

4. The unfolding preprocessing

From the illustrations in Figs. 3 and 4 the goal of the
unfolding preprocessing methodology is now clear: to make the
regressor distribution fill a much larger part of p-dimensional
space.

Intuitively the high correlation between the successive
regressor values is likely to stem from too high a sampling
frequency. It is therefore suggested to use a subsampling
preprocessing that will make the various regressor components
as independent as possible. In other words Eq. (2) should now
be replaced by:

x t
t−(p−1)τ = {xt , xt−τ , xt−2τ , . . . , xt−(p−1)τ }, (8)

where τ is a fixed lag.
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Fig. 4. Three-dimensional regressor distributions. From left to right: Sunspot, Lorenz and Random Walk.
The most difficult part of this preprocessing is the selection
of an adequate value for the lag τ . In practice lag τ is selected
as the lag closest to the first zero of the autocorrelation function.
The autocorrelation function C(τ ) is defined for real-valued
time series as

C(τ ) =

n∑
t=1

xt xt+τ for 0 ≤ τ ≤ M, (9)

where n is the number of data in the time series and M ≤ n − 1
is the maximum time lag. Obviously, as the autocorrelation
function differs from one time series to another, the selected
value of τ ∗ will differ too.

The main limitation of the autocorrelation function is that it
only computes the correlation between two variables. Though
extensions to three variables exist (Gautama, Mandic, & Van
Hulle, 2004), they are still limited as the goal is to use p-
dimensional regressors with p possibly larger than 3. Another
criterion is therefore proposed. This criterion measures the sum
of the distances of the p-dimensional regressors to the diagonal
in the p-dimensional space. This geometrical criterion does not
measure correlation directly. Instead, it measures how much a
regressor distribution differs from a straight line that represents
a maximum of correlation. This sum of distances for a given
time series S, denoted D(S), is computed as:

D(S) =

n∑
t=1

‖v1 −xt‖
2
‖v2 −v1‖

2
− ((v1 − xt )

T (v2 −v1))
2

‖v2 −v1‖
2 ,

(10)

where n is the total number of p-dimensional regressors xt that
can be obtained from the original time series S; and v1 and v2
are two p-dimensional vectors defining the line. This formula
usually presented in 2- or 3-dimensions can be generalized
easily to any dimension as it is defined on vectors. In our case,
as the line of concern is the diagonal of the space, v1 and
v2 are the p-dimensional origin (0, 0, . . . , 0) and unit vector
(1, 1, . . . , 1), respectively.

The complete methodology for unfolding regressors is
thus the following. For the selected dimension regressors are
calculated using Eq. (8). Then the graph of the distance to the
diagonal criterion with respect to the lag τ can be plotted. An
adequate lag corresponds to a maximum in this graph.

However, reaching the global maximum of the graph should
not be considered as the unique objective. In practice, any lag
that corresponds to a sufficiently high value in the graph could
be considered. Local maxima or smaller lags in a plateau may
be of interest too, as selecting lags that are too large may lead
to difficulty of interpretation. A good rule of thumb is to limit
the range of possible lags to a few times the one that would be
selected traditionally, i.e. as the first zero of the autocorrelation
function. Moreover, as the distance to diagonal criterion is a
global criterion taking the whole regressor into account, it may
happen that taking into consideration only possible maxima on
this graph would lead to lags for which the autocorrelation
function is not small. Therefore, in practice, the lag to be
selected should correspond to a sufficiently high value of the
distance to diagonal criterion; when this criterion gives several
possible values, the two additional criteria should be taken into
account: (1) the value of the lag should be chosen as small as
possible, and (2) it should correspond to a low value of the
autocorrelation function.

The proposed methodology is applied to the three time
series used in the previous section. First consider the Sunspot
time series in 2-dimensional space. Fig. 5 presents from left
to right the plots of the corresponding distance to diagonal,
autocorrelation function and a zoom of the autocorrelation
function for the first 400 lags. From this plot a lag of τ = 55
has been selected. This lag corresponds to a large value of the
distance to diagonal criterion, and is smaller than twice the lag
value the autocorrelation function would give (35). Choosing
the latter value would, however, lead to a poor unfolding of the
series; a larger value such as τ = 55 is thus preferred, despite
the (small) increase of the autocorrelation (in absolute value).

