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Abstract

Self-organizing maps (SOM) are widely used for their topology preservation property: neigh-
boring input vectors are quanti7ed (or classi7ed) either on the same location or on neighbor
ones on a prede7ned grid. SOM are also widely used for their more classical vector quantization
property. We show in this paper that using SOM instead of the more classical simple com-
petitive learning (SCL) algorithm drastically increases the speed of convergence of the vector
quantization process. This fact is demonstrated through extensive simulations on arti7cial and
real examples, with speci7c SOM (7xed and decreasing neighborhoods) and SCL algorithms.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Self-organization; Vector quantization; Convergence speed; Acceleration

1. Motivation

Vector quantization (VQ) is a widely used tool in many data analysis’ 7elds. It
consists in replacing a continuous distribution by a 7nite set of quantizers, while mini-
mizing a prede7ned distortion criterion. Vector quantization may be used in clustering
or classi7cation tasks, where the aim is to determine groups (clusters) of data shar-
ing common properties. It can also be used in data compression, where the aim is to
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replace the initial data by a 7nite set of quanti7ed ones; labeling the quanti7ed set and
using the labels rather than the data themselves makes compression possible. Vector
quantization is basically an unsupervised process. Supervised variants exist (LVQ1,
LVQ2, in Kohonen [7]); in this last case, the distortion criterion takes class labels
into account.
While most recent learning algorithms in various domains do not consider anymore

the limitations due to computational load because of the increasing power of computers,
this question is still important in VQ. The reason is that VQ is often used on huge
databases in high-dimensional spaces; therefore the learning process of such VQ task
may take hours or days to converge, especially if the number of clusters is large too.
In this paper, we study how, and up to which point, the Kohonen self-organizing

maps (SOMs) may be used to accelerate the VQ learning process. It is well known
that SOMs accelerate vector quantization, compared to other, more traditional VQ al-
gorithms. However, to our knowledge, it exists no quantitative experimental study on
this topic. To 7ll this gap is the main purpose of this paper. After reminding formal
de7nitions of the conventional VQ and SOM algorithms, and in particular of their
distortion measures (Section 2), we study the rate of convergence of conventional VQ
and SOM algorithms, both on arti7cial databases, where the exact solution of VQ can
be computed, and on real ones (Sections 3 and 5). Section 4 uses a hybrid method
with a 7xed-neighborhood SOM as initialization to a conventional VQ algorithm, in
order to bene7t both from the accelerated convergence of SOM and from the lower
distortion error after convergence of conventional VQ; this hybrid algorithm is similar
to the conventional SOM with decreasing neighborhood, and is aimed to better quantify
the gain in convergence speed.

2. Vector quantization

2.1. Principle and distortion

Vector quantization consists in replacing a continuous distribution, in some cases
known only through a 7nite number of samples, by a 7nite number of quantizers; the
number of quantizers must be (much) smaller than the number of known samples.
Each quantizer de7nes a cluster in the space; the principle of vector quantization is to
project all samples in a cluster on the corresponding quantizer.
Most of the methods used to perform VQ necessitate setting a priori the number of

clusters or quantizers. The choice of this number results from a trade-oH between the
precision (distortion) of the quantization and the necessity of an eIcient description
of the resulting clusters (quantity of information kept after quantization).
Once the number of quantizers is prede7ned, a good criterion of the quality of

the clustering is the distortion, which measures the deviation between the data and
the corresponding quantizers. Let us recall the main de7nitions and introduce our
notations.
We consider a continuous data space �, of dimension d, endowed by a continuous

probability density function (pdf) f(x), where the cumulated density (or repartition
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function) is F(x)=P(X ¡x) (where P is the probability law, and where the inequality
is veri7ed in each dimension).
A vector quantization 
 is an application from the continuous space � to a 7nite sub-

set F (the codebook) formed by n code-vectors or centroids or quantizers q1; q2; : : : ; qn
of �. The positions of the code-vectors are supposed to be computed as a result of a
quantization algorithm or learning algorithm.
The aim of a VQ is to compress the information by replacing all elements x of a

cluster Ci (subset of �) by a unique quantizer (or code-vector, or centroid) qi. For
a given number n of code-vectors, VQ tries to minimize the loss of information or
distortion, measured by the mean quadratic error

