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Abstract

Collaborative filtering (CF) is a data analysis task appearing in many challenging applications, in particular data mining in Internet

and e-commerce. CF can often be formulated as identifying patterns in a large and mostly empty rating matrix. In this paper, we focus on

predicting unobserved ratings. This task is often a part of a recommendation procedure. We propose a new CF approach called

interlaced generalized linear models (GLM); it is based on a factorization of the rating matrix and uses probabilistic modeling to

represent uncertainty in the ratings. The advantage of this approach is that different configurations, encoding different intuitions about

the rating process can easily be tested while keeping the same learning procedure. The GLM formulation is the keystone to derive an

efficient learning procedure, applicable to large datasets. We illustrate the technique on three public domain datasets.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The growth of the Internet has brought many new
challenges for treating efficiently the huge amount of data
stored and exchanged on the web. To improve the diffusion
of information over the web, the search should be made
more automatic and personalized. One approach to go in
this direction is collaborative filtering (CF). CF can be
described as the task of identifying (filtering) the interests
of the users from the similarity of their behavior with other
users (collaboration). It is based on the idea that users with
similar behaviors in the past should have similar behaviors
in the future. Using content information (e.g. the subject of
a book, the casting of a movie, etc.) is an alternative to
identify the users’ interests but it is not considered in this
paper.

The CF task can be formalized as follows. First, the
system is associated with a set of items (e.g. the web pages,
the products of a company, etc.). The users can have
interactions with the items: They visit the corresponding
pages, query for the corresponding products and give
opinions about them. Interactions between users and items
e front matter r 2008 Elsevier B.V. All rights reserved.
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will be referred to as ratings because they are an expression
of users’ interests. It is usual to distinguish between implicit
and explicit ratings. Implicit ratings are interactions that
do not directly encode an appreciation, like consulting an
item. On the other hand, explicit ratings are real apprecia-
tions returned by the user for the items he knows about.
Typically, the system offers the user the opportunity to rate
any item on a discrete scale of 5 or 10 grades. It is more
demanding to collect explicit ratings, but they are usually
more informative about the users’ interests.
All of the collected ratings can be stored in a rating

matrix, each row corresponding to a user and each
column to an item belonging to the system (Fig. 1). It is
common to have systems with hundreds or even thousands
of items. Consequently, each user can express ratings only
for a small subset of all items and the rating matrix is
mostly empty, i.e. filled with missing values. Note that this
is not identical to a sparse matrix, mostly filled with zeros
values.
This paper concentrates on the task of predicting explicit

ratings for recommendation purpose. The idea is that a
user should be recommended first items for which the
predictions are highest. There are famous examples of web-
services using recommendation (e.g. Amazon.com, Netflix
DVD rental, StumbleUpon, etc.). It is not easy to evaluate
the quality of a recommendation because the link between
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Fig. 1. Illustration of a small rating matrix.
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predictions and the actual items to be recommended is not
straightforward in practice. Recommendation is often
expressed by an ordered list instead of absolute values.
For a good review of the topic, see [13]. In this paper, we
will rather evaluate the performances of the CF with
standard loss functions on the predicted ratings.

Recommender systems are an illustrative application for
CF. The goal of identifying patterns in a large matrix
appears in many other applications. In the field of
Information Retrieval, CF can be used to mine text
corpora and characterize the common topics covered by
a set of documents [24]. In this case, we are not speaking of
user’s behavior and item’s preferences, but rather on
document content and word saliency. The entries of the
matrix store the number of occurrences of a word in a
document. The matrix is thus very sparse as most words
are not present in a given document. Another field where
large rating matrices appear is in microarray analysis. In
this case, the rating matrix collects the respond levels of a
set of genes (the ‘‘users’’) to some environmental conditions
(the ‘‘items’’). In the following, we will continue to refer to
users and items terms because they are appropriate for
the datasets used in the experiment Section 4. It should be
clear that depending on the application, there are more
appropriate terms.

The goal of this paper is to present a new simple model
to perform CF for rating prediction. The model is based on
the well known generalized linear models (GLM) formal-
ism [20,18]. This formalism allows introducing intuition or
prior knowledge in the model in a natural way. Moreover,
we will see that the memory requirements are very low
making the model applicable to large datasets. Finally, it is
shown in the experiment section that this simple model
compares well with other state-of-the-art methods. This
paper is an extended version of the preliminary ideas
published in [8].