The same methodology is applied to the Lorenz time series.
The results are presented in Fig. 6. The distance to diagonal
criterion suggests that a lag between 20 and 25 is adequate.
The lag that would be selected according to the autocorrelation
only would be larger (around 35), but it can be seen that the
autocorrelation is not much different between 25 and 35. The
lag selected in this case is the one satisfying both criterions,
i.e. 25 in this case.

The methodology is applied again to the 2-dimensional
regressors of the Random Walk time series. Note that by
definition of a random walk there is no reason to select a lag
larger than 1 for prediction purposes. However, we are not
interested here in prediction, but in unfolding in the regressor
space; obviously, a lag leading to a good unfolding will be much
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Fig. 5. From left to right: distance to diagonal, autocorrelation function and zoom of the autocorrelation function for the first 400 lags of the Sunspot time series.
Fig. 6. From left to right: distance to diagonal, autocorrelation function and zoom of the autocorrelation function for the first 400 lags of the Lorenz time series.
Fig. 7. Left: distance to diagonal; right: autocorrelation function of the Random Walk time series.
Fig. 8. Regressor distribution in a 2-dimensional space after unfolding. From left to right: Sunspot, Lorenz and random walk.
larger than 1, in order to have regressor components that are as
independent as possible.

The values obtained for the two criteria are reported in Fig. 7.
As a trade-off between the distance to diagonal criterion, the
autocorrelation criterion and the objective to limit the value of
the lag, τ = 100 is selected.

Having selected these lags it is possible to observe how the
regressor distributions in a 2-dimensional space are affected by
the use of the unfolding preprocessing. This can be observed
from Fig. 8 where the unfolded regressor distributions are
plotted. The difference between Figs. 3 and 8 is clearly
visible. Note that the same methodology has been applied
to 3-dimensional regressors. The lags found for the Sunspot,
Lorenz and Random Walk time series are respectively τ = 40,
τ = 20 and τ = 100. The corresponding unfolded regressor
distributions are presented in Fig. 9 and may be compared
to Fig. 4. Obviously, regressor comparisons based on SOM
clustering using the within(.) and between(., .) criteria will be
much more conclusive with the regressor distributions from
Figs. 8 and 9 than those from Figs. 3 and 4.
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Fig. 9. Regressor distribution in a 3-dimensional space after unfolding. From left to right: Sunspot, Lorenz and random walk.
The three series used in this section were aimed to illustrate
why selecting a larger lag may lead to better unfolding of the
regressor distribution. Such unfolding is necessary to allow
comparisons of sets of regressor prototypes, and therefore
to assess the meaningful character of time series clustering.
However, it should be noted that although unfolding is a
necessity for using regressors in a prediction context (it is a way
to make the regressors as informative as possible), unfolding
is not a sufficient condition for prediction; the last example
(Random Walk) clearly illustrates this fact.

Note also that in some cases, the distance to diagonal
criterion gives similar lags to the autocorrelation criterion when
2-dimensional regressors are used. This is for example the case
when simple AR/ARMA series are considered. However, the
supplementary advantage of the distance to diagonal criterion,
i.e. the possibility of using it on higher-dimensional regressors,
remains.

5. Experimental results

In this section, we apply the unfolding methodology to
time series before evaluating the within(.) and between(., .)

criteria, in order to assess the meaningful character of time
series clustering once the preprocessing is applied. Both real
and artificial time series are used.

5.1. The time series

The real time series are the following.

• The Sunspot time series (SIDC, 2005) represents the
monthly number of sunspots, from January 1749 to February
2005.

• The Santa Fe A time series (Weigend & Gershenfeld, 1994)
was proposed in the Santa Fe Time Series Prediction and
Analysis Competition in 1991. The data were collected from
a Far-Infrared-Laser in a chaotic state.

• the Polish electrical consumption time series (Osowski,
Siwek, & Tran Haoi, 2001) is composed of daily measures
ranging from the end of 1990 to mid 1997.

In addition to these real-world series, artificial ones have
also been generated using the following linear and nonlinear
equations (the three first and the four last models respectively):

• Autoregressive model, AR(3):

xt = a1 ∗ xt−1 + a2 ∗ xt−2 + a3 ∗ xt−3 + εt . (11)

2500 data have been generated; the first 500 data have
been discarded to remove any bias due to initial conditions.
The ai coefficients, with i = {1, 2, 3}, have been chosen
randomly using a normal distribution with zero mean
and unit variance. εt has been generated using a normal
distribution with zero mean and 0.1 variance.