�(f;
) = �(f; q1; q2; : : : ; qn) =
n∑
i=1

∫
Ci
‖x − qi‖2f(x) dx: (1)

If a N -sample x1; x2; : : : ; xN is available (randomly chosen according to f(x)), this
distortion is estimated by the intra-class sum of squares

�̂(f;
) = �̂(f; q1; q2; : : : ; qn) =
1
N

n∑
i=1

∑
xj∈Ci

‖xj − qi‖2: (2)

All classical VQ algorithms (LBG, K-means; : : :) minimize this distortion function by
choosing appropriate centroid locations. See for example [1] or [2] for proofs. There
is no unique minimum of the distortion function, and the result strongly depends on
the initialization.

2.2. Simple competitive learning and batch VQ algorithms

There exist many algorithms that deal with the VQ problem. Most of them are very
slow in terms of convergence speed. The most popular one is the so-called simple
competitive learning algorithm (SCL) that can be de7ned as follows (see for example
[5]):
Let � be the data space (with dimension d), endowed with a density probability

function f(x). The data are randomly drawn according to the density f(x) and are
denoted by x1; x2; : : : ; xN . The number of desired clusters is a priori 7xed to be n. The
quantizers q1; q2; : : : ; qn are randomly initialized. At each step t,

• a data xt+1 is randomly drawn according to the density f(x),
• the winning quantizer qwin(t) is determined by minimizing the classical Euclidean
norm

‖xt+1 − qwin(t)‖=mini‖xt+1 − qi‖;
• the quantizer qwin(t) is updated by qwin(t+1) = qwin(t) + �(t)(xt+1 − qwin(t)),

where �(t) is an adaptation parameter which satis7es the classical Robbins–Monro
conditions (

∑
�(t) =∞ and

∑
�2(t)¡∞).

The SCL algorithm is in fact the stochastic or on-line version of the Forgy algorithm
(also called moving centers algorithm, LBG or Lloyd’s algorithm, see for example
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[4,8,9]). In that version of the algorithm, the quantizers are randomly initialized. At
each step t, the clusters C1; C2; : : : ; Cn are determined by putting in class Cj the data
which are closer to qj than to any other quantizer qi. Then the mean values in each
cluster are simultaneously computed and taken as new quantizers. The process is then
repeated. The Forgy algorithm works oH-line as a batch algorithm. It will be referred
to as Batch VQ (BVQ) in the following. An intermediate version of the algorithm also
exists, frequently named the K-means method [10]. In that case, at each step, a single
data is randomly chosen, and only the winning quantizer is updated as the mean value
of its class.
It can be proven ([1,2]) and it is well known that BVQ minimizes the distortion

(1) or, more exactly, the estimated one (2). Note that the stochastic SCL algorithm
also minimizes this distortion, but only in mean value: at each step, there is a positive
probability to increase the distortion, as for any stochastic algorithm.
Let us denote by q∗1 ; q

∗
2 ; : : : ; q

∗
n one set of quantizers which (locally) minimizes the

distortion. This minimum needs not to be unique and generally depends on the initial
values. At a local minimum of the distortion, each q∗i is the center of gravity of its
class Ci, with respect to the density f, and the quantizers are 7xed points of the BVQ
algorithm. In an exact form,

q∗i =

∫
Ci
xf(x) dx∫

Ci
f(x) dx

; (3)

estimated by

q̂∗i =

∑
xj∈Ci xj∑
xj∈Ci 1

: (4)

Note that the equations are implicit ones, since the Ci are de7ned according to the
positions of the q∗i .
For example, in the one-dimensional case, the classes Ci (16 i6 n) are intervals

de7ned by Ci=[ai; bi], with ai=1=2(q∗i−1 + q
∗
i ) and bi=1=2(q

∗
i+1 + q

∗
i ), for 1¡i¡n,

and a1 = inf (�), bn = sup(�).
The main goal of this paper (after a preliminary work presented to ESANN’99, see

[3]) is to evaluate the speed of convergence of VQ algorithms. In situations where
the solution is unique and where it is possible to compute the exact values q∗i , the
performances will be evaluated through the rate at which the values qi converge to q∗i
(see Section 3).

