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Abstract

Functional data analysis (FDA) is an extension of traditional data analysis to functional

data, for example spectra, temporal series, spatio-temporal images, gesture recognition data,

etc. Functional data are rarely known in practice; usually a regular or irregular sampling is

known. For this reason, some processing is needed in order to benefit from the smooth

character of functional data in the analysis methods. This paper shows how to extend the

radial-basis function networks (RBFN) and multi-layer perceptron (MLP) models to

functional data inputs, in particular when the latter are known through lists of input–output

pairs. Various possibilities for functional processing are discussed, including the projection on

smooth bases, functional principal component analysis, functional centering and reduction,

and the use of differential operators. It is shown how to incorporate these functional
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processing into the RBFN and MLP models. The functional approach is illustrated on a

benchmark of spectrometric data analysis.

r 2004 Elsevier B.V. All rights reserved.
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Missing data
1. Introduction

Many modern measurement devices are able to produce high-resolution data
resulting in high-dimensional input vectors. A promising way to handle this type of
data is to make explicit use of their internal structure. Indeed, high-resolution data
can frequently be identified as discretized functions: this is the case for time series
(in the time domain as well as in the frequency domain), spectrometric data, weather
data (in which we can have both time and location dependencies), etc. Functional
data analysis (FDA, see [20]) is an extension of traditional data analysis methods to
this kind of data. In FDA, each individual is characterized by one or more real-
valued functions, rather than by a vector of Rp: Function estimates are constructed
from high-dimensional observation vectors and data analysis (in a broad sense) is
carried out on those estimates.
As it is not possible to directly manipulate arbitrary functions, a computer-

friendly representation of functional data must be used: this is obtained through a
basis expansion in the functional space, for instance with a B-spline approximation.
This way of proceeding has numerous advantages over a basic multivariate analysis
of high-dimensional data. Indeed the choice of a fixed basis allows to introduce prior
knowledge: for instance a Fourier basis can be used to model periodic functions such
as daily temperature observations in a fixed location. A fixed basis also allows to deal
with irregularly sampled functions and with missing data. A side effect of the
representation is that it can be used to smooth the data either individually or globally
(see [2]). Another interesting point is that most FDA methods can work directly on
the numerical coefficients of the basis expansion, leading to far less computational
burden. An additional advantage of dealing with functions is the possibility of using
functional preprocessing such as derivation, integration, etc.
FDA is based on the fact that the first step performed by many data analysis

methods consists in simple operations on the data: distance, scalar product and
linear combination calculations. Those operations can be defined in a satisfactory
way in arbitrary Hilbert spaces that include functional spaces (such as L2). This
means that many data analysis methods can be extended to work directly with
functional inputs. There are of course some theoretical difficulties induced by the
infinite dimension of the considered spaces. Nevertheless, traditional data analysis
methods have been successfully adapted to functional data, both on theoretical and
practical point of views. We refer to [20] for a comprehensive introduction to those
methods, especially to functional principal component analysis and functional linear
models. For regression and discrimination problems, recent developments of FDA
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include nonlinear models such as multilayer perceptrons [21,22], semi-parametric [14]
and nonparametric models [12,13].
In this paper, we extend the results from [10,23], and introduce two nonlinear

neural models for functional data. They are adaptation of classical neural models,
the radial-basis function network (RBFN) and the multi-layer perceptron (MLP), to
functional inputs. In particular, we show how to implement these functional models
in practical situations, when the functional data are known through a list of
numerical samples (regularly or irregularly sampled input–output pairs). In Section 2
we first show that many data analysis algorithms can be defined on arbitrary Hilbert
spaces, that include the L2 functional space with its elementary operations. We
illustrate this general construction with the proposed models, using distances
in L2 for the RBFN and inner products for the MLP. Section 3 introduces the
general FDA method that uses function representation to actually implement
theoretical models defined in L2: We show that the MLP and RBFN models can be
implemented on preprocessed coordinates of the functional data, providing a way to
easily introduce functional data processing in classical neural software. We also
introduce in this section natural preprocessings that are available for functional data,
such as functional principal component analysis, derivation, etc. In Section 4 we
report simulation results on a real-world benchmark, a spectrometric problem in
which the percentage of fat contained in a meat sample must be predicted based on
its near-infrared spectrum. We show that functional preprocessing greatly improves
the performances of the RBFN and gives very good performances with a simple
MLP. In Section 5, we build a semi-artificial dataset, introducing randomly placed
holes in the spectrum data. This simulates irregular sampling in its simplest form
(missing data). We show that the functional reconstruction allows to maintain
excellent predictions whereas classical data imputation techniques are not able to
reconstruct the missing information.
2. Working directly in functional spaces

2.1. Introduction

In this paper, we focus on regular functions, i.e. on square integrable functions
from V, a compact subset of Rp; to R: We denote L2ðV Þ the vector space of those
functions. A L2ðV Þ space equipped with its natural inner product hf ; gi ¼R

V
f ðxÞgðxÞdx; is a Hilbert vector space. In the present section, we will avoid using

specific aspects of L2ðV Þ: We will rather illustrate how elementary operations
available in a Hilbert space as linear combinations, inner product, norm and distance
calculations are sufficient to implement many data analysis algorithms, at least on a
theoretical point of view.
In this section, H denotes an arbitrary Hilbert space. When u and v are

arbitrary elements of H, hu; vi denotes their inner product, and kuk ¼
ffiffiffiffiffiffiffiffiffiffiffi
hu; ui

p
the

norm of u.
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2.2. Data analysis in a Hilbert space

Even if data analysis algorithms have been defined for traditional multivariate
observations, they seldom use explicitly the finite dimensional character of the input
spaces. The most obvious cases are distance-based algorithms such as the k-means
method.
Indeed, the k-means algorithm clusters input data by alternating between two

phases: an affectation phase and a representation phase. The goal is to obtain
representative clusters; each of them is defined by a prototype that belongs
to the input space. Given the prototypes, the affectation phase puts input
vector x in the cluster defined by the prototype closest to x: obviously we only
need to calculate distances between points in the input space to perform
this affectation operation. The representation phase consists in updating the
prototypes given by the results of the affectation phase. For a given cluster, the
new prototype is defined as the center of gravity of the input vectors associated
to the considered cluster. The new prototype is therefore a linear combination
of input vectors. Hence k-means can be defined for any normed vectorial input
space (an inner product is not even needed); this obviously includes functional
spaces. The k-means method has been adapted to L2 spaces in [1] in which the
consistency of the algorithm is proved (see also [16] for a EM-like version of a
functional clustering algorithm).
More sophisticated clustering methods such as the self-organizing map (SOM,

[17]) are also based on elementary operations (distance and linear combination
calculations). They can therefore be applied to functional input spaces (see [24] for
the SOM applied to functional data).
Regression models can also be constructed when the explanatory variable

belongs to arbitrary normed vector spaces. Let us consider for instance the
linear regression: the goal is to model a random variable Y (the target variable with
values in R) as a linear function of a random vector X (the input variable),
i.e. EðY jX Þ ¼ lðX Þ: If X has values in Rp; an explicit numerical representation
of the linear function can be written such as lðX Þ ¼

