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Missing data is a common drawback in many real-life pattern classification scenarios. One of the most

popular solutions is missing data imputation by the K nearest neighbours ðKNNÞ algorithm. In this

article, we propose a novel KNN imputation procedure using a feature-weighted distance metric based

on mutual information (MI). This method provides a missing data estimation aimed at solving the

classification task, i.e., it provides an imputed dataset which is directed toward improving the

classification performance. The MI-based distance metric is also used to implement an effective KNN

classifier. Experimental results on both artificial and real classification datasets are provided to illustrate

the efficiency and the robustness of the proposed algorithm.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Many real-world scenarios in pattern classification suffer a
common drawback, missing or incomplete data [4,13,28,37]. For
example, wireless sensor networks suffer incomplete data due to
different reasons [18,32], such as power outage at the sensor node,
random occurrences of local interferences or a higher bit error
rate of the wireless radio transmissions. In medical diagnosis
some tests cannot be done because either the hospital lacks the
necessary medical equipment, or some medical tests may not be
appropriate for certain patients [22,27,41]. Biology research with
DNA microarrays is a recent application in which incomplete data
appears [23,24,38,40], where the gene data may be missing due to
various reasons such as scratch on the slide or contaminated
samples. Another example of the importance of handling missing
data is that more than 40% of datasets in the UCI repository have
missing values [33], which is one of most commonly used datasets
collection for benchmarking machine learning procedures.

In general, pattern classification with missing data concerns
two different problems, handling missing values and pattern

classification. Most of the approaches in the machine learning
literature can be grouped in four different types of approaches
depending on how both problems are solved. One is the so-called
‘‘complete case analysis’’ [28], which ignores the observations
ll rights reserved.
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with missing values and the analysis is based on the complete
data. This procedure can be only justified when a large quantity
of input data is available [37]. Its main disadvantage is the loss
of efficiency due to discarding the incomplete observations, and
moreover, a pattern with missing values cannot be classified
during the operation stage because the deletion process will
omit it. The second approach for handling missing values is the
imputation method [4,28,37]. Imputation is a class of procedures
that aims to fill in the missing values with estimated ones. The
objective is to employ known relationships among the complete
values of the dataset to assist in missing data estimation. After
that, the classification task is learned using the edited complete
set, i.e., complete observations and incomplete cases with
imputed values. The third approach is to assume some models
for the input data and then a maximum likelihood method obtains
estimates for the models [28,37]. Maximum likelihood procedures
that use variants of the expectation–maximization (EM) algorithm
can handle missing values for model parameter estimation
[17,30]. Once the model is obtained, the classification stage for a
particular input pattern is performed using the Bayes theorem
[13,17]. The last approach includes embedded machine learning
methods which deal with missing values during the classification
process without any imputation, such as decision trees [34] and
fuzzy neural networks [16,21].

Maximum likelihood models and embedded methods have
attracted considerable efforts. However, several machine learning
methods, such as standard feed-forward neural networks (FFNN)
[7,13] or support vector machines (SVM) [12], require a complete
input data matrix. Furthermore, there are also considerable
applications in which missing items are to be imputed before,
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such as modelling of DNA microarray data [23,24,38,40], editing of
survey data [36], or merging databases coming from different
sources into a single dataset [8].

This paper is focused on missing data imputation solutions
based on the K nearest neighbours ðKNNÞ algorithm [5,6,40],
which is one of the most popular approaches for solving
incomplete data problems. Given an incomplete pattern, this
method selects its K closest observations (neighbours) according
to a distance metric, where the selected observations present
known values on the features to be imputed. A weighted average
of these values is then used as an estimate for each incomplete
feature value.

The absence of certain values for relevant features can
seriously affect the classification performance [1,6,13,29]. A
desirable characteristic for an imputation method is that the
missing data estimation is aimed at improving the classification
accuracy results, i.e., it provides an imputed dataset which is
directed toward improving the classification performance. Follow-
ing this idea, this paper proposes a novel KNN imputation
procedure using a feature-weighted distance metric. Proposed
distance metric considers the input attribute relevance for
classification according to the mutual information (MI) concept
[11,25]. MI is a natural measure of the dependence between
random variables, and it has been used as a relevance measure in
several feature selection algorithms [15,26,35]. This paper also
uses the MI-based metric to implement an effective KNN
classifier.

The remaining of this work is organized as follows. The
following section introduces the notation for incomplete data
classification and several imputation solutions. In Section 3, the
standard KNN procedure for missing data imputation and
classification is shown. Section 4 explains the MI concept for
measuring feature relevance in classification tasks, and proposes
the KNN approach based on MI for missing data imputation and
classification. Section 5 reports experimental results on both
artificial and real incomplete datasets. Finally, Section 6 presents
the main conclusions and future related works.
2. Incomplete data classification

Assume a set of N labeled patterns,

D ¼ fðxi;mi; ciÞg
N
i¼1, (1)

where xi is the i-th input vector with n features or attributes
ðxi ¼ fxijg

n
j¼1Þ labeled as ci, with NC possible classes. In our

notation, mi are binary variables such that mij ¼ 1 if xij is
unknown, and mij ¼ 0 if xij is present. Input data attributes can
include quantitative and qualitative variables. Quantitative or
continuous data is measured or identified on a numerical scale.
Data that is not numerical (i.e., colors, names, opinions) is called
qualitative data, and it can be discrete (intrinsic ordering) or
categorical (no ordering possible). Each xi has its own and unique
set of missing features, mi, i.e., it is possible that the j-th attribute
value of one pattern is missing while the same attribute of
another observation is known.