• Autoregressive with moving average model, ARMA(4, 4):

xt = a1 ∗ xt−1 + a2 ∗ xt−2 + a3 ∗ xt−3 + a4 ∗ xt−4

+ b1 ∗ εt−1 + b2 ∗ εt−2 + b3 ∗ εt−3 + b4 ∗ εt−4 + εt .

(12)

Here again, 2500 data have been generated and the first
500 data have been discarded. Coefficients ai and bi , with
i = {1, 2, 3, 4}, have been chosen randomly using a normal
distribution with zero mean and unit variance. εt has been
generated using a normal distribution with zero mean and
0.1 variance, as above.

• Autoregressive with moving average model with seasonality
of 12, SARMA(3, 3):

xt = a1 ∗ xt−1 + a2 ∗ xt−2 + a3 ∗ xt−12

+ b1 ∗ εt−1 + b2 ∗ εt−2 + b3 ∗ εt−12 + εt . (13)

Once again, 2500 data have been generated and the first
500 data have been removed. To force the seasonality,
coefficients ai and bi , with i = {1, 2}, have been chosen
randomly using a normal distribution with zero mean and
0.02 variance while coefficients a3 and b3 were chosen using
a normal distribution with zero mean and unit variance. εt
has been obtained as in the previous models using a normal
distribution with zero mean and 0.1 variance.

• Lorenz system (Abarbanel, 1997; Kantz & Schreiber, 1997;
Kaplan & Glass, 1995):

ẋt = 10(yt − xt ),

ẏt = 28xt − yt − xt zt ,

żt = xt yt −
8
3

zt .

(14)

4000 data have been generated using an integration step of
0.015. The first 2000 data have been discarded to remove
any transient state and let the trajectory fall to the attractor.

• Rossler system (Abarbanel, 1997; Kaplan & Glass, 1995):

ẋt = −(yt + zt ),

ẏt = xt + 0.2yt ,

żt = 0.2 + zt (xt − 5.7).

(15)

In this case 4000 data have been generated using an
integration step of 0.075. Here again the first 2000 data have
been discarded.
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Fig. 10. From left to right, top to down: Santa Fe A, Polish electrical, AR(3), ARMA(4, 4), SARMA(3, 3) with seasonality of 12, Rossler, Henon and Tinkerbell
time series.
• Henon map (Alligood et al., 1996; Kantz & Schreiber, 1997;
Kaplan & Glass, 1995):

xt+1 = 1 − 1.4x2
t + yt ,

yt+1 = 0.3xt .
(16)

2000 data have been generated using these finite difference
equations.

• Tinkerbell map (Alligood et al., 1996; Nusse & Yorke,
1998):

xt+1 = x2
t − y2

t + 0.9xt − 0.6013yt ,

yt+1 = 2xt yt + 2xt + 0.5yt .
(17)

For this system 2000 data have been generated too.
• Random walk:

xt+1 = xt + εt , (18)

where εt are normally distributed random values. Here
again, a series of 2000 data has been generated.

Fig. 1 shows plots of the Sunspot, the Lorenz, and the
Random Walk time series, from left to right. Fig. 10 shows
graphical representations of the eight other datasets, namely
the Santa Fe A, the Polish electrical, the AR(3), the ARMA(4,
4), the SARMA(3, 3) with seasonality of 12, the Rossler, the
Henon and the Tinkerbell time series.

5.2. Results

In this section, results obtained using time series generated
using a single model are first presented. The aim is to prove
that, in such a case, the within(.) and between(., .) criteria
give similar values. Then, comparisons of the within(.) and
between(., .) criteria values obtained from different artificial
or real-world time series are presented in order to prove the
meaningfulness of time series clustering.

A first experiment is performed to observe how the
methodology behaves on time series generated artificially
using the same model. As the series are obtained on the
basis of the same equation, they are expected to be more
or less indistinguishable even when unfolded: the regressor
distributions should be more or less identical for each series.
The example used here consists of ten Random Walk series
obtained from Eq. (18). For each of these ten series, 2000 data
have been generated. The lag has been chosen equal to 100 as
discussed earlier. The unfolding preprocessing has been applied
to all series. Fig. 12 shows the results obtained on two time
series chosen from the ten generated ones; the results for the
other series are similar.