Pp
i¼1aiX i; where X i is

the ith coordinate of X. More generally if X has values in an arbitrary normed
vector space M, it is still possible to model Y by EðY jX Þ ¼ lðX Þ by requesting l to
belong to M	; the topological dual of M, i.e. the set of continuous linear
functions from M to R: In the particular case of a Hilbert space H, the
identification of H with its dual H	 is used to obtain a simpler formulation.
More precisely, any continuous linear form l on H can be represented through an
element v 2 H such that lðuÞ ¼ hu; vi: We have therefore EðY jX Þ ¼ hX ; vi for a well
chosen v 2 H:
Of course, the linear model is a very limited regression model. Nonparametric

models are a possible solution to overcome those limitations: they have been
extended to functional data in [12,13]. Semi-parametric models have also been
adapted to functional inputs in [14]. We propose in this paper to build neural
network based nonlinear regression models. In the following sections, we show how
to define RBFNs and MLPs with functional inputs.
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2.3. Radial-basis function networks

RBFN are popular nonlinear models that have several advantages over other
nonlinear regression paradigms. Besides their simplicity, their intuitive formulation
and their local approximation abilities, their most important advantage is probably
the ability of various learning procedures to avoid the local minima issue, for
example when the parameters of the model are the solution of a linear problem.
The first operation performed by RBFN models on the input data is based on the

notion of distances. The following of this section shows how this notion can be
inserted in a functional data context and more generally in any metric space such as a
Hilbert space.
The output of a RBF network is expressed by

y ¼
Xp

i¼1

aijiðdiðx; ciÞÞ; (1)

where x is the input of the network, y its scalar output, jið�Þ are radial-basis
functions from R to R; ci are centers chosen in the input data space of x, dið�; �Þ are
associated distances and ai are weighting coefficients. We see that the predicted
output is expressed as a weighted sum of basis functions with radial shape (each basis
function has a radial symmetry around a center). This property is very general; any
distance measure between the input x and the centers ci could be used. Most
frequently the RBF are Gaussian jiðrÞ ¼ expð�r2Þ:
Eq. (1) easily generalizes to any metric space by replacing all distances di by the

distance used to define the space. In the particular case of a functional space,
distance diðx; ciÞ between vectors is simply replaced by a distance diðgð�Þ; cið�ÞÞ

between the functional input gð�Þ and the functional centers cið�Þ:
Some RBF (e.g. Gaussian functions) can define the positive definite kernel of a

reproducing kernel Hilbert space (RKHS) kðx; x0Þ ¼ jðdðx;x0ÞÞ: Regularization
networks [15] and support vector machines (SVM) result from a learning theory
within this RKHS context [11,31]. Therefore the following discussion straightfor-
wardly applies to these models too.
RBF networks have the universal approximation property [19]. In practice, when a

finite number of observed data is available, the way the distance is defined plays a
crucial role on the generalization performances of the network. Dealing with
functional data, the kind of distance to be used must be specified. For example,
considering functions from L2ðV Þ; the Euclidean distance in this space could be
chosen:

diðgð�Þ; cið�ÞÞ ¼

Z
V

ðgðxÞ � ciðxÞÞ
2 dx

� �1=2
: (2)

While this choice might reveal adequate in some situations, the Euclidean distance is
in fact quite restrictive. In the vectorial case, one could use a weighted distance (for
example the Mahalanobis one) instead of the Euclidean distance; generalizing to
functional spaces, a weighted version of the Euclidean distance could be used to
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characterize the measure of locality around each center:

diðgð�Þ; cið�ÞÞ ¼

Z
V

Z
V

ðgðx0Þ � ciðx
0ÞÞwiðx

0;xÞðgðxÞ � ciðxÞÞdxdx0

� �1=2
; (3)

where wiðx
0;xÞ is a positive definite bivariate function over V � V : While this last

definition is very general, there is unfortunately no simple way to choose the
weighting function wiðx

0; xÞ: It seems reasonable to look for a weighting function that
shows approximately the same complexity as the input data (the complexity of a
function being often measured through its second derivative). Using a smooth
weighting function leads to the so-called functional regularization. In other words,
working with functional data necessitates a functional regularization of the
parameters defining the distance measure.
Another possibility resulting from the use of functional data is that differential

operators can be applied. This could reveal interesting for example when the shape
of the functional inputs is known to be more important than their absolute levels
(or means); see Section 4.3 for an application example. In the framework of RBF
networks, differential operators can also be included in the distance function, which
becomes a semi-metric:

diðgð�Þ; cið�ÞÞ ¼

Z
V

ðDgðxÞ � ciðxÞÞ
2 dx

� �1=2
; (4)

where Dð�Þ is a differential operator (for example the first or second derivative, as
used in Sections 4 and 5).

2.4. Multi-layer perceptrons

A multilayer perceptron (MLP) consists in neurons that perform very simple
calculations. Given an input x 2 Rp; the output of a neuron is

T b0 þ
Xp

i¼1

bixi

 !
; (5)

where xi is the ith coordinate of x, T is a nonlinear activation function from R to R;
and b0; . . . ;bp are numerical parameters (the weights of the neuron).
As for the linear model considered previously, this calculation can be generalized

to any normed vector space M (see [26–28]). If l is a linear form in M	; it can be used
to define a neuron with an input in M and whose output is given by Tðb0 þ lðxÞÞ for
x 2 M : The linear form replaces parameters b1; . . . ;bp: Obviously, the case M ¼ Rp

corresponds exactly to the traditional numerical neuron.
In a Hilbert space H, linear forms are represented by inner products and define a

generalized neuron with an input in H: given an input vector u, the neuron output is
Tðb0 þ hu; viÞ: The ‘‘connection weights’’ of the neuron are the numerical value b0
and the vector v 2 H: In the particular case of H ¼ L2ðV Þ; given an input function g,
the neuron output is Tðb0 þ

R
V

gðxÞwðxÞdxÞ: The neuron is called a functional
neuron and w is its weight function.
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As the output of a generalized neuron is a numerical value, we need such neurons
only in the first layer of the MLP. Indeed, the second layer uses only outputs from
the first layer which are real numbers and therefore consists in numerical neurons.
We have presented in [25] and [22] some theoretical properties of MLPs

constructed by combining a layer of generalized neurons with inputs in L2ðV Þ and
at least one layer of numerical neurons. We use specific properties of L2ðV Þ that
allow to restrict the set of ‘‘connection weights’’: rather than working with arbitrary
weight functions in L2ðV Þ; we use weight functions that can be exactly calculated by
a traditional MLP or by any other sufficiently powerful function approximation
method. An important result is that MLPs with functional inputs are universal
approximators as long as they use sufficiently regular activation functions, exactly as
numerical MLPs: given a continuous function G from K a compact subset of L2ðV Þ

to R and �40 an arbitrary positive real number, there is an one-hidden layer
perceptron that calculates a function H such that jGðgÞ � HðgÞjo� for all g 2 K : This
MLP uses functional neurons in its first (hidden) layer and one numerical
neuron (with the identity activation function) in its output layer. We have also
shown in [6] that even if the MLP is implemented through a function representation
(as it will be described in the following section), the universal approximation
property is still valid.
3. Function representation