The paper is organized as follows. An overview of the
CF methods is given in Section 2. In Section 3, the new
model, called the interlaced GLM, is presented and a
pragmatic learning procedure is proposed. In Section 4,
we illustrate the procedure on three datasets and discuss
the performances obtained with different configurations of
the interlaced GLM.
2. Short overview of CF methods

Many approaches were proposed to perform CF; only a
very brief overview of the domain is given here. The
previous methods relied on a nearest neighbor principle:
the user should get advice from most similar users [23,2],
according to their common ratings. The main challenge is
to define a good similarity between users in particular when
they have only a few rated items in common. The similarity
can also be defined from the dual view of items. In this
case, it is expected that users are interested in items similar
to those they have already given good ratings. When the
rating matrix is recognized as a bipartite graph, the
definition of similarity can be formalized in terms of
distance in a graph [9]. Concepts such as random walks and
mean transit times between nodes of the graph are used to
define the similarity.
A second approach to tackle CF is referred to the model-

based approach. The main idea is that the variability of
users’ rating behavior can be described by a small set of
typical rating profiles. Mixture models and in particular the
aspect model [14] (sometimes called probabilistic latent

semantic indexing) are simple and illustrative of this
approach. The intuition behind these mixtures is that each
rating expressed by a user can be attributed to one cause
(or aspect). Other interesting but more complicated
variants were proposed in [16]. There are also extensions
in the field of non-parametric Bayesian statistics, notably
with the introduction of a Dirichlet process in the model
[27]. Non-parametric models allow a priori more flexibility
because the number of components does not need to be
fixed in advance; it is automatically derived from the
posterior distribution.
CF can also be handled by factorization of the rating

matrix. The goal is to find two low rank factor matrices
minimizing a reconstruction error, i.e. R � FO>, where R

is the N �M rating matrix, N is the number of users, M is
the number of items; F and O are the factor matrices
(respectively, N � K and M � K). The factor matrices F
and O are full (no missing entries), so the product of these
factor matrices can compute any entry of the rating matrix.
This is necessary for a CF prediction scheme. The choice of
the reconstruction error and the way the factor matrices are
constrained are critical to obtain an efficient algorithm.
One of the most prominent factorization is of course the
singular value decomposition (SVD). It was originally
proposed for text mining in [7]. For this factorization, the
reconstruction error is simply given by the Frobenius
norm, kR� FO>kF, and the regularization is adjusted by
the dimension of the factor matrices. However, in order to
handle missing entries correctly, one needs a non-standard
algorithm, e.g. [1,25]. It is also sometimes necessary to
impose a non-negativity condition on the factor matrices to
avoid violation of some constraints or have interpretable
factor matrices. The task is called non-negative matrix

factorization in the literature [21]. Another way to define
the reconstruction error was proposed with the concept of
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maximum-margin factorization in [26,6]. This factorization
has shown to perform very well on different datasets.

The Frobenius norm appearing in the SVD reconstruc-
tion error is a square error loss. It is known that a Gaussian
noise assumption fitted by maximum likelihood would also
minimize the square error. Closely related to the ap-
proaches in [5,25], the factorization of the rating matrix
could be formulated with the assumption of other noise
distributions. In particular, one could work with distribu-
tions of the exponential family as they are easy to handle
and can represent a large variety of noise models. This is
exactly the idea followed in the interlaced GLM approach
and presented in Section 3. The advantage of using a
probabilistic formulation to model the uncertainty in the
ratings is that different model configurations—encoding
different assumptions on the noise or different constraints
on the factor matrices—can be tested without modifying
the general learning procedure. Moreover, we will show
that the learning procedure requires to solve only small
GLM regression problems, each of them involving the
number of items rated by a single user or the number of
users having rated a single item.

3. Interlaced GLM

We start the section by defining the notations. The
interlaced GLM model is then sketched. We discuss the
different choices that one can make to configure the model,
i.e. setting the noise model and prior distribution. Finally,
we show how the model can be optimized.

3.1. Notations

In the following, the set of items will be denoted Y ¼
fymg

M
m¼1 and the set of registered users U ¼ fung

N
n¼1. The

rating matrix R has dimension N �M. The rating
expressed by user un for the item ym is denoted rnm. It is
useful to have an index notation for the set of observed
ratings only. For this purpose, the observed ratings are
stored in a list of triplets D ¼ fðu; y; rÞlg

L
l¼1. Each time the

subscript l is used, it refers to an element of the list. For
example, unl

is the user who made the lth rating. It is useful
also to have a compact notation for sets of indexes. For
example l 2 Lu

n represents the set of indexes such that the
rating rl was made by the user un.

3.2. Model description

The fundamental step in designing a CF model is to
define how users’ and items’ behaviors (expressed by their
observed ratings) are encoded. The idea with interlaced
GLM is to encode the users and items with a feature
representation. In other words, we associate with each user
un a feature vector fn 2 RK , and symmetrically with each
item ym a feature vector om 2 R