The work in this paper assumes that the missing data is
either missing completely at random (MCAR) or missing at
random (MAR) [28], meaning that the values of the data have
no affect on whether the data is missing or not. MCAR
occurs when the probability that a variable is missing is
independent of the variable itself and any other external
influence. The reason for missingness is completely at random,
i.e., the probability that an attribute is missing is not related to
any other features. As an example, suppose weight and age are
variables of interest for a particular study. If the likelihood that a
person will provide his or her weight information is the same
for all individuals regardless of their weight or age, then the
missing data is considered to be MCAR. Whilst, the missingness in
a MAR situation is independent of the missing variables but the
mechanism of data missingness is traceable or predictable from
other variables in the database. In the previous example, if women
are less likely to reveal her weight than men, then the mechanism
is MAR. Finally, when the missing data is not missing at random
(NMAR), the mechanism of data missingness is non-random
and depends on the missing variable. For example, if a sensor
cannot acquire information outside a certain range, its data are
missing due to NMAR factors. In this kind of scenarios, a model for
the missing data must be created for the specific dataset under
study [28].

There are several procedures for handling missing data
available in the literature [4,28,37]. This paper is focused on
missing data imputation, and more details about this kind of
approaches are described next.
2.1. Missing data imputation

Imputation is the process used to determine and assign
replacement values for missing data items [28]. Imputation
methods are especially useful in situations where a complete
dataset is required for the analysis. There are many approaches
varying from naive methods like mean imputation to some more
robust methods based on relationships among attributes. This
section briefly surveys some popular imputation methods,
although other procedures are available.
�
 Mean and mode imputation (Mimpute). It consists of
replacing the unknown value for a given attribute by the mean
(quantitative attribute) or mode (qualitative attribute)
of all known values of that attribute. Replacing all missing
records with a single value distorts the input data distribution
[28,4].

�
 Hot deck imputation (HDimpute) and cold deck imputation

(CDimpute). Given an incomplete pattern, HDimpute replaces
the missing data with the values from the input vector that is
closest in terms of the attributes that are known in both
patterns [28]. Unlike Mimpute, this method attempts to
preserve the distribution by substituting different observed
values for each missing item [37]. Another possibility is the
CDimpute method which is similar to hot deck but the data
source must be other than the current dataset. For example, in
a survey context, the external source can be a previous
realization of the same survey [28].

�
 Prediction models. These methods consist of creating a

predictive model to estimate values that will substitute
the missing data [28,37]. The incomplete attribute with
missing data is used as target, and the remaining
attributes are used as inputs for the model. An important
argument in favour of this approach is that, frequently,
attributes have relationships (correlations) among themselves.
In this way, those correlations can be used to create a
predictive model for classification or regression. The require-
ment for correlation among the attributes can be also a
drawback in some situations. If there are no relationships
among the incomplete feature and the remaining variables,
then the model will not be precise to impute values for the
missing ones. Its main disadvantage is that when missing
items appear in many combinations of attributes in a high-
dimensional problem, a huge number of prediction models has
to be designed, i.e., one model per combination of incomplete
attributes.
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3. KNN algorithm for missing data imputation and classification
The KNN algorithm is part of a family of learning methods
known as instance-based [9,10,39,43]. Instance-based learning
methods are conceptually straightforward approaches to approxi-
mate real-valued or discrete-valued target functions [3,2,31].
These methods are based on the principle that the instances
within a dataset will generally exist in close proximity with other
cases that have similar properties. Learning in these algorithms
consists of simply storing the presented training dataset. When a
new instance is encountered, a set of similar training instances is
retrieved from memory and used to make a local approximation of
the target function [31].

3.1. KNN approach for missing data imputation

Here, we study the performance of the KNN algorithm to
impute the missing values. We will refer to this procedure as
KNNimpute [40,6,5]. Given an incomplete pattern, this method
selects its K closest cases from the training cases with known
values in the attributes to be imputed, such that they minimise
some distance measure. Once the K nearest neighbours have been
found, a replacement value to substitute for the missing attribute
value must be estimated. How the replacement value is calculated
depends on the type of data; the mode can be used for qualitative
data and the mean for continuous data. The main benefits
of KNNimpute are:
(1)
 KNNimpute can easily handle and predict both quantitative
features and qualitative features.
(2)
 KNNimpute does not create explicit predictive models,
because the training dataset is used as a ‘lazy’ model. Also,
this method can easily treat cases with multiple missing
values.
The major drawback of this approach is that whenever the
KNNimpute looks for the most similar instances, the algorithm
searches through all the dataset. Nevertheless, even though this
limitation can be very critical for large databases, it has been
shown that KNNimpute can provide a robust procedure for
missing data estimation [6,5,40]. To apply the KNN approach to
impute missing data, one of the most important issues is to select
an appropriate distance metric.

3.1.1. Measuring distance

The distance between two input vectors xa and xb is denoted as
dðxa;xbÞ. This work uses an heterogeneous distance function that
computes different distance measures on different types of
attributes. In particular, the heterogeneous Euclidean-overlap metric

(HEOM) is used [6]:

dðxa;xbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

djðxaj; xbjÞ
2

vuut , (2)

where djðxaj; xbjÞ is the distance between xa and xb on its j-th
attribute:

djðxaj; xbjÞ ¼

1; ð1�majÞð1�mbjÞ ¼ 0;

dOðxaj; xbjÞ; xj is qualitative;

dNðxaj; xbjÞ; xj is quantitative:

8><
>: (3)

Unknown data are handled by returning a distance value
of 1 (i.e., maximal distance) if either of the input values is
unknown. The overlap distance function dO assigns a value
of 0 if the qualitative features are the same, otherwise a distance
value of 1, i.e.,

dOðxaj; xbjÞ ¼
0; xaj ¼ xbj;

1; xajaxbj:

(
(4)

The range normalized difference distance function dN is

dNðxaj; xbjÞ ¼
jxaj � xbjj

maxðxjÞ �minðxjÞ
, (5)

where maxðxjÞ and minðxjÞ are, respectively, the maximum and
minimum values observed in the N training instances for the j-th
continuous attribute.