3.1. Functional data in practice

The previous section shows that it is possible to define many data analysis
algorithms for arbitrary Hilbert spaces. However, the proposed solutions are purely
theoretical; it is in general impossible to manipulate arbitrary functions from L2ðV Þ

on a computer. Moreover, functional data coming from sensors, measurements or
collected in other ways do not consist in mathematical functions. On the contrary, as
stated in the introduction, observations are discretized functions: each of them is a
list of input/output pairs. These lists may include missing data or more generally
show irregular sampling: the sets of inputs for each observation do not necessarily
coincide.
More precisely, let us assume that we observe n functions such that function i is

given by the ðxi
j ; y

i
jÞ1pjpmi list of mi pairs, with xi

j 2 V and yi
j 2 R: FDA main

assumption is that there is a regular function gi (in L2ðV Þ) such that yi
j ¼ giðxi

jÞ þ �i
j ;

where �i
j is an observation noise. In this model, both the number of observations mi

and the ðxi
jÞ1pjpmi can depend on i.

The gi functions are not known. This prohibits the straightforward application of
the models developed in the previous section. Even with known functions,
calculating elementary operations, such as integrals, is difficult. Nevertheless the
rationale of FDA is to implement theoretical models on those functions. A possible
solution, quite common in FDA methods, is to construct an approximation of the
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ðgiÞ1pipn and then to work on these approximations. One way to build them is to
project the original gi on a known subspace.

3.2. Representation on a subspace

FDA introduces some specific needs that have to be taken into account to choose
a representation subspace. A first need is that the representation must be computed
for every input list; this computation should therefore be as fast as possible. A
second constraint is that the operations performed on the reconstructed functions
must approximate as exactly as possible the corresponding operations on the original
gi functions.

3.2.1. An approximate projection

A simple and efficient solution is provided by a projection approach which makes
use of the L2ðV Þ Hilbert structure. A set of q linearly independent functions from
L2ðV Þ; ðfkÞ1pkpq is chosen. Rather than working on L2ðV Þ; we restrict ourselves to
A ¼ spanðf1; . . . ;fqÞ and use ðfkÞ1pkpq as a basis for this subspace. Each function
u 2 A is represented by its akðuÞ coordinates, such that u ¼

Pq
k¼1akðuÞfk:

Given a list ðxi
j ; y

i
jÞ1pjpmi ; the underlying function gi is then approximated by a

function ~gi inA: The best approximation in the functional sense would be to choose
~gi as the orthogonal projection of gi on A: Obviously, such projection cannot be
calculated exactly as we do not know gi: Therefore, ~gi is defined by its numerical
coefficients ðakð ~g

iÞÞ1pkpq chosen to minimize:

Xmi

j¼1

yi
j �
Xq

k¼1

akð ~g
iÞfkðx

i
jÞ

 !2

: (6)

This minimization is a standard quadratic optimization problem that can be
conducted very efficiently with cost at most Oðmiq2Þ (see [20, Chapter 3] for
instance). Moreover, some specific functional bases such as B-splines lead to even
faster algorithms with cost OðmiqÞ in some situations.
In the next subsection, it is shown that this representation approach also allows to

transform the functional operations on ~gi into calculations on the akð ~g
iÞ coordinates.

3.2.2. Working with the coefficients

As A is a finite-dimensional space, it is possible to work with the coordinates
akð ~g

iÞ instead of working directly on the ~gi functions. Nevertheless, it is shown in the
following that additional precautions must be taken if the basis functions ðfkÞ1pkpq

are not orthonormal.
Once each functional input data is transformed into a vector in Rq that

corresponds to its coordinates inA; traditional data analysis algorithms can be used
directly on those vectors. However, while this simple approach can give good results
in some situations, it introduces an unwanted distortion in the input function
representation.
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The case of linear operations does not introduce any problem. Indeed a linear
combination of functions may be expressed as a linear combination of their
coordinate vectors: if u and v are functions inA and l and m are real numbers, then
akðlu þ mvÞ ¼ lakðuÞ þ makðvÞ for all k.
On the contrary, inner products, and therefore distances, are a source of problems.

Indeed the inner product between two functions inA can also be defined in terms of
their coordinate vectors. The inner product between u and v in A is given by

hu; vi ¼
Xq

k¼1

Xq

l¼1

akðuÞalðvÞhfk;fli:

If we denote aðuÞ ¼ ða1ðuÞ; . . . ; aqðuÞÞ
T; where T is the transposition operator, the

inner product becomes:

hu; vi ¼ aðuÞTFaðvÞ;

where F is the matrix defined by Fkl ¼ hfk;fli and independent from u and v.
This last formula shows that a distortion corresponding to F results from the

transition between the inner product hu; vi in A and the canonical inner product in
Rq: The norm of the difference between functions of course shows the same behavior:
in general, kaðuÞ � aðvÞk2 is different from ku � vk2; as the latter is given by ðaðuÞ �
aðvÞÞTFðaðuÞ � aðvÞÞ; while the former is simply ðaðuÞ � aðvÞÞTðaðuÞ � aðvÞÞ: If the set
of functions ðfkÞ1pkpq is not orthonormal, F is different from the identity matrix
and the inner product that should be used in Rq is not the canonical one.
Unfortunately, some very useful sets of functions, such the B-splines (see Section
3.3.1), are not orthonormal.
A simple solution to this problem is to use the Choleski decomposition of F; i.e. a

square matrix U such that F ¼ UTU : The coordinate vectors can then be scaled by
matrix U to give bðuÞ ¼ UaðuÞ: Obviously, we have:

bðlu þ mvÞ ¼ lbðuÞ þ mbðvÞ

and

bðuÞTbðvÞ ¼
Xq

k¼1

bkðuÞbkðvÞ ¼ hu; vi:

This means that performing elementary operations in Rq (with its canonical inner
product) on the coordinates bðuÞ is exactly equivalent to performing the same
operations in the inner product space A:
Working with the coordinate vectors bð ~giÞ is thus strictly equivalent to working

directly on the ~gi functions, and equivalent to working with gi under the
approximation resulting from Eq. (6). A nice consequence of this property is that
functional models can be implemented as a preprocessing phase before any classical
data analysis software: the preprocessing consists in choosing the projection space
(see the following section) and in calculating the coordinate vectors bð ~giÞ: Then,
those vectors can be submitted to a RBFN or a MLP exactly as classical multivariate
data. Optionally, some additional functional preprocessing can be implemented
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before the final transformation (see Section 3.5). In general, the calculation of F does
not introduce any additional problems as the basis functions are under the
practitioner control. With an orthonormal basis such as Fourier series, F is the
identity matrix. For other bases, quadrature methods or Monte-Carlo methods can
be used to calculate an arbitrarily accurate approximation of F:
3.3. Choosing the projection space