K . For the moment, we
assume that K is fixed a priori. The user and item features
are the main parameters of the model. They should
summarize the information about the rating process.
It is then assumed that the appreciations of items

expressed by the users can be estimated by a dot product
between their respective feature representations: the
appreciation of item ym for user un is evaluated as
Znm ¼ f>n om. The intuition behind this model is similar
to the aspect model [14]. The user features can be
understood as different sensibilities to a set of aspects
describing the items, and the item features correspond to
their content with respect to these different aspects. The
estimated appreciation comes from a sum of positive and/
or negative contributions over all the aspects.
Next, it is necessary to transform the appreciation into a

predicted rating distribution. For this purpose, the GLM
formalism [18] is applied. GLM are defined by a link
function matching the appreciation (or activation, in the
GLM terms) to the mean of the rating distribution,
m ¼ gðZÞ, and a conditional distribution pðrjm;cÞ chosen
from the exponential family (see Appendix A) with the
parameter(s) c allowing the adjustment of the dispersion of
ratings around the mean. The important feature of the CF
task is that both f and o are parameters to optimized,
unlike to a standard GLM where only one of the vectors is
a parameter. For this reason, we call it an interlaced GLM
framework. In fact, the procedure is applicable to
distributions not coming from the exponential family. We
will come back to this family later in this subsection.
One can see that this model performs a factorization of

the rating matrix. Indeed, writing the feature matrices F ¼
½f1; . . . ;fN �

> and O ¼ ½o1; . . . ;oM �
>, we see that predic-

tions for the mean ratings are computed by R̄ ¼ gðFO>Þ.
The mean rating would be the optimal prediction if the
goal was to minimize the least squares loss. For other losses
(e.g. the mean absolute error) one can always derive the
optimal prediction from the estimated rating distribution
pðrjm;cÞ. Following the usual procedure in probabilistic
modeling, the model is fitted based on the negative log-
likelihood criterion. Adjusting the feature matrices using
this criterion is expressed by

fF̂; Ôg ¼ argmin
fF;Og

f� logPðRjR̄;cÞg

¼ argmin
fF;Og

�
X

l

logPðrl jgðf
>
nl
oml
Þ;cÞ

( )
. (1)

The summation comes from the hypothesis of conditional
independence of ratings given the feature representation.
Note also that this summation runs over the observed
ratings only (indexed by l) because there is no contribution
to the likelihood for unobserved ratings. This is essential in
order to be applicable to large CF tasks. However, as
discussed for example in [17], unobserved ratings are
informative about the type of items a user is interested in;
knowing this information could improve the prediction.
The model described in this paper does not make use of this
information.
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In order to have a model that generalizes well on
unobserved ratings, we need to adjust its flexibility. As
usual, there are two approaches to adjust flexibility: Either
we select the structural parameter defining the dimension-
ality of the parameter space, in this case the feature
dimensionality K , or we adjust the flexibility by means of a
regularization term. As the regularization term is a
continuous function of the hyper-parameters, this second
approach gives in general more control on the adjustment.
Keeping a probabilistic framework, it is natural to
define a regularization term by a prior distribution on the
parameters, leading to a maximum (or minimum negative
log) a posteriori learning criterion

fF̂; Ôg ¼ argmin
fF;Og

f� logPðRjR̄;cÞ � logPðffng; fomgjaÞg,

(2)

where a is a set of hyper-parameters for the prior
distribution. A possibility would be to regularize the
features with Gaussian prior distributions

Pðffng; fomgjaÞ ¼
Y

n

Nðfnj0; a
uIK Þ

Y
m

Nðomj0; ayIK Þ,

(3)

where IK is the K � K identity matrix, and au and ay are
the precision parameters (i.e. inverse variance) of the
Gaussian distributions. In non-probabilistic approaches,
an equivalent to Eq. (3) is to regularize the SVD by using
the sum of singular values of the rating matrix (see for
example [26]). Other authors [22] have also shown that
regularizing the SVD reveals efficient for example in the
Netflix competition.

We will discuss in Section 3.4 a pragmatic approach to
optimize the parameters and hyper-parameters of this
model. But before let us give some indications on how to
choose the different distributions appearing in the model.

3.3. Choosing the configuration

The assumption of a Gaussian noise distribution is
common in regression problems. It is known that fitting a
Gaussian noise model is equivalent to optimizing a least
square criterion. Besides, if the identity m ¼ Z is used as link
function and if there is no regularization term, the
interlaced GLM is equivalent to minimizing the Frobenius
norm kR� FO>kF for a given feature dimensionality. In
that case, there is an indeterminacy in the solution as any
invertible matrix G of size K � K inserted in the factoriza-
tion ðFGÞðG�1O>Þ gives the same Frobenius norm. We
have already mentioned in Section 2 that the SVD
factorization also minimizes this norm, but with the
requirement of minimum reconstruction error for the
successive components. So, both approaches would give
the same mean rating prediction R̄, but with different
factor matrices.