From Fig. 12 two comments can be made. First, it can
be observed that the within(.) and between(., .) criteria give
distinct values. This is the result of εt in (18), which makes all
series different, even though they were generated by the same
model. Second, Fig. 12 shows that the differences between
the within(.) and between(., .) criteria decrease after unfolding.
This means that, though the initial series differ (and so their
sets of regressors) because of their stochastic character and the
εt term, the sets of regressors after unfolding are much closer to
each other. In other words, the unfolding preprocessing reduces
the differences between series generated from the same model;
it acts as a smoother, and produces sets of regressors that better
represent the series model.

Note that similar experiments performed on the Rossler and
ARMA(3, 3) models, not detailed here for lack of space, lead
to the same conclusions: the unfolded regressor sets are less
distinguishable than the original ones.

The remainder of this section is devoted to comparison
between different time series.

For 3-dimensional regressors, the lags selected using the
distance to diagonal criterion are summarized in Table 1. Fig. 9
shows the regressor distributions obtained using the unfolding
methodology for the Sunspot, Lorenz and the Random Walk
time series, respectively, from left to right. Fig. 11 shows the
corresponding unfolded regressor distributions for the eight
other time series. A comparison of the values for the within(.)

and between(., .) criteria is provided in Figs. 13 and 14. Note
that the results for four time series only are provided due to
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Fig. 11. 3-dimensional regressor distributions obtained using the unfolding preprocessing. From left to right, top to bottom: the Santa Fe A, Polish electrical, AR(3),
ARMA(4, 4), SARMA(3, 3) with seasonality of 12, Rossler, Henon and Tinkerbell time series.
Fig. 12. within(.) and between(., .) criteria for two out of ten time series. Leftmost figures: initial regressors; rightmost figures: unfolded regressors.

Fig. 13. within(.) and between(., .) criteria for non-preprocessed 3-dimensional regressors. From left to right: Lorenz, Tinkerbell, Random Walk and ARMA(4, 4)
time series. Note that the scale is different from Fig. 2.
Table 1
Lags selected using the distance to diagonal criterion using 3-dimensional
regressors

Time series Lag Time series Lag

Sunspot 40 Rossler 20
Santa Fe A 2 Lorenz 20
Polish 3 Henon 1
AR(3) 1 Tinkerbell 1
ARMA(4, 4) 1 Random Walk 100
SARMA(3, 3) 1

space limitations; the conclusions are similar for all other series.
The values of the criteria in Figs. 13 and 14 were obtained using
regressors from Eq. (2) and unfolded regressors from Eq. (8)
respectively.
From Figs. 13 and 14, the plots of the Lorenz and Random
Walk cases show a clear increase in the distance between
the within(.) and between(., .) criteria when the regressors are
unfolded. Concerning the Tinkerbell and the ARMA(4, 4) time
series, Table 1 shows that the selected lag is 1; it is thus not
surprising that no significant difference is obtained between
Figs. 13 and 14 as the regressors are adequately unfolded in
both cases.

Similar results can be obtained using 5-dimensional
regressors. The selected lags are presented in Table 2. A
comparison of the values for the within(.) and between(., .)

criteria is provided in Figs. 15 and 16 for four other time series.
Here again, the same conclusions may be drawn for all the other
cases that are not illustrated.
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Fig. 14. within(.) and between(., .) criteria for 3-dimensional regressors preprocessed using the unfolding methodology. From left to right: Lorenz, Tinkerbell
Random Walk and ARMA(4, 4) time series.
Fig. 15. Values for the within(.) and between(., .) criteria for non-preprocessed 5-dimensional regressors. From left to right: Sunspot, Henon, Rossler and AR(3)
time series.
Fig. 16. Values for the within(.) and between(., .) criteria for 5-dimensional regressors preprocessed using the unfolding methodology. From left to right: Sunspot,
Henon, Rossler and AR(3) time series.
Table 2
Lags selected using the distance to diagonal criterion for the used time series,
for the case of 5-dimensional regressors

Time series Lag Time series Lag

Sunspot 20 Rossler 10
Santa Fe A 2 Lorenz 20
Polish 2 Henon 1
AR(3) 1 Tinkerbell 1
ARMA(4, 4) 1 Random Walk 50
SARMA(3, 3) 1

Figs. 15 and 16 lead to the same conclusion as in the 3-
dimensional case except that the within(.) and between(., .)

values are even more distinct in this case; see for example
the plots for the Sunspot, Rossler or AR(3) time series. Once
again, approximately the same values are obtained with non-
preprocessed and unfolded regressors for the Henon time series:
in this case, the lag τ is also 1.