2.3. SOMs

Let us consider now the SOM algorithm (as de7ned by Kohonen [6]). As we will
show it as an extension of the SCL algorithm in its classical stochastic form, and of the
Forgy algorithm (BVQ) in its batch form. We will consider here the SOM algorithm
with a 7xed number of neighbors (although the number of neighbors uses to decrease
with time in practical implementations).
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For a given neighborhood structure, where V (i) denotes the neighborhood of unit
i, the SOM algorithm is de7ned as follows. The quantizers q1; q2; : : : ; qn are randomly
initialized. At each step t,

• a data xt+1 is randomly drawn according to the density f(x),
• the winning quantizer qwin(t) is determined by minimizing the classical Euclidean
norm

‖xt+1 − qwin(t)‖=mini‖xt+1 − qi‖;
• the quantizer qwin(t) and its neighbors qk(t) for k in V (j) are updated by

qwin; k(t+1) = qwin; k(t) + �(t)(xt+1 − qwin; k(t));
where �(t) is an adaptation parameter which satis7es the classical Robbins–Monro
conditions (

∑
�(t) =∞ and

∑
�2(t)¡∞).

We see that the SCL algorithm is a particular case of the SOM algorithm, when the
neighborhood is reduced to zero. Sometimes SCL is called 0-neighbor Kohonen algo-
rithm. There also exists a batch SOM algorithm, similar to the Forgy BVQ algorithm.
The only diHerence is that at each step, for a given set of classes C1; C2; : : : ; Cn, the
quantizer qj is set to the mean value of the union of the class Cj and its neighbors
(see [7] for example).
It appears clearly that the SOM algorithm is diHerent from the SCL algorithm only

because a neighborhood structure is de7ned between the n quantizers. The neighborhood
structure of the SOM algorithm is most frequently used for visualization and data
interpretation properties. We however only consider it here as a way to accelerate the
convergence of the SOM algorithm. In other words, we are only interested here in the
VQ property of SOM, and not in its topological properties.
In the one-dimensional case, and for a one-dimensional structure of neighborhood,

if the neighborhood V (i) contains i − 1; i; i + 1 (two-neighbor case), the limit points
q∗i of the batch SOM algorithm verify Eq. (3) or Eq. (4), where Ci is replaced by
C2i = Ci−1 ∪ Ci ∪ Ci+1 = [ai; bi], with ai = 1=2(q∗i−2 + q∗i−1) and bi = 1=2(q∗i+1 + q∗i+2),
for 2¡i¡n− 1, and a1 = a2 = inf (�), and bn−1 = bn = sup(�).
Here again, the batch SOM algorithm is nothing else than the iterative computation

of the solutions of Eq. (3) or (4), when Ci is replaced by C2i .
The batch SOM algorithm and the classical stochastic SOM algorithm do not de-

crease anymore distortion (1), but a generalized distortion that is the distortion extended
to the neighbor classes (as long as the number of neighbors � remains 7xed) [11]. This
generalized distortion is given by

��(f;
) = ��(f; q1; q2; : : : ; qn) =
n∑
i=1

∫ ⋃
k∈V (i)

Ck‖x − qi‖2f(x) dx; (5)

where V (i) is the set of indexes in the neighborhood of i, including i. This generalized
distortion function can also be estimated through a 7nite set of samples x1, x2; : : : ; xN ,
similarly to (2).
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3. Experimental results: convergence to the exact solution of the VQ problem

The SOM algorithm is not equivalent to the SCL algorithm: it is deemed to min-
imize the generalized distortion (5), and not the classical distortion of VQ problems
(1). Despite this fact, we will show that the SOM algorithms perform better than the
classical SCL algorithm, i.e. converge faster towards the solution of (1), at least during
the 7rst iterations of the algorithm.
We study this phenomenon from two points of view. Firstly, in some cases where

it is possible to exactly compute the solutions of Eq. (3) or (4), we evaluate the
error between the current values and the optimal values as a function of the number
of iterations, for both the SCL and SOM algorithms. This is the topic of this section.
Secondly, for more realistic data, we compare the decreasing slope of the true distortion
(1) as a function of the number of iterations, also for both algorithms. This is the topic
of Section 5.
In some one-dimensional cases (d = 1), if the set � is a real interval, and if the