One of the advantages of using the probabilistic frame-
work is that different feature representations and regular-
ization terms can be tested without changing the general
optimization technique (see the following subsection). A
Gaussian noise with the identity link is certainly not the
only acceptable choice. There are several reasons which
would suggest using another noise model. First, it is not
really satisfactory to represent a distribution over a
bounded range of rating with the unbounded Gaussian.
It is more appropriate to work with a bounded distribution
like the beta distribution for continuous ratings (the
original ratings should then be scaled/translated to
fit the ½0; 1� range), or a binomial for discrete ratings
r 2 ½0; . . . ; rmax�:

Bnðrjm; rmaxÞ ¼
rmax!

r!ðrmax � rÞ!

m
rmax

� �r

1�
m

rmax

� �rmax�r

. (4)

To use this binomial distribution, it might also be necessary
to scale and translate the original rating range. Addition-
ally, a saturated link function must be used to avoid
predicting a mean outside the rating range; this can be done
for example with the logistic link

m
rmax
¼

1

1þ expð�ZÞ
. (5)

Another reason why the Gaussian noise model (and the
least square fitting criterion) might not be the best choice is
that this model is sensitive to atypical ratings. Some users
might try to mislead the CF model by entering random
ratings. In particular if they give randomly high and low
ratings, these ratings can have a large influence on the
estimated features while they do not contribute to the
identification of the inherent patterns in the rating matrix.
Actually, the binomial distribution is also sensitive to
atypical ratings. One could use more robust noise models
like the Student-t distribution or a power binomial
distribution Pðrjm; nÞ / Bnðrjm; rmaxÞ

n. Unfortunately, these
distributions are not members of the exponential family
and their optimization (see next subsection) is more
demanding.
One can also vary the prior distribution to encode

intuitive considerations in the model. For example, it could
be a good idea to constrain the user features to be positive,
making them closer to the concept of sensibilities to
different aspects: the more sensible a user is to a particular
aspect, the higher the contribution of the associated feature
to the ratings. The positiveness can be enforced by an
exponential prior to the user features

PðffngjaÞ ¼
Y

n

Y
d

Expðfnd ja
uÞ, (6)

where the exponential distribution is defined by
ExpðfjauÞ ¼ au expð�aufÞ. One could also use a gamma
distribution to have more control on the prior distribution.
So far, the parametrization of the noise and prior

distributions was kept as concise as possible, imposing a
common dispersion c for all ratings and common prior
parameters au and ay for all user and item features
respectively. Intuitively however, the rating profiles of
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users present a great diversity; some users are very
predictable, other much less and the same can be said
about the items. One could think of more flexible
configurations where each user (item) has its own prior
parameters au

n (ay
m). Also the dispersion parameter c could

depend on the users and items. But, as discussed in the next
subsection, the difficulty is then to define an efficient
optimization strategy for such a flexible configuration.

It was noticed in previous works on rating prediction
(for example [15]) that the transformation of appreciations
into rating values is not consistent between users. Some
users tend to give systematically higher ratings than others,
and yet they have a very similar order of preference over
the item set. With the factorization approach, it is simple to
represent user specific shifts in the rating distributions. One
just needs to fix the value of one of the item features, for
example om1 ¼ 1. The corresponding user feature fn1 is a
contribution to the appreciation that is independent of the
rated item.
3.4. Model optimization

There are two levels in the optimization of the interlaced
GLM. The inner level corresponds to fitting the features F
and O. The outer level corresponds to the hyper-
parameters, namely the number of features K , the rating
dispersion parameter c, and the prior distribution para-
meters a.

Let us first consider that the hyper-parameters are fixed.
The simplest way to optimize the features is to update one
feature vector at a time. The optimizations of the
regularized loss (Eq. (2)) with respect to om and fn are,
respectively,

ôm ¼ argmin
om

�
X
l2L

y
m

logPðrljgðf
>
nl
omÞ;cÞ � logPðomjayÞ

8<
:

9=
;
(7)

and

f̂n ¼ argmin
fn

�
X
l2Lu

n

logPðrl jgðf
>
n oml
Þ;cÞ � logPðfnja

uÞ

8<
:

9=
;,

(8)

where Ly
m (Lu

n) is the set of indexes associated with the
ratings of item ym (user un). Each feature vector update is a
standard regression problem with typically less than a few
hundreds learning couples ðfnl

; rlÞ (Eq. (7)) or ðoml
; rlÞ

(Eq. (8)). Finding a local optimum of this criterion is fast,
especially with distributions from the exponential family.
One can apply a few iteratively reweighted least squares

steps [12], or any other gradient descent algorithm. The
general gradient and Hessian expressions for the GLM
framework are given in Appendix A. All feature vectors om

and fn are to be updated in turn and the complete
procedure must be repeated until convergence.
In the case of the configuration with a Gaussian noise
model and a linear link function, each update (Eqs. (7) and
(8)) is the solution to a least-squares regression problem.
Solving the least-squares problem for om requires the
computation and inversion of the matrix