3.1.2. Imputation using KNN
Consider that the j-th input feature of x is unknown

(i.e., mj ¼ 1). After the distances from x to all training instances
are computed, its K nearest neighbours are chosen from the
training set. In our notation,

Vx ¼ fvkg
K
k¼1 (6)

represents the set of K nearest neighbours of x arranged in
increasing order of its distance. So v1 is the closest neighbour of x.
The K closest cases can be selected on the instances without any
missing value, or by considering only instances with non-missing
entries in the incomplete attribute to be imputed. The second
option is more recommended [40]. Once its K nearest neighbours
have been chosen, the unknown value is imputed by an estimate
from the j-th feature values of Vx.

If the j-th input feature is a continuous variable, the imputed
value ðx̃jÞ is obtained by the mean value of its K nearest neigbours
[9], i.e., x̃j ¼ ð1=KÞ

PK
k¼1 vkj. One obvious refinement is to weight

the contribution of each vk according to their distance to x, i.e.,
dðx; vkÞ, giving greater weight to closer neighbours. Thus,

x̃j ¼
1

KW

XK

k¼1

wkvkj, (7)

where wk denotes the corresponding weight to the k-th nearest
neighbour, and W ¼

PK
k¼1wk. Although other weighting schemes

can be considered in Euclidean-based metrics, an appropriate
choice for wk is the reciprocal of the squared distance: wk ¼

1=dðx; vkÞ
2 [14].

If the j-th input feature is a qualitative variable, the imputation
stage consists in determining the category (each possible discrete
value of xj) for the missing value using the information of Vx. In
this case, the most popular choice is to impute to the mode of
fvkjg

K
k¼1, where all neighbours have the same importance in the

imputation stage [6,40]. Instead of it, we use a weighted scheme
which assigns a weight ak to each vk, with closer neighbours
having greater weights. The K neighbours are grouped according
to its discrete value in the j-th input feature. Thus, x̃j is imputed by
the category for which the weights of the representatives among
the K nearest neighbours sum to the largest value. Since the
imputation of a qualitative variable is similar to a classification
problem, we compute ak by the distance-weighted scheme of the
KNN classifier proposed by Dudani [14]. Following this, a suitable
way to obtain ak is

akðxÞ ¼
dðvK ;xÞ � dðvk;xÞ

dðvK ;xÞ � dðv1;xÞ
. (8)

Note that akðxÞ is assigned to the value of 1 when dðvK ;xÞ ¼
dðv1;xÞ, i.e., when all distances are equal. Now, we explain
how the imputation of qualitative data is done. Consider that
the j-th input feature is qualitative and it has S possible discrete
values. Let Ks denote the number of samples from Vx that belong
to category s, with s ¼ 1;2; . . . ; S. For each possible category, as

x is
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computed by

as
x ¼

XKs

k0¼1

ak0 ðxÞ (9)

Then, the imputed value x̃j is assigned to the category s� with

s� ¼ arg max
s
fas

xg. (10)

It should be noted that this paper uses the weighted versions
given in (7) and (10) to impute missing values by the KNN
algorithm.

3.2. KNN approach for classification

To classify an unlabeled pattern x, the distances from x to the
labeled instances are computed, its K nearest neighbors are
identified, and the class labels of these nearest neighbors are then
used to determine the class label of x. According to the voting
KNN rule, x is assigned to the class represented by a majority
of its K nearest neighbours [10]. In the standard KNN algorithm,
the K neighbours are implicitly assumed to have equal weight
in decision, regardless of their distances to the pattern to be
classified. Some approaches have been proposed based on
assigning different weights to the K neighbours according to their
distances to x, with closer instances having greater weights [2,14].
In this paper, the weighted KNN algorithm is referred as
KNNclassify. Following the distance-weighted rule proposed by
Dudani [14], KNNclassify is implemented using the same weight-
ing procedure described in (8). Thus, a weight ak given by (8) is
assigned to each nearest neighbour vk of x, with k ¼ 1;2; . . . ;K.
The nearest neighbour receives a weight of 1, the furthest
neighbour a weight of 0, and the remaining neighbours are scaled
linearly between 0 and 1. An unlabeled pattern is assigned to the
class producing the highest summed weight among its reference
neighbours.
4. Proposed approach for missing data imputation
and classification

A desirable characteristic for an imputation method is that the
missing data imputation is aimed at improving the classification
accuracy results. Some recent works have shown that KNNimpute
can provide a robust method for missing data estimation [5,6,40].
However, its learning process is not oriented to provide an
appropriate imputed dataset for solving the classification task.
In this paper, we propose an effective procedure where the
neighbourhood is selected by considering the input attribute
relevance for classification. For each incomplete pattern, its
selected K neighbours are used to provide imputed values which
can make the classifier design easier, and thus, the classification
accuracy is increased. This approach uses a feature-weighted
distance metric based on MI, which is a good indicator of
dependence between random variables. The same distance metric
is used to implement an enhanced version of the KNN classifier.