density f is known and well behaved, it is possible to directly compute the solutions
q∗i , starting from a given set of increasing initial values, by an iterative numerical
procedure.
If the initial values are ordered, the current values q1; q2; : : : ; qn will remain or-

dered at each iteration of the SCL algorithm. As mentioned in the previous sec-
tion, the classes Ci (16 i6 n) are therefore intervals de7ned by Ci = [ai; bi], with
ai=1=2(qi−1 +qi) and bi=1=2(qi+1 +qi), for 1¡i¡n, and a1 = inf (�), bn=sup(�).
This constitutes the 7rst set of equations (Ci as a function of qi) used in this iterative
procedure.
Eq. (3) or (4) have no explicit solutions. However, it is possible to compute analyti-

cally the solutions qi, as a function of the limits ai and bi of the intervals Ci, for some
“easy” densities f(x). This will constitute the second set of equations (equivalent to
(3)) used in the iterative procedure. Table 1 presents these recurrent explicit equations
for the densities f(x) = 2x; 3x2, e−x.
Using alternatively the two sets of equations leads to the convergence to the optimal

values q∗i of the quantizers. This iterative procedure is similar to the BVQ algorithm.
Formulas in Table 1 are the analytical solutions of Eq. (3), while the BVQ algorithm
usually involves in practical experiments the use of approximation (4).

Table 1
Exact computation of the quantizers as a function of the limits of the clusters, for some “easy” examples of
densities

Density f Distribution function a0 b0 qi

2x on [0; 1] x2 0 1 qi = 2
3
b3i−a3i
b2i−a2i

3x2 on [0; 1] x3 0 1 qi = 3
4
b4i−a4i
b3i−a3i

e−x on [0;+∞] 1− e−x 0 +∞ qi =
aie

−ai+e−ai−bie−bi−e−bi

e−ai−e−bi
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Fig. 1. Evolution of D2(t) as a function of the number of iterations, for the density f(x) = 2x.

Knowing the optimal values of the quantizers, it is possible to study the speed
of convergence of any VQ algorithm. In that purpose, we will study the Euclidean
distance between the current values of (qi(t)) resulting from some VQ algorithm and
the solutions (q∗i ), as a function of the numbers of iterations. We de7ne the mean
quadratic error

D2(t) = D2(q(t); q∗) = (1=n)
∑
16i6n

(qi(t)− q∗i )2 (6)

which will be the error measure of the VQ algorithm into consideration.
In practical situations, one can observe that the error measure D2(t) decreases to 0

very slowly when using the SCL algorithm. Note that in all simulations with several
algorithms we carefully started from the same initial increasing values qi(0), including
for the exact computation of the (q∗i ), in order to avoid any eHect due to the initial
conditions.
In Figs. 1–3, we represent the variations of the error measure D2(t), for the SCL

algorithm and for the SOM with 2, 4 and 8 neighbors; 100 quantizers were used for
all simulations on arti7cial data. Figs. 1–3 respectively, concern densities f(x) = 2x,
3x2 and e−x. We can see, for example, that the SOM with neighbors decreases to the
optimal values (q∗i ) much faster than the SCL algorithm, even if it 7nally converges
to its own optimal points. These optimal points minimize the generalized distortion
extended to neighbors (5), and are diHerent from the (q∗i ) (see Section 2).
We also measured the evolution of D2(t) as a function of the number of iterations,

for a Gaussian density N(0; 1). In this case, the exact values q
∗
i have been obtained
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Fig. 2. Evolution of D2(t) as a function of the number of iterations, for the density f(x) = 3x2.
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Fig. 3. Evolution of D2(t) as a function of the number of iterations, for the density f(x) = e−x .
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Fig. 4. Evolution of D2(t) as a function of the number of iterations, for the standard Gaussian N(0; 1)
density.