P
l2L

y
m
fnl

f>nl
and

equivalently solving for fn requires the computation and
inversion of the matrix

P
l2Lu

n
oml

o>ml
. We see that the

computation of these matrices is, respectively, of order
OðomK2Þ operations where om is the number of existing
ratings for item ym (the number of ratings in Ly

m), and
OðonK2Þ operations where on is the number of existing
ratings made by user un (the number of ratings in Lu

n). On
the other hand, the inversions of these matrices are both of
order OðK3Þ. Hence, the total time complexity of a
complete update of the item and user feature matrices is
Oð2LK2 þ ðN þMÞK3Þ where L is the number of observed
ratings (the origin of the factor 2 comes from the
contribution of each rating to the update of one item
feature vector and one user feature vector). In practice with
the usual CF datasets (see Section 4.3), the first term in
the complexity is often dominant. The procedure can be
applied to large datasets as memory requirements are
small. Furthermore, the process could be parallelized since
updating each item (respect. user) feature is independent of
the other item (respect. user) feature updates. It was noted
in recent work (see for example [11,22]) that methods based
on incremental training can be faster than the propose-
dalternating optimization scheme; the use of these methods
could be considered as an alternative.
For the adjustment of the hyper-parameters, we propose

a pragmatic approach. One point we have already
discussed is that both the number K of features and the
prior distribution control the flexibility of the model. In
general, there is no great advantage in adjusting both
simultaneously. In the experiments below, we compare the
optimization of K and of a separately.
Let us look again at the Gaussian prior distribution in

Eq. (3). Two precisions hyper-parameters appear (au and
ay). However, as user and item features interact multi-
plicatively, it is sufficient to set the precision over users
(or items) to an arbitrary value and adjust only the
precision of the other set. Another point to be aware of is
that the dispersion hyper-parameter c generally has
a dual influence to the precision hyper-parameters
from a non probabilistic view. The assumption of small
dispersion can be compensated by a weak prior distribu-
tion (i.e. a small precision a), although the duality is
exact only for Gaussian noise and Gaussian prior
distributions. It is convenient to fix c from an estimate
of the noise dispersion. The global rating variance is a
sensible starting point and it can be improved after
construction of the model from a set of held out ratings.
This pragmatic procedure leaves us with only one common
prior parameter to be adjusted by a resampling technique.
It is well known that the Gaussian prior distribution
is closely related to the ridge regularization of a
non-probabilistic formulation. For this reason, the single
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regularization (or prior) hyper-parameter is called the ridge

parameter below.
Obviously, this procedure is closer to a pragmatic

regularization scheme than a Bayesian framework. It
would be interesting to fit the dispersion and prior
parameters on a marginal-likelihood criterion, where the
marginalization would apply over the posterior distribu-
tion of the feature vectors. Moreover, this type of
optimization procedure should also be applicable to more
flexible configurations as suggested in Section 3.3 where for
example every user and item features have their own hyper-
parameters. However, we would probably loose the small
computational load of the proposed pragmatic interlaced
GLM optimization. One can wonder if applying the simple
update rules for the hyper-parameters suggested in [19] for
a regression problem is a good approach. Unfortunately,
these updates lead to overfitting because both user and item
features are adjusted at the same time, deviating thus from
the assumptions of the regression framework. The design
of an efficient marginalization framework is left for a
future work.
4. Experiments

In this section, we are interested in evaluating and
comparing the performance of different interlaced GLM
configurations for the prediction of unobserved ratings.
4.1. Evaluation procedure

The evaluation schemes described here were proposed in
[16,2]. The models are evaluated with a 4-fold cross-
validation procedure. The set of users is first divided
randomly into four groups containing the same number of
users. Each of these four user sets (and the corresponding
ratings) is in turn held out of the training stage. So, for
each fold, we have for the interlaced GLM model Ftrain and
Ftest, the matrices storing the features of the users in the
training set (three of the four user sets) and in the test set,
respectively. Given this split, a model is constructed on the
rating of the users in the training set, returning an estimate
for Ftrain and O. During the test stage, we start by selecting
some of the ratings of the users in the test set. These are
the test ratings on which the prediction performances are
evaluated. Then, the feature matrix Ftest is adjusted on
the remaining ratings. It requires a single run over each test
user features as O is no longer modified.

Once the features of the test users are estimated,
predictions can be made for the test ratings. The
performances are evaluated with two standard loss func-
tions: the mean absolute error (MAE) and the root mean
square error (RMSE). Note that for the MAE loss, the
optimal prediction is the median of the predicted rating
distribution, while for the RMSE loss it is the mean.
Finally, we summarize the performance by the mean of
these estimates over the fourfolds.
Below, we have used two schemes to select test ratings.
The first one is called the all-but-one scheme: a single rating
(selected randomly) is retrieved for each test user. This
procedure should be a good estimation of the average
prediction performances, but it is slightly biased because
datasets usually contain users having rated a minimum
number of ratings (typically 20).
The second scheme, called here the given-Ltest scheme,

consists in keeping only Ltest ratings for each user in the test
set. Their other ratings are used for evaluation. So, this
scheme concentrates on the dependence of prediction
performances with the number of observed ratings for a
user. We did not compute the performances of the mixtures
models for this scheme.

4.2. Model configurations

We will compare five configurations of the interlaced
GLM in the experiments below. Here are short descriptions
of the different configurations.
�
 Common preference: baseline configuration giving a
starting point for the comparison of performances. In
this configuration, K ¼ 2 and we constrain fn1 ¼ 1 and
om2 ¼ 1. There is no constraint on fn2 and om1. This
way, there is no direct interaction between the user and
item features. Predictions are composed of an item
average rating plus a user tendency to deviate from the
item average. Consequently, all users have the same
order of preference over the items. We use an identity
link function and Gaussian noise. With the Gaussian
noise model, predicted ratings can fall outside the
bounds. When it happens, the prediction is set to the
exceeded bound.