4.1. Notions on MI

Let Y and Z be two discrete random variables. The entropy is a
measure of uncertainty of random variables. Making use of
the Shannon’s information theory [11,25], if Y has alphabet Y
and the probability density function (pdf) is pðyÞ ¼ PrfY ¼ yg,
y 2Y, the entropy of Y is defined as

HðYÞ ¼ �
X
y2Y

pðyÞ log pðyÞ. (11)
We denote the pdf of Y by pðyÞ rather than pY ðyÞ for notation
convenience. Thus, pðyÞ and pðzÞ refer two different random
variables and they are in fact different densities. The conditional
entropy measures the resulting uncertainty on Z knowing Y , and it
is given by

HðZjYÞ ¼ �
X
y2Y

X
z2Z

pðy; zÞ log pðzjyÞ, (12)

where pðy; zÞ is the joint pdf of Y and Z and pðzjyÞ is the conditional
pdf of Z given Y . Formally, the MI of Y and Z is defined as:

IðY ; ZÞ ¼
X
y2Y

X
z2Z

pðy; zÞ log
pðy; zÞ

pðyÞpðzÞ
. (13)

For continuous random variables, we replace summation by a
definite double integral:

IðY ; ZÞ ¼

Z
Y

Z
Z

pðy; zÞ log
pðy; zÞ

pðyÞpðzÞ
dy dz. (14)

The MI and the entropy have the following relation:

IðY ; ZÞ ¼ HðZÞ � HðZjYÞ, (15)

which is the reduction of the uncertainty of Z when Y is known
[11,25]. Using the properties of the entropy, the MI can be easily
rewritten into IðY ; ZÞ ¼ HðYÞ þ HðZÞ � HðY ; ZÞ, where HðY ; ZÞ is the
joint entropy of Y and Z. The MI is a natural measure of the
dependence between random variables. If the variables Y and Z

are independent, then HðY ; ZÞ ¼ HðYÞ þ HðZÞ, and HðZjYÞ ¼ HðZÞ,
i.e., the MI of two independent variables is zero. In addition to
this, the MI measures any relationship between variables, contra-
rily to the Pearson correlation that only measures the linear
relations [11].

4.2. Computation of the MI in classification tasks

This work is focused on the MI estimation between each input
attribute and the target class variable. In classification problems,
the target has discrete values (NC possible classes) while the input
features can be qualitative or quantitative variables. According to
(15), the MI between the j-th input attribute ðXjÞ and the target
class variable ðCÞ is

IðXj;CÞ ¼ HðCÞ � HðCjXjÞ. (16)

In this equation, the entropy of class occurrence HðCÞ is computed
using (11),

HðCÞ ¼ �
XNC

c¼1

pðcÞ log pðcÞ. (17)

For computing (17), pðcÞ is estimated by p̂ðcÞ ¼ Nc=N, where Nc is
the number of instances belonging to the class c, and N is the
number of training instances. Note the difference between Nc and
NC , where NC represents the number of classes. The estimation of
the conditional entropy HðCjXjÞ depends on the nature of the input
attribute Xj. If the j-th input feature is a qualitative variable,
HðCjXjÞ is easily computed using (12). In this case, the estimation
of the densities for qualitative variables is straight-forward by
means of the histogram approximation from the training input
data. When the input feature is a continuous variable, the
conditional entropy is given by

HðCjXjÞ ¼ �

Z
Xj

pðxjÞ
XNC

c¼1

pðcjxjÞ log pðcjxjÞdxj, (18)

which is hard to get because the estimation of pðcjxjÞ is not direct.
For solving it, we use the Parzen window density estimation
method [26,13]. This approach provides an estimation of pðxjÞ
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given by

p̂ðxjÞ ¼
1

N

XN

i¼1

fðxj � xij;hÞ, (19)

where fð�Þ is the window function and h is the smoothing
parameter. It has been shown that p̂ðxjÞ converges to the true
density if fð�Þ and h are selected properly [13,26]. The rectangular
and the Gaussian functions are commonly used as window
functions [13]. Once p̂ðxjÞ has been computed by the Parzen
window approach, the estimate of the conditional pdf is written
according to the Bayes rule,

p̂ðcjxjÞ ¼
p̂ðxjjcÞp̂ðcÞ

p̂ðxjÞ
. (20)

For each class, we get p̂ðxjjcÞ using the Parzen window approach:

p̂ðxjjcÞ ¼
1

Nc

X
i2Ic

fðxj � xij;hÞ, (21)

where Ic is the set of indexes of the training patterns labeled with
class c. Finally, if we replace the integration in (18) with a
summation of the training instances, the estimate of HðCjXjÞ

becomes

ĤðCjXjÞ ¼ �
XN

i¼1

p̂ðxjÞ
XNC

c¼1

p̂ðcjxjÞ log p̂ðcjxjÞ. (22)

With (22), (17) and the estimated densities, we can approximate
the MI. More details about the MI estimation with Parzen window
approach can be found in [26].

4.3. Feature relevance rating based on MI

Selecting or weighting features before building a predictive
model is an useful approach in pattern recognition problems
[15,20,26,35,44]. Feature selection algorithms assign binary
weights to features, i.e., a weight equal to 1 for selected relevant
attributes; otherwise, a value of 0 for irrelevant features. Such
procedures reduce the input data dimensionality and, conse-
quently, the data processing time of subsequent computational
methods. These methods can perform well when the input
features are either highly relevant or completely irrelevant for
the target class variable. In other scenarios, feature weighting is a
more appropriate approach because features can vary in their
relevance for classification, and it cannot be easy to determine
which features are completely irrelevant.