through Eq. (4), by using very large samples to compute at each step the Ci. Fig. 4
shows this evolution of D2(t) as a function of the number of iterations, respectively
for the SCL algorithm and for the SOM with 2, 4, 8 and 16 neighbors.
One could argue that the comparisons are made on diHerent algorithms, where the

processing time per iteration is diHerent. The comparison in terms of number of it-
erations is thus not fair if the total processing time is searched for. Nevertheless, as
an example, the diHerence of the processing time in our simulations of a single it-
eration when using the 2-neighbors SOM algorithm instead of the SCL algorithm is
signi7cantly less than 1%. The diHerences shown in Figs. 1–4 thus remain striking.
This section has shown that the use of SOM can greatly increase the speed of

convergence towards the exact solutions of the VQ problem. Nevertheless, it must not
be forgotten that the SOM algorithm will not 7nally converge to these solutions but
rather to a minimum of (5). In the next section, we therefore use a mixed algorithm,
beginning by some iterations of the SOM algorithm and ending with a classical SCL
procedure, in order to bene7t both from the accelerated convergence and from the
convergence towards optimal states.

4. Hybrid algorithm SOM/SCL

Based on the results of the previous section, we propose to use a hybrid VQ algo-
rithm (denoted by Kohonen SCL (KSCL)), which consists of an initial phase (a SOM
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Fig. 5. Evolution of D2(t) as a function of the number of iterations, for four variants of the KSCL algorithm,
on the 2x density.

algorithm with � neighbors), followed by the classical SCL. We compare the value
of the error D2(t) after the same number of iterations for KSCL and SCL. Note that
KSCL is not far from the classical SOM algorithm with decreasing neighborhood; the
reason to use KSCL is not to suggest another algorithm, but to better quantify the gain
in convergence speed compared to classical SCL, regardless of the speci7c decreasing
function used in a classical SOM.
For example, let us 7x a total number of iterations T , the initial ordered points

q1(0); q2(0); : : : ; qn(0), a constant � and several probability functions: f(x) = 2x on
[0; 1]; f(x) = 3x2 on [0; 1]; f(x) = e−x on [0;+∞[, and the standard Gaussian N(0; 1).
Let us also consider the 2-neighbors SOM algorithm (�= 2).
In Figs. 5–8, we represent the evolution of the error measure for diHerent KSCL

algorithms and for the four probability densities that we took as examples. We consider
four KSCL variants where the 2-neighbors SOM algorithm is used, respectively, during
0%, 30%, 60%, 90% of the total number of iterations T .
We can observe in all simulations that the 2-neighbors algorithm greatly accelerates

the decrease of the error measure in the beginning of the curves. In all cases, using too
early the SCL algorithm slows down the decrease. Moreover, the performances remain
better than those of the SCL algorithm, whatever is the choice of the KSCL variant.
Nevertheless, it is also clear that determining the optimal iteration for substituting
SOM by SCL strongly depends on the probability density. An optimal choice of this
parameter would thus require extensive simulations, which is not the goal searched for
here.
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Fig. 6. Evolution of D2(t) as a function of the number of iterations, for four variants of the KSCL algorithm,
on the 3x2 density.
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Fig. 8. Evolution of D2(t) as a function of the number of iterations, for four variants of the KSCL algorithm,
on the standard Gaussian density.

We may conclude this section by claiming that, in any case, the SOM algorithm
with a 7xed number of neighbors can work as an eIcient initialization of the SCL
algorithm to accelerate the convergence and improve the performances. We veri7ed
this statement on many other probability densities, real data and for several values of
the number of neighbors �.
In practical implementations of the SOM algorithm, the number of neighbors is made

decreasing. Our observations con7rm that this widely used strategy is very eIcient to
improve the decreasing of the error measure (6).
It would be interesting to consider this so-called error measure in multidimensional

settings. Nevertheless, this concept is not well suited to dimensions greater than 1. The
lack of ordering concept in dimension greater than 1 does not facilitate the problem
and the correspondence between the current quantizers at a given iteration and their
optimal values looses its clear meaning.
We will thus replace the concept of error measure by the concept of distortion as

de7ned by (1) or (2). In the next section, we study how the distortion is decreasing
along the quantization process, in both cases (SCL without neighbors, or SOM with a
decreasing number of neighbors).

5. Experimental results: comparative evolution of the distortion

In this part, we study the vector quantization speed of SCL and of SOM, by com-
puting the distortion de7ned in Eq. (2) in the case of real data.
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Fig. 9. Evolution of the distortion as a function of the number of iterations, on the saving data set; 25
quantizers are used (see text for details on the algorithms). The distortion is illustrated after each iteration.