�
 Gauss-K: configuration using the identity link function
and the Gaussian noise distribution. A weak Gaussian
prior distribution is applied, such that we are almost at
the maximum likelihood fit. The flexibility is adjusted by
a validation procedure on the dimensionality K of
feature vectors.

�
 Gauss-ridge: here also, the identity link function is used
with the Gaussian noise distribution. However, the
flexibility is adjusted with a common ridge parameter
(i.e. the variance of the Gaussian prior distribution over
items) and this parameter is found by a validation
procedure during learning. The dimensionality of the
features is set to K ¼ 8, which is found to be sufficiently
high as we will see in the discussion section.

�
 Binom-ridge: same configuration as Gauss-ridge except
that a logistic link function and binomial dispersion are
used (Eq. (4)). We keep K ¼ 8. In order to apply the
binomial distribution on continuous ratings, we trans-
form the ratings during learning to a discrete range with
five equal bins.

�
 Gauss-Expon: this configuration is supposed to be closer
to the intuition of user features representing positive
sensibilities. We keep the Gaussian noise model and
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linear link, but constrain user features to be positive
with an exponential prior distribution (Eq. (6)) and fixed
au ¼ 1. Additionally, we allow user specific shifts in the
rating distribution as in the common preference config-
uration. Thus, om1 ¼ 1 and fn1 is given a weak
Gaussian prior. The only hyper-parameter to be selected
by validation is still the ridge parameter associated with
the prior item feature distribution.

For all configurations, the same validation procedure is
used to select the ridge hyper-parameter: before training a
model on one of the 4-fold splits of the evaluation
procedure, the training ratings are further split randomly,
leaving 20% of them aside for the validation. The range in
which the hyper-parameter is selected can be estimated
from a few preliminary experiments.

We must add that the feature matrices for each
configuration are initialized by randomly generating
features from the prior distributions. Stopping the learning
procedure when the log-MAP criterion (Eq. (2)) increases
by less than 1e� 3, we observed that less than 15 matrices
updates are generally necessary.

4.3. Datasets

The models are compared on three publically available
datasets (see below). In order to keep the time of the
training-evaluation procedure to around 4 h for each
configuration (on a 3.0MHz processor with 1.5GB RAM
and Matlab coding), we have had to work with only a
subset of the ratings for two of the datasets as described
below.
�

1

2

3

MovieLens1: The dataset is distributed by GroupLens
Research at the University of Minnesota. It contains
6040 users, 3900 movies (the items), and approximately
1 million discrete ratings collected from users registered
in the service in 2000. The ratings of the movies are on a
discrete scale from 1 to 5. Each user has at least 20
ratings encoded.

�
 Jester2: From the Jester Online Joke Recommender
System [10], the dataset contains 73,421 users, 100 jokes
(the items), and 4.1 million continuous ratings on the
interval ½�10; 10�. In the experiments, only 24,000 users
were randomly selected.

�
 LibimSeTi3: Collected from the LibimSeTi dating
agency [3], the complete dataset contains 17,359,346
anonymous ratings of 1,68,791 profiles of members
made by 135,359 LibimSeTi users until April 4, 2006.
The ratings are on a discrete scale from 1 to 10. In the
experiments, we picked randomly 10,000 users, and
10,000 rated profiles of members (the ‘‘items’’) having
received at least 20 ratings from the subset of users.
Available at http://www.grouplens.org/.

Available at http://www.ieor.berkeley.edu/�goldberg/jester-data/.

Available at http://www.ksi.ms.mff.cuni.cz/�petricek/data/.
Fig. 2 shows histograms of the observed distribution of
ratings for the three datasets. Note that Jester ratings were
discretized in 10 bins, but they are intrinsically continuous
ratings. We can see that for all three datasets there is a high
concentration of ratings at a position a bit above mid-
range. We assume that this corresponds in the mind of the
users to a default appreciation—neither a bad item, nor a
very good one. Another thing to note is the small
proportion of ratings in the MovieLens dataset lower than
mid-range, contrary to the other two sets. We guess it is
easier for the users to know in advance what movies they
should avoid (from synopsis, critics, etc.) than for the jokes
or the personal profiles (LibimSeTi). And anyway, it is
more demanding to watch a bad movie than read a bad
joke or evaluate a profile that is not particularly desirable.
The last thing to note from these histograms is the high
number of extreme ratings (1 or 10) for the LibimSeTi
dataset.
Table 1 summarizes information about the three

datasets.