Instead of selecting features, this paper uses a feature-
weighted procedure which assigns one weight per feature
according to the MI estimate between each feature and the target
class variable. For a classification problem, the MI measures the
amount of information contained in an input feature for
predicting the target class variable [11,26]. A high MI between
an input feature and the target means that this feature is relevant,
regardless of the classification algorithm. Otherwise, when the
shared information between both variables is small, the input
feature is not relevant for the classification task.

After the MI estimation and its application for measuring
feature relevance have been explained, we describe how it can be
used to estimate missing data with KNN.

4.4. Exploiting MI to impute missing data with KNN

In KNNimpute [6,40], the neighbourhood selection is based on
a similarity measure, which is a distance metric that calculates
the distance between the incomplete pattern and the rest of
training instances. This distance metric is based on the input data
attributes of the classification problem to be solved. In a first
approach, the feature weighting used in the distance function
could be ideally based on the relationship with the variable to be
imputed. This procedure can perform well, but it is omitting the
target class information, which is the main task to be solved. In a
classification context, the main objective of an imputation
procedure should be imputing values which make the classifica-
tion stage easier, improving in this way the classification
performance. Due to this, this paper uses the MI concept to
weight the input feature distances in (2) according to their
relevance for classification [26,44]. Proposed approach assigns a
weight lj to each j-th input feature according to the amount of
information that this attribute contains about the target class
variable. The parameter lj is computed by

lj ¼
IðXj;CÞPn

j0¼1IðXj0 ;CÞ
, (23)

which represents the normalized MI measured between
the j-th input attribute and the target class C. The scaling factors
lj of (23) have been computed heuristically, according to the
literature on weighting/selecting features using the MI concept
[15,20,26,35,44]. Thus, the higher is the value of lj, the more
relevant is Xj for the classification task [26,44]. According
to the MI concept, a feature-weighted distance metric is proposed.
The MI-weighted distance between two input vectors xa and xb is
computed by

dIðxa;xbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

ljdjðxaj; xbjÞ
2

vuut , (24)

where dj is the distance defined in (3).
This MI-weighted distance metric is used to implement a novel

and effective KNN method for missing data imputation. It is called
the MI-KNNimpute. In contrast to the standard KNNimpute, this
method selects the K nearest cases considering the input attribute
relevance to the target class. By doing this, we are adding useful
information about the classification task during the imputation
stage, and it provides a missing data estimation oriented to solve
the classification task, i.e., it provides an imputed dataset which is
directed toward improving the classification accuracy results.

Depending on the kind of attributes (quantitative or qualita-
tive), we consider two different procedures for obtaining the MI
[11,26]. For qualitative attributes, the MI is computed with the
direct computation of the equations provided in the Shannon’s
information theory for discrete random variables by means of the
histogram density estimation [11]. Whereas, for continuous input
data, the MI estimate results from a Parzen window approach
[26]. When an input feature is incomplete, the MI is computed by
considering only the training cases with known values in the
attribute of interest. Similarly to KNNimpute, the MI-KNNimpute
method also uses the weighted imputation schemes for quanti-
tative and qualitative data, given, respectively, in (7) and (8).
4.5. Exploiting MI to classify with KNN

As we have already mentioned, irrelevant features can
seriously affect to the performance of the KNN algorithm, and
feature weighting procedures are efficient approaches to over-
come this drawback. The use of the MI concept to implement a
weighting scheme for KNN classifiers has been previously
analyzed in [44], where the MI between each input feature
(quantitative or qualitative) and the target class variable is
computed by means of the histogram density estimation.
Following [44], we also implement an enhanced version of the
KNNclassify method using the feature-weighted distance metric
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based on MI. It is referred as MI-KNNclassify. In our implementa-
tion, the MI between a continuous attribute and the target class
variable is estimated by the Parzen window method [26], which is
a more efficient solution than the histogram approach. Let dIð�Þ be
the distance measure based on the MI concept defined by (24),
and Vx ¼ fvkg

K
k¼1 be the set of K nearest neighbours of x arranged

in increasing order of dIðvk;xÞ. MI-KNNclassify assigns a weight bk

to the k-th nearest neighbour,

bkðxÞ ¼
dIðvK ;xÞ � dIðvk;xÞ

dIðvK ;xÞ � dIðv1;xÞ
, (25)

which is equal to the value of 1 when dIðvK ;xÞ ¼ dIðv1;xÞ. As in the
standard KNNclassify method, x is assigned to the class for which
the weights bk of the representatives among the KC nearest
neighbours sum to the largest value. In MI-KNNclassify, the set of
neighbours and bk are obtained by considering how relevant the
input features are for the target class variable.

Finally, it is worth mentioning that the number of neighbours
(parameter K) used for classification can be different than the K

value used for imputation. From here on, we use KI to refer to the
K nearest neighbours used for imputation, and KC represents the
number of nearest neighbours selected for classification. As the
main objective is to solve the classification task, both parameters
(i.e., KI and KC) must be tuned in order to optimize the
classification performance. It will be further explained in the
next section.
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Fig. 1. Clouds dataset in a three-dimensional cube with limits equal to ½�1;þ1�.