As the underlying functions are reconstructed according to their approximation in
the projection space, the choice of this space has an important impact on the data
analysis. The projection space must for instance provide a good approximation of
arbitrary functions in L2ðV Þ as there is no a priori reason to restrict the functions to
a subspace of L2ðV Þ:
3.3.1. Basis

Good candidate bases are provided by Hilbert bases of L2ðV Þ: Given such a
basis ðfkÞ1pk; truncation allows to define finite-dimensional subspaces: Aq ¼

spanðf1; . . . ;fqÞ: An interesting theoretical property of Hilbert bases is that
functions from L2ðV Þ can be approximated more and more accurately by increasing
the number q of basis functions. In practice, when the Hilbert basis is fixed, a leave-
one-out technique allows to choose q directly from the data (see Section 3.3.2). An
example of Hilbert basis is given by the Fourier series for L2ð½a; b�Þ; where ½a; b� is an
interval in R:
Another interesting solution is provided by B-splines. Let us assume that V ¼

½a; b� and let p ¼ ðt0; t1; . . . ; tlþ1Þ be a sequence such that t0 ¼ a; tlþ1 ¼ b and tkotkþ1

for all k. With n a positive integer, we denote Sn
p the subset of L2ð½a; b�Þ defined as

follows: a function f 2 L2ð½a; b�Þ belongs to Sn
p if f is Cn�2 on ½a; b� and if f is a

polynomial of degree n� 1 on each sub-interval ½tk�1; tk� for 1pkpl þ 1: Sn
p is the

set of splines of order n on p: Elements of p are the knots of the splines. Splines have
interesting properties (see for example [9]). For instance, they can approximate
arbitrarily well functions in L2ð½a; b�Þ; provided enough knots are used (i.e. l is large
enough). Moreover, Sn

p has a basis which is made of l þ n functions called the B-
splines of order n on p and denoted Bn

k;p for 1pkpl þ n: B-splines are easy to
calculate, have local support and have very good numerical properties: finding
coordinates of projected functions with Eq. (6) is both fast and accurate.
The choice of B-splines as basis functions leads to A ¼ spanðBn

1;p; . . . ;B
n
lþv;pÞ ¼

Sn
p: As for truncated Hilbert bases, l can be automatically chosen by a leave-one-out

method. The choice of n is more complex as it corresponds to a regularity
assumption. The most common choice is n ¼ 4; which corresponds to C2 functions.
In some situations, it is interesting to work with derivatives of the original functional
data, in which case higher values of n will be more adapted. The last point to address
is the choice of p: While expert prior knowledge can justify irregular positioning of
the knots (for instance more knots in rough parts of the studied functions), in general
regular knot positions are used, i.e. tk ¼ a þ kðb � aÞ=ðl þ 1Þ:
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Of course, this section only presented some of the possible choices for the basis.
We refer the interested reader to [20], especially to chapters 3, 4 and 15, for a more
detailed discussion on function representations.

3.3.2. Leave-one-out

While expert knowledge or practical considerations can help to choose the basis
among several possibilities such as B-splines or truncated Hilbert bases, the ideal
projection space cannot in general be fixed a priori. A simple solution is to rely on
leave-one-out to compare different function approximation models.
Let us consider the situation in which we have to compare two candidate

projection sub-spaces, A ¼ spanðf1; . . . ;fqÞ and B ¼ spanðc1; . . . ;clÞ: Let us
consider for now only one function g given by the list ðxj ; yjÞ1pjpm: We denote

~gðxj ;AÞ ¼
Xq

k¼1

akfkðxjÞ;

where ak is the kth coordinate of the optimal projection of g in A determined by
minimizing Eq. (6). Similarly, we denote

~gðxj ;BÞ ¼
Xl

k¼1

gkckðxjÞ;

where gk is the kth coordinate of the optimal projection of g in B determined by
minimizing Eq. (6) adapted to the ðckÞ1pkpl basis. Comparing the reconstruction
errors given by Eq. (6) is not relevant, as it leads to overfitting. Instead, a leave-one-
out estimate of the reconstruction errors of both models is preferred. More precisely,
the að�pÞ

k are defined as the optimal coefficients found when one observation is
removed from the list that defines the considered functional data. The að�pÞ

k thus
minimize

Xm

j¼1;jap

yj �
Xq

k¼1

að�pÞ
k fkðxjÞ

 !2

:

The bð�pÞ
k coefficients are defined in a similar way on the B subspace, using the ck

basis instead of the fk one. The leave-one-out score associated toA is then given by

LOOðg;AÞ ¼
1

m

Xm

i¼1

yi �
Xq

k¼1

að�iÞ
k fkðxiÞ

 !2

and similarly for B:

LOOðg;BÞ ¼
1

m

Xm

i¼1

yi �
Xl

k¼1

gð�iÞ
k ckðxiÞ

 !2

:

In our functional data context, we do not have only one function g given by the list
ðxj ; yjÞ1pjpm; but a set of gi functions known through ðxi

j ; y
i
jÞ1pjpmi : In that case, in

order to choose between the A and B projection subspaces, the total leave-one-out
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scores that are obtained by summing the leave-one-out scores obtained on each
function gi must be compared.
In general, leave-one-out is a very computationally intensive operation.

Fortunately, this is not the case with linear representations, as the expansions on
A and B chosen in the previous section. Indeed, as the optimization problem of Eq.
(6) is quadratic, there is a matrix SðAÞ (resp. SðBÞ) such that ~gðx;AÞ ¼ SðAÞy (resp.
~gðx;BÞ ¼ SðBÞy), where ~gðx;AÞ ¼ ð ~gðx1;AÞ; . . . ; ~gðxm;AÞÞ

T and y ¼ ðy1; . . . ; ymÞ
T:

Then, we have (see [20, Chapter 10] for instance):

LOOðg;AÞ ¼
1

m

Xm

i¼1

yi � ~gðxi;AÞ

1� SðAÞii

� �2
:

A similar equation is satisfied by LOOðg;BÞ: In general, the calculation of S is much
more efficient than the direct calculation of the leave-one-out score.