As we mentioned previously, the SCL is supposed to minimize this distortion, while
the SOM (with 7xed or decreasing number of neighbors) is not. However, we can
observe that in any case, the SOM algorithm accelerates the decrease of the distortion,
at least during a large part of the simulation.
We represent the distortion as a function of the number of iterations, for 7ve diHerent

quantization algorithms: SCL and four variants of the SOM algorithm which diHer by
the number of neighbors. For a two-dimensional neighborhood structure, we consider
successively three SOM algorithms with a 7xed number of neighbors (SOM5, SOM9
and SOM25, the suIx being the number of neighbors) and then the classical SOM
algorithm with a decreasing number of neighbors (from 25 to 1, the last part of the
SOM iterations being equivalent to SCL).
We illustrate these simulations on two data sets. The table SAVING contains 7ve

variables measuring economic ratios for 42 countries between 1960 and 1970; the table
TOP500 contains six variables relative to 77 American companies in 1986. 1

Fig. 9 represents the distortion for the SAVING data, with 25 quantizers, square
grid (5×5) for the SOM algorithms and 500 steps of iterations. Fig. 10 represents the
distortion for the data SAVING, with 100 quantizers, square grid (10× 10) for SOM
algorithms and 1000 iterations. Fig. 11 represents the distortion for the data TOP500,
with 100 quantizers, square grid (10× 10) for SOM algorithms and 1000 iterations.
In each simulation, we can see that the SOM algorithm performs as the best quan-

tizer (it leads to a lower minimum of the distortion function). The SCL algorithm

1 The data are available from http://www.dice.ucl.ac.be/mlg/

http://www.dice.ucl.ac.be/mlg/
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quantizers are used (see text for details on the algorithms).
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Fig. 11. Evolution of the distortion as a function of the number of iterations, on the Top500 data set; 100
quantizers are used (see text for details on the algorithms).
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is very slow, and the SOM with non-decreasing number of neighbors is powerful at
the beginning of the iterations, but allows at some iteration the distortion to increase
(or would allow, after a larger number of iterations). In fact, the classical SOM al-
gorithm ending with no neighbor appears to be an excellent VQ algorithm. When the
quality of the result is the ultimate goal (regardless of the computation time), one can
use the SCL algorithm after the SOM one to re7ne the solution (or in other words,
one can increase the number of iterations performed without neighbors in the SOM
procedure). Indeed, even if a classical SOM usually ends without neighbor, the number
of iterations performed without neighbors could be not suIcient to reach an optimal
solution. Performing a suIcient number of iterations both with and (then) without
neighbors is thus important for the quality of the solution.

6. Conclusion

The experiments illustrated in this paper, as well as many other ones performed
on other data sets, indicate that the quality of the SOM algorithm resides not only
in its topology preservation property, but also its vector quantization one. The SOM
algorithm may be recommended compared to other VQ techniques like SCL, in order
to reach a better minimum of the distortion error with a 7xed number of iterations, or
to reach faster a similar value of the distortion.
The better convergence properties cannot be proven theoretically. Nevertheless, we

can make the analogy with simulated annealing techniques: the use of a neighborhood
in the SOM algorithm introduces apparent disorder, making it possible to escape from
a local minimum of the objective function and to increase the slope of convergence.
Ending the VQ procedure with the SCL algorithm may be compared to ending a
simulated annealing technique with a “temperature” parameter equal to zero.
The fact that the SOM method converges faster than classical VQ algorithms is well

known; however, few studies bring systematic evidences supporting this claim. This pa-
per shows quantitatively, through extended simulations, that the speed of convergence is
increased by the use of the neighborhood property in the SOM. On arti7cial databases,
where the optimal VQ solution may be computed analytically, we measured the VQ
speed by the diHerence between the values of the quantizers during the convergence
and their optimal stable solutions. On real databases where the optimal VQ solutions
cannot be computed, we measured the VQ speed by the decrease of the distortion
error with respect to the number of iterations. In both cases, we showed quantitatively
how the use of the SOM algorithm, with 7xed or decreasing number of neighbors,
accelerates the convergence of the VQ learning. This produces clear indications that
SOMs should be preferred to conventional VQ methods, even if topology preservation
is not looked for.
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