Patterns can belong to two different classes, which are represented by circles and

squares.
5. Experimental results

The main objective of the experiments conducted in this work
is to evaluate the efficiency of the proposed KNN methods for
solving classification tasks involving incomplete data. In order to
compare the proposed method with the standard KNN approach,
we have chosen an artificial toy dataset, two complete classifica-
tion problems and two incomplete datasets. The main reason for
using complete datasets is to measure the influence of the
percentage of artificially inserted missing data on the classifica-
tion accuracy. In particular, the tested complete problems are an
artificial dataset, Clouds, and two well-known datasets, Iris and
Telugu. The remaining two incomplete datasets, Voting and
Hepatitis, are from the UCI repository [33].

Clouds is a toy problem which has been generated to evaluate
how the presence of irrelevant attributes can have a negative
impact on the quality of the imputation stage. In order to show it,
we give graphical results of the imputed datasets obtained with
KNNimpute and MI-KNNimpute. For the remaining four datasets
(Iris, Telugu, Voting and Hepatitis), the tested methods are trained
using the same training, validation, and test sets obtained by the
stratified 10-fold cross validation method [7]. As we have already
mentioned, missing values are artificially inserted, in different
percentages and attributes, into the complete datasets. For each
fold in the complete problems, Iris and Telugu, a percentage of
missing data (varying between 5% and 40%) is inserted into the
selected attributes in a completely at random manner [28]. It is
straightforward to see that the most relevant attributes are a
sensible choice for the attributes that should have some of their
values modified to unknown. Since the MI is a good measure to
compute the attribute relevance for classification [26,35,15], the
features to be incomplete are selected according to its MI between
the target class variable. In all tested problems, firstly, the test set
is classified by KNNclassify and MI-KNNclassify without estimat-
ing the missing values. Next, we check whether the classification
performance can be improved by imputing the missing values
using KNNimpute and MI-KNNimpute. The optimal values of K to
impute ðKIÞ and to classify ðKCÞ are selected by 10-fold cross-
validation, i.e., by means of the classification accuracy results on
the validation set. All the experimental results in this paper are
averaged on 10-fold cross validation repetitions.
5.1. Clouds dataset

This toy dataset has been artificially created for this study. It is
a separable binary classification task which consists of four
spheres drawn in a three dimensional space. Fig. 1 shows this
artificial problem. Two spheres belong to the class ‘‘circle’’, and
they are centered on ½0;0;0� and ½�0:5;�0:2;0:4�. The remaining
two spheres are labeled with the class ‘‘square’’, being centered on
½�0:4;�0:6;0:5� and ½�0:2;þ0:4;�0:2�. In all spheres, its radius is
equal to 0.20, and they are composed of 100 samples which
are uniformly distributed inside the sphere. In this problem, the
MI values between the three attributes and the target class are
computed: 0.17 for x1, 0.32 for x2, and 0.05 for x3.

Now, 20 completely irrelevant attributes are added to the
original dataset. They are random variables which are uniformly
distributed between �1 and 1. For these irrelevant variables, the
MI between each one of them and the classification task is
theoretically equal to zero. These 20 random variables are added
in order to evaluate the irrelevant attributes influence on the
imputation stage. For doing this, 10% and 20% of missing data are
randomly inserted into x2, which is the most relevant feature
according to the MI concept. Fig. 2 shows the imputed datasets by
KNNimpute and MI-KNNimpute considering KI ¼ 5. For the
different missing data percentages, the input data are projected
into a two dimensional space formed by the first and second
attributes, i.e., the two most relevant attributes. Horizontal lines
denote incomplete input vectors with unknown data in x2.
Depending on its class, imputed patterns are ‘‘squares’’ or ‘‘circles’’
filled in gray color.

In Fig. 2(a), we can observe that the imputed values provided
by KNNimpute distorts the input data distribution due to the
presence of irrelevant attributes. After imputation is done by
KNNimpute, the obtained dataset is not a separable classification
problem. On the other hand, in Fig. 2(c), the MI-KNNimpute
approach provides an imputed dataset which makes the classifi-
cation stage easier, without distorting the input data distribution.
This advantage is clearer for higher percentages of missing values,
as it is shown in Figs. 2(b)–(d). Thus, the feature weighting
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Fig. 2. Missing data imputation in Clouds dataset by KNNimpute and MI-KNNimpute with KI ¼ 5. In (a) and (b), imputed datasets by KNNimpute for 10% and 20% of
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procedure based on the MI concept discards the irrelevant
features, and the selected neighbourhood for missing data
estimation tends to provide reliable values for solving the
classification task.
5.2. Iris dataset

The Iris dataset consists of 50 samples from each of three Iris
flowers species (setosa, virginica and versicolor). Four features are
measured from each sample, they are the length and the width of
sepal and petal [33]. This well-known dataset has been used in
many works, and the classification accuracy without inserting
missing data is around 96297%. In order to select which attributes
will be incomplete, the normalized MI values between each
attribute and the classification task are evaluated: l1 ¼ 0:20,
l2 ¼ 0:07, l3 ¼ 0:39, and l4 ¼ 0:34. For measuring the missing
data influence on the classification performance, different high
percentages of missing values (20%, 30% and 40%) are artificially
inserted into x4, which is one of the most relevant features. Once
the missing values have been generated, the KNN and MI-KNN
methods are used to perform the missing data imputation and the
classification task. We have tested values for KI and KC between 1
and 10. For each missing data percentage, the optimal values of
both parameters have been selected by cross-validation.