3.4. Functional principal component analysis

Even if the representation on a subspace allows to take into account irregular
sampling and very high original input dimensions, it happens frequently in practice
that a rather high number of basis functions has to be used to keep a good accuracy
for the input function reconstructions. Unfortunately, many data analysis methods
suffer from the curse of dimensionality and are therefore not really adapted to a high
number of input features. In traditional numerical settings, a simple solution consists
in working on a few principal components.
Principal component analysis (PCA) was one of the first data analysis methods

adapted to functional data (see [3,7,8]). On a theoretical point of view functional
PCA consists, as traditional PCA, in finding an optimal subspace representation.
Given n functions g1; . . . ; gn in L2ðV Þ; their q principal functions are defined as q

orthonormal functions x1; . . . ; xq such that the following distortion is minimized:

Xn

i¼1

gi �
Xq

k¼1

hgi; xkixk













2

: (7)

As explained previously, an exact implementation of such a minimization is
not possible: the functions gi are not known and exact calculation of inner
products and other elementary operations is difficult. A possible solution is to
apply the general method exposed in Section 3.2, i.e. to work in a subspace A: In
this context, as demonstrated in [20, Chapter 6], it appears that functional PCA
can be implemented by performing a classical PCA on the transformed
coordinates (the bð ~giÞ ¼ Uað ~giÞ vectors in Rq; see Section 3.2.2) of the studied
functions.
This method produces principal vectors in Rq that can be transformed back into

principal functions in A: For instance if t is such a vector and U is the Choleski
factor of F defined in Section 3.2.2, then U�1t gives the coordinates of the
corresponding principal function x on the chosen basis for A: Coordinates of the
original functions on the principal function basis are obtained through inner
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products in A: In practice they are obtained by canonical scalar products in Rq

between bð ~giÞ and t: Note that unlike conventional PCA, functional PCA usually
works on centered, but not reduced to unit variance, data, because functional data
must be seen as a unique entity rather than a set of unrelated coordinates with
individual scales.
3.5. Functional transformation

A very interesting aspect of FDA is the possibility to implement a functional
transformation before the data analysis phase. We will not cover in this paper
registering techniques that allow to get rid of time shifting and other problems that
can be interpreted as noise or distortion in the measurement process, i.e. problems
related to the xi

j : We refer the reader to [20, Chapter 5] for an introduction on this
complex topic.
We focus here on simpler functional transformations that provide different views

of the same data. For instance, it is quite common in FDA to focus on the shape of
the functions rather than on the actual values. A simple way to do this is to center
and scale functions on a functional point of view, that is function by function. More
precisely, we center g by replacing it by gc defined as

gcðxÞ ¼ gðxÞ �
1

jV j

Z
V

gðxÞdx:

In this equation, jV j is the volume of the compact V (i.e. jV j ¼
R

V
dx). The centered

function is then scaled into gs defined as:

gsðxÞ ¼
gcðxÞ
1
jV j

kgck
:

An interesting aspect of those transformations is that they are based on elementary
operations in the considered functional space. Therefore, they can be implemented
using the coefficients that represent the input functions on the chosen projection
space, as explained in Section 3.2.2.
Another way to focus on shapes rather than on values is to calculate derivatives of

the considered functions. To do so, we have to choose a projection space with a basis
formed by derivable functions. Then, if ~gi ¼

Pq
k¼1akð ~g

iÞfk; obviously ~giðsÞ ¼Pq
k¼1akð ~g

iÞfðsÞ
k ; where f ðsÞ corresponds to the sth derivative of f. It is therefore

possible to work in AðsÞ ¼ spanðfðsÞ
1 ; . . . ;fðsÞ

q Þ exactly as we did in A (note that
ðfðsÞ

1 ; . . . ;fðsÞ
q Þ might not be a free system anymore).

The special case of B-spline bases is very interesting. Indeed, it is clear that the
derivative of a spline from Sn

p is a spline of Sn�1
p ; therefore it uses the same knots.

Moreover, the coordinates of the derivative spline on the order n� 1 B-spline basis
can be calculated exactly and very easily with a finite-difference equation, using the
coordinates of the original spline on the order n B-spline basis (see [9]). This allows to
work with derivatives exactly as with the original functions.
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4. Simulation results

The functional approach to RBFNs and MLPs is illustrated on spectrometric data
coming from the food industry. This benchmark has been chosen here for illustration
purposes: it permits to show which kind of functional (pre)processing is expected to
give results similar to those on the original data, and which ones could lead to
improved results. The models (RBFN and MLP) are optimized as detailed below.
Nevertheless, their learning algorithm is chosen a priori, and no attempt is made to
improve the results by comparing to other learning strategies; only comparisons
between the possible ways to handle the functional data are discussed here.
4.1. Tecator spectra benchmark

The Tecator data set [29] consists of 215 near-infrared absorbance spectra of meat
samples, recorded on a Tecator Infratec Food and Feed Analyzer. Each observation
consists in a 100-channel absorbance spectrum in the 850–1050 nm wavelength
range. Each spectrum in the database is associated to a content description of the
meat sample, obtained by analytic chemistry; the percentage of fat, water and
protein are reported. The goal of the benchmark here is to predict the fat percentage
from the spectra; this percentage is in the ½0:9; 49:1� range.
From the 215 100-dimensional spectra, 43 are kept aside as a test set; the test set

will not be used neither for model learning, nor for cross-validation (selection of the
number of splines, of the number of PCA components, of the number of parameters
in the models, etc.). The 172 remaining samples are used for model learning and
validation, as detailed below.
It should be mentioned that the spectra are finely sampled, leading to very smooth

curves; some of them are illustrated in Fig. 1(a). It is therefore not expected that a
functional preprocessing of the rough data, such as a spline decomposition, will lead
to improved results, except if some a priori information is added, or if irregular
sampling is artificially created by omitting data. This last point will be detailed in
Section 5.
4.2. Preprocessing the Tecator spectra

In addition to working with the original spectra (100-dimensional measured
vectors), three types of preprocessing are considered in the experiments.
First of all, a standard principal component analysis (PCA) is performed.

Unsurprisingly because of the smooth character of spectra, most of the information
in terms of percentage of variance is contained in a few PCA components; this is
illustrated in Fig. 2 that shows the percentage of variance of the original data
associated to each eigenvalue. As usually, data have been centered and reduced
before applying the PCA; this induces a scaling that may have influence on the inner
products and distance computations. The PCA is a nonfunctional preprocessing, as
the continuous structure of spectra is not taken into account. It can be seen easily



ARTICLE IN PRESS

850 900 950 1000 1050
2.5

3

3.5

4

A
bs

or
ba

nc
e

[nm] (a)
850 900 950 1000 1050

2.5

3

3.5

4

A
bs

or
ba

nc
e

[nm] (b)

850 900 950 1000 1050
-0.02

-0.01

0

0.01

0.02

0.03

1s
t d

er
iv

. o
f A

bs
.

[nm] (c)
850 900 950 1000 1050

0

1

-2

-3

-1

2

3
x 10

2n
d 

de
riv

. o
f A

bs
.

[nm] (d)

-3

-2

-1

850 900 950 1000 1050

0

1

2

ce
nt

er
ed

,  
no

rm
al

iz
ed

 A
bs

.

[nm] (e)

Fig. 1. Five spectra from the Tecator benchmark: (a) original samples; (b) fourth-order spline

approximation; (c) derivative of fifth-order spline approximation; (d) second derivative of sixth-order

spline approximation; and (e) fourth-order spline approximation after functional centering and reduction.