4.4. Discussion

Let us first start the discussion from the prediction
performances for the all-but-one scheme. The results are
given in Table 2.
In comparison, the best performances found in the

literature (to our knowledge) for MovieLens are a MAE
of 0.652 (in [6]) and for Jester a MAE of 3.26 (in [4]). We are
not aware of a similar evaluation on the LibimSeTi dataset.
The performances obtained with the interlaced GLM
approach look very close to these state-of-the-art perfor-
mances. We must add that about 5–7% difference was
observed between the evaluations on the different folds.
Reducing the variance of the estimation of the performance
by repeating the 4-fold procedure would certainly change
the results in the table a little. Unfortunately, the evaluation
then becomes computationally very intensive.
We notice that the common preference configuration

performs only a few percent worse than the best config-
urations on MovieLens and Jester. Actually, on LibimSeTi
it is the best configuration. The meaning of this observation
is that users tend to agree on item evaluation (up to a user
specific rating shift) and consequently the dominant
patterns in the rating matrix are well expressed by global
averages. However, improving the performance by only a
few percents is of practical importance, as demonstrated by
the Netflix Prize4 for example. For the LibimSeTi dataset,
our feeling is that the dataset is too empty to construct
flexible models on it.
Another result that is clear from Table 2 is the better

performances obtained by adjusting the prior distribu-
tion parameter rather than the dimensionality of the
features. Indeed, the Gauss-ridge configuration performs
systematically better than the Gauss-K configuration. In
4http://www.netflixprize.com/.

http://www.grouplens.org/
http://www.ieor.berkeley.edu/goldberg/jesterdata/
http://www.ieor.berkeley.edu/goldberg/jesterdata/
http://www.ksi.ms.mff.cuni.cz/petricek/data/
http://www.ksi.ms.mff.cuni.cz/petricek/data/
http://www.netflixprize.com/
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Fig. 2. Global rating distributions for the three datasets. (a) MovieLens; (b) Jester; (c) LibimSeTi.

Table 1

Summary for the three (reduced) datasets

N M L Range EDfrg medLu
n medLy

m

MovieLens 6.04e3 3.88e3 1.00e6 f1; . . . ; 5g 3.58 96 123

Jester 24.0e3 100 1.35e6 ½�10; 10� 0.74 52 12.7e3

LibimSeTi 10.0e3 10.0e3 0.58e6 f1; . . . ; 10g 6.14 36 34

EDfrg is the empirical mean, medLy
n is the median number of ratings

observed by user and medLy
m is the median number of ratings observed by

items.

Table 2

Rating prediction performances of the all-but-one scheme

MovieLens Jester LibimSeTi

MAE RMSE MAE RMSE MAE RMSE

Common Pref. 0.695 0.937 3.49 4.41 1.24 1.81

Gauss-K 0.695 0.928 3.33 4.30 1.28 1.95

Gauss-ridge 0.663 0.892 3.32 4.25 1.27 1.83

Binom-ridge 0.656 0.886 3.33 4.26 1.30 1.87

Gauss-Expon 0.648 0.881 3.29 4.31 1.34 1.92

The numbers correspond to the mean of a 4-fold procedure.
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fact, we observed that the best dimension K was very low
for all the datasets. The model already overfits with K

greater than 3. The choice of K ¼ 8 for the other
configurations is thus more than sufficient. There does
not seem to be a real difference between Gaussian and
binomial noise models as both configurations perform
similarly on all datasets. The positivity constraint imposed
by the exponential prior produces good performances on
the MovieLens and Jester datasets. It is a bit weaker on
LibimSeTi. An explanation for these mixed results might
be that for the Gauss-Expon configuration, features can get
trapped in bad local optima, especially when there are few
associated ratings. But overall, the intuition of positive
sensitivities expressed by the exponential prior looks
appropriate.
Let us turn to the given-Ltest scheme. The performances
are plotted in Fig. 3, representing the user mean RMSE for
rating predictions. Each curve corresponds to one of the
model configurations. As expected, we see that the
prediction improves (on average) as the number of
observed ratings used to fit the user features increases. It
can also be seen that the common preference performs
best when the number of observed ratings by user is
lower than (around) 15 ratings. Again, this does not apply
to the LibimSeTi set for the same reason as expressed
above. Beyond this number of 15 ratings, the Gauss-ridge
and binomial-ridge are performing better. This comment is
an argument in favor of a more elaborate regularization
scheme for which the regularization would decrease (by
reducing au

n for the Gaussian prior distribution) as the
number of observed ratings increases. These figures also
show the weaker performances of the Gauss-Expon
configuration when there are few observed ratings.