In order to observe how the imputation is performed by
KNNimpute and MI-KNNimpute, we first show some graphical
results of both procedures. Fig. 3 shows the imputed datasets by
both methods using KI ¼ 2 when 30% of missing data appears in
x4. We use KI ¼ 2 for clarity on the graphical results. Input vectors
are projected into a two dimensional space formed by the two
most relevant features, x3 and x4. A vertical line denotes
an incomplete pattern with a missing value in x4. From Fig. 3
and comparing both imputation methods, we can see how
MI-KNNimpute provides an imputed dataset which can be
classified easier. It is due to the fact that our proposed imputation
approach selects the K neighbours by considering the input
attribute relevance for classification. Doing this, the missing data
estimation is performed in a local region of the input data space
where the imputed patterns can be easily classified.

Fig. 4 shows the imputed value and the selected neighbours for
a particular incomplete pattern, which is represented by a vertical
line. For both imputation procedures, the imputed pattern is
shown in black, and the two neighbours are show in gray. The
presence of irrelevant attributes hinders the missing data
estimation obtained by KNNimpute, and its selected neighbours
for the local approximation do not provide an appropriate
imputed value for solving the classification task. On the other
hand, the neighbourhood selection with MI-KNNimpute is more
robust to the presence of irrelevant features, and the MI-based
feature weighted procedure leads to provide appropriate imputed
patterns in order to learn the target class variable.

After the graphical results of missing data imputation have
been introduced, the classification task is solved by KNNclassify
and MI-KNNclassify without a previous imputation. The results
are shown in Table 1. As it can be observed, the MI-based classifier
outperforms the KNNclassify algorithm in all simulations, being
more robust to the presence of missing values. In order to evaluate
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Table 1
Test classification accuracy in percent (mean and standard deviation) for Iris

dataset using KNNclassify and MI-KNNclassify (without imputation), for different

percentages of missing values in x4.

Missing data in x4

20% 30% 40%

KNNclassify 95:10� 3:75 94:81� 3:43 94:37� 3:68

MI-KNNclassify 95:48� 3:24 95:33� 3:11 95:18� 3:37

Table 2
Test classification accuracy in percent (mean and standard deviation) for Iris

dataset using KNNclassify and MI-KNNclassify after imputation in x4 is done.

Missing data (%) KNNclassify MI-KNNclassify

KNNimpute MI-KNNimpute KNNimpute MI-KNNimpute

20 96:00� 3:41 96:18� 3:30 96:51� 3:50 96:81� 3:38

30 95:78� 3:39 95:92� 3:43 96:32� 3:48 96:74� 3:42

40 95:48� 3:34 95:77� 3:32 96:09� 3:45 96:40� 3:40
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the influence of the missing data estimation on the classifi-
cation accuracy, imputation is performed by KNNimpute and
MI-KNNimpute, and then, the obtained imputed datasets are
classified using KNNclassify and MI-KNNclassify. According to the
experimental results in Table 2, a previous missing data imputa-
tion helps to improve the test classification accuracy obtained
by KNNclassify and MI-KNNclassify, and MI-KNNimpute is better
than the KNNimpute approach in terms of the classifi-
cation performance. Note that the improvement rate can be small
in absolute terms, but it is not so small if we consider that
problem is almost separable and the number of cases is very
reduced.
5.3. Telugu dataset

Telugu is an Indian vowel recognition problem. This dataset is a
six-class problem composed of 871 cases with three real
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attributes. Before missing data are inserted, the normalized MI
between each input feature and the target class are evaluated:
l1 ¼ 0:32, l2 ¼ 0:42, and l3 ¼ 0:26. It is critical to observe that not
all the features equally contribute to solve the problem.
Considering this fact, missing values have been randomly
introduced in the two most relevant attributes, x1 and x2.
Table 3 shows the classification results obtained without imputa-
tion. We test the following values for KI and KC: 1, 5, 10, 15, 20, 30,
40 and 50. For each percentage of missing data, KC has been
selected by cross-validation. We can see how MI-KNNclassify
clearly outperforms the standard KNN method in all simulations.

After that, we test whether a missing data imputation provides
better classification results. The different values of KI and KC have
also been selected by cross-validation (using the classification
accuracy in the validation set). As we can observe in Table 4, a
missing data estimation helps to improve the classifier accuracy in
all simulations. With low percentage of missing data (from 5% to
30%), the combined approach MI-KNNclassify and MI-KNNimpute
outperforms the other tested procedures. The advantage of using
MI-KNNimpute is not so clear for a higher percentage of missing
data, as we can see with 40%. In this case, KNNimpute is a better
approach for imputation. It is due to the fact that the estimated MI
is not so accurate (we have much less information to compute the
values of MI, i.e., lj).
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Fig. 6. Missing data percentage (%) in the j-th input attribute of Voting dataset.
5.4. Voting dataset

The Voting dataset includes 16 votes for each representative
congressmen of the US house, and the goal is to distinguish
between two possible classes, democrat or republican [33]. The
relevance of all the attributes for solving this binary decision
problem in terms of the normalized MI are shown in Fig. 5. This
problem is composed of 435 patterns, but 203 instances are
incomplete. All input attributes are binary, and all of them present
some unknown values, as it can be observed in Fig. 6.

As in the previous classification scenarios, we check
different values for KI and KC (1, 5, 10, 15, 20 and 30), and the
optimal values for these parameters are chosen by cross-
validation. First, classification is performed without imputing
the missing data. The obtained classification accuracies for
Table 3
Test classification accuracy in percent (mean and standard deviation) for Telugu

data using KNNclassify and MI-KNNclassify (without imputation), for different

percentages of missing values in the attributes x1 and x2.