F. Rossi et al. / Neurocomputing 64 (2005) 183–210 197
that the first principal component almost exactly represents the spectrum means, as
illustrated by Fig. 3.
To take into account the smooth character of spectra, a functional preprocessing is

performed using bases of splines. Splines of degrees 3, 4 and 5 (respectively, order 4,
5 and 6) are used; the two last ones are aimed to be derived (respectively, once and
twice) in order to work with derivatives of spectra rather than with the original ones.
The numbers of basis functions selected by the leave-one-out procedure detailed in

Section 3.3.2 are, respectively, 48, 43 and 32 for the fourth-, fifth- and sixth-order
splines. Figs. 1(b)–(d), respectively, show the spectra approximated by fourth-order
spline, the derivative of the fifth-order spline approximation, and the second
derivative of the sixth-order spline approximation.
A last preprocessing takes into account a priori information on the spectra. As

spectrometry experts know that the shape of the spectra is by far more important
than their mean value (for the fat prediction problem), centering and reducing them
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(to unit variance) avoids that their average could influence the models. Fig. 1(e)
shows the results of this functional centering and reduction (performed on the
fourth-order spline approximation).

4.3. Using the RBFN model

A number of experiments have been conducted on the Tecator benchmark, with
the RBFN model described in Section 2.3. The model parameters are learned
through an OLS procedure, as detailed in [5]. In short, the OLS procedure is a
forward selection algorithm that incrementally chooses centers (and associated
Gaussian functions) among a set of candidates; here the candidates are the data in
the learning set. The error criterion used for the selection is the sum of the squared
errors made by the model and a regularization term [18]; the contribution of each
candidate to the error criterion is measured, and the one that minimizes this
contribution is chosen. The incremental procedure is performed up to a high number
of selected Gaussian functions (100 in the following experiments). Next, a four-fold
cross-validation procedure is used on the learning set (172 spectra) to select the
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optimal number of Gaussian functions, according to the sum-of-squares error
criterion.
Ten experiments are performed:
(1)
 The 100-dimensional rough spectra are used as inputs to the RBFN.

(2)
 The spectra are preprocessed by PCA, and the first 20 PCA components are

kept (100% of the original variance is preserved, as shown in Fig. 2).

(3)
 The same PCA preprocessing is used, but now the number of PCA components

that are kept is selected according to a four-fold cross-validation procedure on
the learning set; this optimization leads to a choice of five PCA components.
(4)
 The PCA components are used, but they are whitened (centered and scaled to
unit variance); unlike the functional centering and reduction detailed in section
3.5, the whitening here is a conventional one, i.e. it is applied component by
component. The purpose of this whitening is to allow each component to have
the same importance. Without this whitening, the first component would have
much more importance than the other ones, while its influence on the fat
prediction problem is known to be low. The number of PCA components that
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are kept is selected by four-fold cross-validation as above: six components are
selected.
(5)
 The 48 coefficients of the 48 fourth-order splines are used as inputs to the
RBFN.
(6)
 A functional PCA (see Section 3.4) is performed on the fourth-order splines
with 48 coefficients; 20 coefficients are kept.
(7)
 A functional PCA is performed on the fourth-order splines with 48 coefficients,
and the PCA coefficients are whitened; A four-fold cross-validation selects six
components.
(8)
 A functional centering and reduction is applied to the fourth-order spline
approximation; the 48 resulting coefficients are used as inputs to the RBFN.
(9)
 The fifth-order spline is derived, and the 42 resulting coefficients are used as
inputs to the RBFN.
(10)
 The sixth-order spline is derived twice, and the 30 resulting coefficients are used
as inputs to the RBFN.
Table 1 shows the results of these ten experiments. All results are given in terms of
root mean square error (RMSE) on the test set.
The following conclusions can be drawn.
�
 The results of Experiments 1 and 5 are roughly the same. Indeed the
decomposition into splines does not bring any improvement, as there is a
nearly perfect correspondence between the original spectra and their spline
1

E on the test set for the RFBN experiments (see text for details)

iment # Experiment Result on test set

100-dimensional original data 4.97

PCA, no whitening, 20 components 4.99

PCA, no whitening, a four-fold cross-validation

selects the five first components

4.85

PCA, whitening, a four-fold cross-validation selects

the five first components

1.94

Fourth-order B-splines, 48 coefficients, no

whitening

4.59

Fourth-order B-splines, 48 coefficients, functional

PCA, no whitening, 20 components

4.59

Fourth-order B-splines, 48 coefficients, functional

PCA, whitening, a four-fold cross-validation selects

the six first components

1.83

Fourth-order B-splines after functional centering

and reduction, 48 coefficients, no whitening

1.64

First derivative of fifth-order B-splines, 42

coefficients, no whitening

0.90

Second derivative of sixth-order B-splines, 30

coefficients, no whitening

0.81



ARTICLE IN PRESS

F. Rossi et al. / Neurocomputing 64 (2005) 183–210 201
approximation. The use of the scaling after Cholesky decomposition of the F
matrix (see Section 3.2) guarantees that the results obtained after spline
preprocessing will be similar to those on the original spectra, as the latter are
very smooth (therefore almost perfectly approximated by splines).
�
 The nonfunctional PCA reduction (Experiments 2 and 3) does not bring any
improvement to the results; the reduction to unit variance included in the PCA
does not seem to be advantageous here; actually the variances of the original data
components are more or less identical in the data set, therefore the reduction has
little effect.
�
 The centering and reduction of the PCA coefficients (Experiment 4) improves
the results; indeed the influence of the first PCA component is strongly decreased
in this process. The first PCA component is proportional to the spectrum averages
(see Fig. 3), which are known to be of little influence in the fat prediction problem.
�
 Similarly to the fact that Experiments 1 and 5 give approximately the same results
(the decomposition into splines does not bring much additional smoothness as the
original spectra are already very smooth), Experiments 2 and 6 on one side, and
Experiments 4 and 7 on the other side, lead to similar results. In Experiments 2
and 4 an initial reduction to unit variance is performed and not in Experiments 6
and 7, but as mentioned above this reduction does not bring any improvement.
�
 The functional centering and reduction (Experiment 8) also improves the
predictions compared to the original ones. The improvement also results from
the removal of the spectrum averages, and is comparable to the centering and
reduction of the PCA components.
�
 As expected, taking the first and second derivatives of the spectra (more precisely,
taking the first and second derivative of their fifth- and sixth-order spline
approximations, respectively) focuses on the differences in the spectra shapes,
therefore allowing a better prediction of fat content.