5. Conclusion

In this paper, we proposed to perform collaborative
filtering with a factorization approach relying on the
generalized linear model formalism. It is mathematically
well founded, can be applied to large datasets and performs
comparably to other state-of-the-art methods. Moreover,
prior knowledge and intuition about the constraints that
the parameters should satisfy can be inserted naturally in
the model by choosing the distributions to work with.
Experiments have highlighted the fact that the average

order of preferences over the item set is the dominant
pattern of these rating matrices as the best model
configurations only improve performances by a few percent
over these patterns. One can wonder if the lack of marked
variability in the users’ preferences could be due to the
framework used to collect the data. In particular, rating
items over a single appreciation scale might smother the
expression of diversity.
We have identified a weak point in the learning procedure

of the interlaced GLM model which is the regularization
scheme common to all users. An improvement would be to
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personalize the adjustment of the regularization parameters
(and dispersion parameters). We would probably see that
users having expressed few ratings have their feature vectors
more constrained (i.e. more biased by the prior distribution)
than those with many ratings. Another improvement would
be to take into account in the model the information
contained in missing-observed rating patterns. Also, these
patterns could help getting some interpretation out of the
rating matrix.
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Appendix A. Exponential family and GLM framework

The distributions of a 1-dimensional random variable Y

belonging to the exponential family can always be written
as

Pðyjy;cÞ ¼ exp
yy� bðyÞ

aðcÞ
þ cðy;cÞ

� �
. (A.1)

In this expression, c is sometimes called the dispersion (or
nuisance) parameter and y the canonical parameter and
að	Þ, bð	Þ, cð	; 	Þ are some specific functions (see [12]). Many
standard distributions belong to this family: the binomial,
the multinomial, the Poisson, the negative-binomial, the
Gaussian, the Gamma, the Beta, etc. to cite just a few.
Note that the list contains both discrete and continuous
distributions.

One can show that the mean and variance of the
distributions are given by

EfY g ¼ m ¼ b0ðyÞ, (A.2)

VarfY g ¼ b00ðyÞaðcÞ ¼ vðmÞaðcÞ. (A.3)

The function vðmÞ will be useful in the following deriva-
tions.

In the GLM formalism, we are looking for a conditional
target distribution Pðyjx; b;cÞ belonging to the exponential
family. The mean of the distribution is imposed to be m ¼
gðZÞ where Z ¼ x>b and gð	Þ is called the link function (also
called the inverse link function sometimes). If Z ¼ y then
gð	Þ is said to be the canonical link function.

Suppose that a set of input-targets couples D ¼
fðtl ;xlÞg

L
l¼1 is observed, then the log-likelihood of the

parameters ðb;cÞ is

LðDÞ 
 logPðftlgjfxlg; b;cÞ ¼
XL

l¼1

tlyl � bðylÞ

aðcÞ
þ cðyn;cÞ,

(A.4)

where yl ¼ b0
�1
ðmlÞ and ml ¼ gðx>l bÞ. The log-likelihood is

often optimized with respect to the vector b by a
Newton–Raphson procedure.

According to Eqs. (7) and (8), (A.4) is then differentiated
successively with b ¼ om and b ¼ fn. Therefore, fxlg in
(A.4) is given by ffnl

jl 2 Ly
mg and by foml

jl 2 Lu
ng,

respectively. Moreover, the targets tl in (A.4) are the
ratings rl in both cases, but limited to the same sets of l

indices. This results in the following expressions for the
gradients and the Hessians:

rom
LðRy

mÞ ¼
X
l2L

y
m

ðrl � gðf>nl
omÞÞ

g0ðf>nl
omÞ

vðgðf>nl
omÞÞ

fnl
, (A.5)
Hom
LðRy

mÞ ¼
X
l2L

y
m

g0ðf>nl
omÞ

2

vðgðf>nl
omÞÞ
� ðrl � gðf>nl

omÞÞ

 "

�
g00ðf>nl

omÞvðgðf
>
nl
omÞÞ � g0ðf>nl

omÞ
2v0ðgðf>nl

omÞÞ

vðgðf>nl
omÞÞ

2

!

�fnl
f>nl

#
, (A.6)

rfn
LðRu

nÞ ¼
X
l2Lu

n

ðrl � gðf>n oml
ÞÞ

g0ðf>n oml
Þ

vðgðf>n oml
ÞÞ
oml

, (A.7)

Hfn
LðRu

nÞ

¼
X
l2Lu

n

g0ðf>n oml
Þ
2

vðgðf>n oml
ÞÞ
� ðrl � gðf>n oml

ÞÞ

 "

�
g00ðf>n oml

Þvðgðf>n oml
ÞÞ � g0ðf>n oml

Þ
2v0ðgðf>n oml

ÞÞ

vðgðf>n oml
ÞÞ
2

!

�oml
o>ml

#
, (A.8)

where Ry
m ¼ frljl 2 Ly

mg is the set of existing ratings
associated with item ym and Ru

n ¼ frl jl 2 Lu
ng is the set of

existing ratings by user un.
The Newton–Raphson update step for b is

bðnewÞ  bðoldÞ �HbLðDÞ
�1
rbLðDÞ, (A.9)

where again b alternates between om and fn. Additionally,
an estimate of the dispersion parameter can be computed
from

aðĉÞ ¼
XN

n

ðtn � mnÞ
2

vðmnÞ
. (A.10)

If the regression problem is further regularized by means of
a prior distribution on om and fn, one should of course
add the contribution of this prior distribution to the
gradient and the Hessian.
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