Finally, the same methodology is again applied to
10-dimensional regressors. The selected lags are presented in
Table 3
Lags selected using the distance to diagonal criterion for the used time series,
for the case of 10-dimensional regressors

Time series Lag Time series Lag

Sunspot 10 Rossler 5
Santa Fe A 1 Lorenz 10
Polish 1 Henon 1
AR(3) 1 Tinkerbell 1
ARMA(4, 4) 1 Random Walk 20
SARMA(3, 3) 1

Table 3. Comparison of the within(.) and between(., .) values
for some time series are provided in Figs. 17 and 18. As
for 3-dimensional and 5-dimensional regressors, the unfolding
preprocessing of regressors in a 10-dimensional space allows
an easier comparison of the within(.) and between(., .) criteria.

Four supplementary conclusions may be extracted from the
experimental results. First, for time series obtained from simple
linear models (e.g. AR, ARMA, SARMA), the distance to
diagonal criterion gives similar lags to the autocorrelation.
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Fig. 17. Values for the within(.) and between(., .) criteria for non-preprocessed 10-dimensional regressors. From left to right: Santa Fe A, Lorenz, Random Walk
and SARMA(3, 3) time series.
Fig. 18. Values for the within(.) and between(., .) criteria for 10-dimensional regressors preprocessed using the unfolding methodology. From left to right: Santa Fe
A, Lorenz, Random Walk and SARMA(3, 3) time series.
Second, the distance to diagonal criterion is valid whatever
the dimension of the regressor; it takes into account the whole
unfolding in the regressor space, rather than the correlation or
other criterion between two successive values only. Third, in
general the gaps between the within(.) and between(., .) criteria
are larger when using higher-dimensional regressors; this is
consistent with the fact that larger regressors usually better
capture the dynamics of a series. Finally, it can be noticed from
Tables 1–3 that the lag selected through the distance to diagonal
criterion decreases (for a given time series) when the regressor
dimension increases. This can be understood by the fact that,
when using a large regressor, the necessary previous values will
be included even if the lag τ is too small, just because the lag is
multiplied by a large p in Eq. (8).

To conclude, it can be said that using the within(.)

and between(., .) criteria it has been possible to observe
that, once correctly unfolded with the distance to diagonal
criterion, regressors obtained from distinct time series are
indeed distinguishable using a clustering technique. The
latter is implemented here by self-organizing maps. Similar
experiments have been performed using the K-means and
Competitive Learning algorithms; in both cases, it can be shown
that time series clustering is also meaningful.

6. Conclusion

In this paper, the “distance to diagonal” criterion is
introduced to measure how well a time series regressor
distribution is unfolded. Such unfolding is necessary to preserve
in the regressors the information contained in the series.
The distance to diagonal criterion measures how much all
components of the regressor contribute to useful information,
unlike the autocorrelation function that only takes two values
into account.

Unfolding the regressor distribution is a necessary condition
to keep the information in the set of regressors but does not
constitute a sufficient condition, as illustrated by a random
walk. However, it is expected that when prediction is possible
with fixed-size regressors, choosing the lag according to the
distance to diagonal criterion will help in keeping information
for further processing. As having a low autocorrelation of
the regressor components and keeping the lag small are also
important objectives, the methodology detailed in this paper
suggests using these two last criteria as subsidiary ones when
the distance to diagonal criterion allows the choice of a range
of lags.

While the methodology is presented here for fixed lags
(equal time delays between regressor components), nothing
prevents us from applying the same technique to regressors
with variable lags. However, several values are to be set in this
case, making the search for minima a multi-dimensional search
instead of a 1-dimensional one.

Recently, a set of papers have been published with
arguments concerning the meaningless character of time series
clustering. While explanations have been given too, it remains
that these papers have led to suspicion about the usefulness of
time series clustering in all situations. By using criteria that
differentiate sets of regressor prototypes, this paper shows that
time series clustering is meaningful, at least when adequate
preprocessing is applied. Experimental results obtained using
real and artificial time series indeed show that using adequate
preprocessing leads to a clear distinction of the sets of the SOM
prototypes and thus to the conclusion of the meaningfulness of
clustering.
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