4.4. Using the functional multi-layer perceptron model

The original contributor of the Tecator data set used traditional MLP together
with PCA to build a regression model [4,30]. In [4] Borggaard and Thodberg use a
standard MLP on the 10 first principal components. They use early stopping to
avoid overfitting and report a RMSE of 0.65. In [30] Thodberg reports better results
based on a more complex training algorithm and model: he uses a weight decay
regularization term and chooses meta-parameters through a Bayesian approach.
More precisely, he uses an one hidden layer perceptron with additional direct
connections from the inputs to the output node (introducing this way a linear term)
and three separate regularization terms, one for each layer and one for the weights of
the linear term. The values of those weight decays as well as the number of hidden
neurons are determined by a Bayesian estimation of the generalization error. Using
the 10 first principal components Thodberg obtains a RMSE of 0.55. In order to
improve the results, he combines the 10 best MLPs obtained out of 40 trained MLPs
in an ensemble model that reaches a RMSE of 0.52. Finally, he embeds into the
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Bayesian meta-parameters selection the determination of the optimal number of
principal components. He selects this way 12 principal components for a RMSE of
0.42. Using a smoothed version of this input selection (based on two other weight
decay parameters) he even managed to reach a RMSE of 0.36 with 13 principal
components.
The goal of the proposed simulations is not to reproduce Thodberg’s results but

simply to illustrate the positive effects of the functional methodology. Therefore, a
simplified neural model has been used in order to focus on the preprocessing. The
chosen model is a single classical one hidden layer perceptron with no direct
connection, together with a single regularization term (which is not used for bias
terms). Meta-parameters (the weight decay, the number of hidden neurons, etc.) are
chosen through the same four-fold cross-validation procedure (as with the RBFN
models). No ensemble model or smooth variable selection is used. Training itself is
done by a second-order gradient descent method starting from 60 different initial
random weight vectors (for each experiment). The best MLP obtained from those
random weight is kept according to the sum-of-squares error criterion (on the
training set) combined with the regularization term. The number of hidden neurons
varies from 1 to 6. In all experiments, the best four-fold cross-validation was
obtained with two hidden units.
Five experiments were conducted:
(1)
 The spectra are preprocessed by PCA and the number of PCA components is
selected by the four-fold cross-validation procedure on the learning set. This
experiment plays the role of the reference one as we do not use the sophisticated
method of Thodberg.
(2)
 The spectra are converted into their fourth-order B-splines representation, a
functional PCA is conducted and the number of components to retain is again
selected by the four-fold cross-validation procedure.
(3)
 We do the same as in the previous experiment but we apply a functional
centering and reduction before the functional PCA.
(4)
 The fifth-order spline is derived; a functional PCA is conducted on the resulting
functions and the number of components to retain is again selected by the four-
fold cross-validation procedure.
(5)
 The sixth-order spline is derived twice; functional PCA is conducted on the
resulting functions and the number of components to retain is again selected by
the four-fold cross-validation procedure.
An important point is that PCA coordinates are always whitened before being used
by the MLP. Indeed as the explained variance is very much concentrated in the first
coordinate, the variation range is quite different from the different inputs of the
MLP. This means that the corresponding weights should be very different: this is not
compatible with the weight decay regularization as large weights (corresponding to
large range) are more heavily penalized than small weights.
Another difference with the RBFN experiments is that a PCA (functional or

classical) is always done before submitting the data to the MLP. Our goal was to
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avoid huge training times as well as high dimensionality related problems induced by
the size of the data. The experiments have been limited this way to at most 18
principal components to use a reasonable input size for the MLP.
Table 2 summarizes the results of those five experiments. All results are given in

terms of RMSE on the test set.
These results justify the following comments.
�

Ta

RM

Ex

1

2

3

4

5

The reference experiment (no. 1) shows that the chosen experimental setting is
comparable to the one used by Thodberg. Indeed, the obtained MLP performs
slightly better than the one selected by Thodberg (0.49 versus 0.55) probably
because we choose automatically the appropriate number of principal compo-
nents. On the other hand, our simpler setting cannot reach the best performances
reported in [30] probably because the regularization method is less flexible than the
one used by Thodberg.
�
 The best functional preprocessing allows to improve slightly the test performances
(from 0.49 to 0.44, that is about 10%) in a rather simple way. Moreover, a higher-
level four-fold cross-validation in which the method itself is automatically chosen
in addition to the number of hidden neurons, of principal components, etc.,
chooses the model produced by Experiment no. 3, i.e. the functional preprocessing
that leads to the best test performances.
�
 MLP performances are better than RBFN ones, but the price to pay in terms of
calculation time is huge. A full experiment with MLPs takes about 200 times more
computational time than a similar experiment with a RBFN network. We face
here one of the classical tradeoffs between model design time and model accuracy.
ble 2

SE on the test set for the MLP experiments

periment # Experiment Result on test set

PCA, a four-fold cross-validation selects the 12 first

components, whitening

0.49

Fourth-order B-splines, 48 coefficients, functional

PCA, a four-fold cross-validation selects the 12 first

components, whitening

0.49

Fourth-order B-splines, 48 coefficients, functional

PCA on centered and reduced functions, a four-fold

cross-validation selects the 11 first components,

whitening

0.44

First derivative of fifth-order B-splines, 42

coefficients, functional PCA, a four-fold cross-

validation selects the 15 first components,

whitening

0.50

Second derivative of sixth-order B-splines, 30

coefficients, functional PCA, a four-fold cross-

validation selects the 13 first components,

whitening

0.61
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As the functional approach introduces additional possibilities such as functional
preprocessing (derivative, centering, etc.), it makes the training problem even
more important. Exploring all the available functional preprocessing solutions
can become nearly impossible for MLP models while remaining feasible for
RBFN networks. Moreover, it appears clearly that RBFN results cannot be
used as a guideline for the construction of a good MLP model. Indeed, derivatives
were really useful for improving the RBFN results, whereas they give worse
performances in the case of the MLP.
5. Missing data

5.1. A semi-artificial benchmark

A nice property of FDA is its ability to deal with irregular sampling. In some
situations, it happens that the sampling process has some variation between input
functions. This is the case for instance in medical time series where patients decide on
their own when to be monitored by doctors. Irregular sampling appears also for
gesture recognition like cursive handwriting recognition for personal digital
assistant: while the sampling rate is fixed, gestures have different execution times
that depend on the context of execution rather than on the gesture performed.
Therefore, some registration is needed; its effect is to transform the regular sampling
into a gesture-specific one.
The goal of this section is to illustrate the way FDA solves irregular sampling

problems in its simplest form: a regular sampling with missing data. To do so, a
semi-artificial data set was created by removing data from the Tecator data set used
in the previous section. More precisely, 10% of the observations in each spectrum of
the data set were removed at random (therefore 90 absorbances out of 100 are kept).
Of course, spectrometers provide regular spectra and the obtained data are not
representative of spectrometric problems. The goal is simply here to illustrate the
possibilities of FDA with data for which we have reference performances.

5.2. Functional preprocessing

The function representation strategy described in Section 3 applies to arbitrary
sampling. Therefore the procedure followed in Section 4.2 does not have to be
modified: the coordinates of the considered functions on B-spline bases of various
orders are calculated. The leave-one-out procedure selects less B-splines than with
complete data. Indeed, the number of basis functions are respectively, 28, 27 and 21
for the fourth-, fifth- and sixth-order splines. This reduction is easily explained by the
fact that B-splines are localized functions. When the number of knots is high, the
support of individual B-splines is small and it can happen that for a given spectrum
no observation is available on the whole support of a B-spline. In this case, the
corresponding coordinate cannot be calculated. Before this extreme situation,
coefficients become numerically unstable because some B-spline supports do not
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contain enough observations to allow a correct estimation of the corresponding
coefficients.

5.3. Results

The Tecator benchmark with 10% of missing data as described above was used for
experiments with a RBFN network. Only the most interesting methods from Section
4.3 were used on these data, namely Experiments no. 9 and 10, on the first and
second derivative of the fifth- and sixth-order splines, respectively. Table 3 gives the
results of the two experiments (to simplify the comparison with Section 4.3, the same
experiment numbers are kept). It clearly appears that the functional approach solves
the problem of missing data in this particular situation.
As for the RBFN, experiments were limited to the best preprocessing methods for

use with the MLP, namely raw functional data followed by a functional PCA as well
as centered and reduced functional data also followed by a functional PCA. All
meta-parameters (including the number of principal components) were selected by a
four-fold cross-validation, exactly as in Section 4.4. Table 4 gives the results of the
two experiments. It also clearly appears that the functional approach solves here the
problem of missing data.

5.4. Alternative solutions

The standard way of dealing with missing data is to use an imputation method
that will reconstruct the needed values. The simplest imputation method consist in
Table 3

RMSE on the test set for the RBF experiments with missing data

Experiment # Experiment Result on test set

9 First derivative of the fifth-order B-splines, 26

coefficients, no whitening

1.05

10 Second derivative of the sixth-order B-splines, 19

coefficients, no whitening

0.80

Table 4

RMSE on the test set for the MLP experiments with missing data

Experiment # Experiment Result on test set

2 Fourth-order B-splines, 28 coefficients, functional

PCA, a four-fold cross-validation selects the 12 first

components, whitening

0.52

3 Fourth-order B-splines, 28 coefficients, functional

PCA on centered and reduced functions, a four-fold

cross-validation selects the 11 first components,

whitening

0.44
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replacing a missing value by the mean of available values for the corresponding
variable.
A more interesting method consists in using a k-nearest-neighbors approach: given

an input with missing values, its k-nearest neighbors, among inputs that do not miss
the corresponding value, are calculated and the missing value is replaced by the mean
of this variable for the k-nearest neighbors. Of course the distance has to be adapted
to take care of the missing data problem. A possible solution is simply to discard
missing values. Let us denote nmðxÞ the set of indices j for which xj is not missing.
Then the distance used for the nearest neighbor y calculation is:

dðx; yÞ ¼
1

jnmðxÞ \ nmðyÞj

X
j2nmðxÞ\nmðyÞ

ðxj � yjÞ
2;

where jAj is the cardinal of the set A.
When imputation has been done, a standard processing method can be applied.

Section 4.3 showed that nonfunctional approaches give very bad results for the RBF
network; therefore it has been decided to study the imputation method associated to
a standard processing approach only for the MLP model. Two experiments have
been conducted in this way:
(1)
Tab

RM

Exp

1

2

Missing values are imputed using the mean approach to reconstruct spectra in
R100; then a standard PCA is applied. The number of principal components to
retain is determined by the four-fold cross-validation used for other meta-
parameters optimization.
(2)
 Missing values are imputed using the k-nearest-neighbors approach. Resulting
spectra are processed by a regular PCA. Both k and the number of principal
components are determined by four-fold cross-validation.
Table 5 summarizes the obtained results, which are quite bad, especially for the mean
approach. It appears in fact that the reconstruction is very bad because of the mean
spectrum effect already encountered with the RBFN model. Indeed, spectra with
similar shape but very different means can correspond to similar values of fat.
Unfortunately, this means that reconstructing the shape of the spectra without using
an expert knowledge is very difficult.
le 5

SE on the test set for the MLP experiments with missing data and classical imputation methods

eriment # Experiment Result on test set

Mean imputation, PCA, a four-fold cross-

validation selects the five first components,

whitening

7.13

Four-nearest-neighbors imputation, PCA, a four-

fold cross-validation selects the 12 first

components, whitening

1.87
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Table 6

RMSE on the test set for the MLP experiments with missing data and expert imputation methods

Experiment # Experiment Result on test set

1 Expert pre-processing, mean imputation, PCA, a

four-fold cross-validation selects the 9 first

components, whitening

1.82

2 Expert pre-processing, eight-nearest neighbors

imputation, PCA, a four-fold cross-validation

selects the nine first components, whitening

0.85

F. Rossi et al. / Neurocomputing 64 (2005) 183–210 207
A possibility to take into account this kind of expert knowledge into the
imputation process without relying on a functional approach is to center and scale
each spectrum before applying the imputation method. More precisely, in a way
modeled after the functional scaling described in Section 3.5, x is replaced by xs

defined by:

xsi ¼
xi �

P
j2nmðxÞxjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j2nmðxÞ xj �
P

k2nmðxÞxk

� �2r :

The same experiments as described above were conducted with this additional
preprocessing phase. Table 6 summarizes the obtained results, which are much better
than without the inclusion of the expert knowledge. Even so, results are still worse
than the ones obtained by the functional preprocessing. Moreover, the expert
knowledge corresponds clearly to a functional point of view and the imputation
methods based on it should be considered as almost functional methods.
6. Conclusion

Functional data analysis (FDA) is an extension of traditional data analysis to
functional data, lying in an infinitely dimensional space. Examples of functional data
are spectra, temporal series, spatio-temporal images, gesture recognition data such as
cursive handwriting patterns, etc. Functional data are rarely known in practice;
instead lists of input–output pairs (one for each functional data) are usually known.
Their sampling can be irregular, even different from one functional data to another.
This paper shows how to extend the radial-basis function network (RBFN) and

multi-layer perceptron (MLP) models to functional data inputs. A particular
emphasis is put on how to handle functional data in practical situations, i.e. when
they are known through list of sampled values. In particular, various possibilities for
functional processing are presented, including the projection on smooth bases,
functional principal component analysis (FPCA), functional centering and reduction
and the use of differential operators. It is shown how to incorporate these functional
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preprocessings into the RBFN and MLP models, and how to take into account the
nonorthogonality of basis vectors in the case of preprocessing by projection.
The methods are applied to a benchmark in spectroscopy. The advantages and

limitations of the various FDA approaches are discussed on this benchmark, both in
the RBFN and MLP cases. It is shown how an adequately chosen functional
preprocessing can improve the way functional data are handled into data analysis
methods.
The case of irregularly sampled functional data is discussed through the same

benchmark where a percentage of values have been artificially removed. It is shown
that the FDA approach is robust to such missing data, while traditional imputation
techniques fail to provide adequate results.
The FDA approach, combined with an appropriate choice of how to represent the

functional data, may reveal interesting in a variety of situations where the smooth
character or the irregular sampling of data has to be taken into account.
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