Missing data in x1 and x2

5% 10% 20% 30% 40%

KNNclassify 83:69� 3:31 82:32� 3:28 76:11� 4:00 72:77� 5:06 68:98� 4:59

MI-KNNclassify 84:61� 3:17 83:23� 2:88 78:30� 4:23 75:53� 4:18 70:00� 4:34

Table 4
Test classification accuracy (mean and standard deviation) for Telugu data using

KNNclassify and MI-KNNclassify after imputation in the attributes x1 and x2 is

done.

Missing data (%) KNNclassify MI-KNNclassify

KNNimpute MI-KNNimpute KNNimpute MI-KNNimpute

5 85:29� 4:23 86:09� 4:01 85:53� 3:33 86:21� 2:80

10 83:78� 4:32 84:25� 4:27 84:38� 4:09 84:60� 3:87

20 78:85� 4:30 79:02� 4:18 78:76� 4:01 79:23� 3:92

30 75:18� 4:27 75:51� 4:06 75:64� 4:00 75:73� 3:90

40 69:91� 4:40 69:60� 4:10 69:99� 3:90 69:69� 3:93
KNNclassify and MI-KNNclassify are showed in Table 5. It is clear
to see that a missing data imputation using the MI concept helps
to improve the classification accuracy.
5.5. Hepatitis dataset

The Hepatitis dataset is composed of 155 patients described
by 19 attributes [33]. Among these patients, 32 patients died
of hepatitis while the remaining ones survived. There are 80
incomplete cases and 5.7% of the input data are missing. Fig. 7
shows the normalized MI between each attribute and the target
class. Whereas, in Fig. 8, the percentages of missing values in the
input features of the this problem are shown. This dataset
contains a good mixture of relevant and irrelevant features which
present different missing data percentages. From both figures, it is
clear to observe that the input attributes do not equally contribute
to solve the classification task, i.e., there are some attributes
which are more relevant than other ones. Additionally, the most
relevant attributes are those features with higher percentages of
missing values. Due to this, a missing data imputation can have a
high positive impact on the classification accuracy.

In this problem, we test the following values for KI and KC: 1, 5,
10, 15, and 20. The optimal values of KI and KC have been
selected by cross-validation. Table 6 shows the obtained classifi-
cation accuracies. Before performing the imputation stage, input
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Table 5
Test classification accuracy in percent (mean and standard deviation) for Voting

data using KNNclassify and MI-KNNclassify.

No imputation KNNimpute MI-KNNimpute

KNNclassify 93:56� 3:76 93:95� 3:50 94:24� 3:42

MI-KNNclassify 94:77� 3:73 94:87� 3:31 95:36� 3:40
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Fig. 7. Normalized MI values ðljÞ between the nineteen input attributes and the

target class in Hepatitis dataset.
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Fig. 8. Missing data percentage (%) in the j-th input attribute of Hepatitis dataset.

Table 6
Test classification accuracy in percent (mean and standard deviation) for Hepatitis

data using KNNclassify and MI-KNNclassify.

No imputation KNNimpute MI-KNNimpute

KNNclassify 80:02� 5:60 84:56� 7:20 85:08� 6:70

MI-KNNclassify 83:20� 5:13 85:70� 6:77 86:25� 6:45
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patterns are directly classified using KNNclassify and MI-
KNNclassify. As it can be observed in Table 6, the MI-KNN
approach outperforms the KNNclassify method. After that,
unknown values are estimated using KNN impute and MI-
KNNimpute. According to the obtained results, the feature
weighting procedure based on the MI improves the capabilities
of the KNN approaches for incomplete data classification. In this
problem, the improvement achieved is larger than in the previous
problems, due to the fact that the missing values mainly appear in
the two most relevant attributes.
6. Conclusions

Missing data is a usual drawback in many real-world applica-
tions of pattern classification. A classical solution is imputation,
i.e., to estimate and to fill in the unknown values using the
available data. A desirable characteristic for a missing data
imputation method is that it is directed towards improving the
classification performance. In this work, we have established a
new KNN method to classify and impute incomplete data based
on the MI concept. The proposed procedure selects the K nearest
cases considering the input attribute relevance to the target class
variable. It is done using a MI-weighted distance metric. During
the missing data estimation stage, this method provides an
imputation oriented to solve the classification task, i.e., the
imputed values are those that contribute to improve the
classification accuracy. Moreover, an effective KNN classifier
based on the MI-weighted distance has also been implemented.
Experimental results on both artificial and real incomplete
databases show the usefulness of the proposed approach.

Some future works are to test other feature relevance
measures, to implement an automatic selection technique for KI

and KC , and to extend the proposed procedure to regression
problems. Moreover, other ongoing research involves the simul-
taneous missing data imputation and classification using LVQ
(learning vector quantization) methods with generalized rele-
vance learning [19,42], which would constitute a sparse version of
the proposed approach.
References

[1] E. Acuna, C. Rodriguez, The treatment of missing values and its effect in the
classifier accuracy, in: D. Banks, L. House, F.R. McMorris, P. Arabie, W. Gaul
(Eds.), Classification, Clustering and Data Mining Applications, Springer,
Berlin, 2004, pp. 639–648.

[2] D.W. Aha (Ed.), Lazy learning, Kluwer Academic Publishers, Norwell, MA, USA,
1997.

[3] D.W. Aha, D.F. Kibler, M.K. Albert, Instance-based learning algorithms,
Machine Learning 6 (1991) 37–66.

[4] P.D. Allison, Missing data, Sage University Papers Series on Quantitative
Applications in the Social Sciences, Thousand Oaks, California, USA, 2001.

[5] G.E. Batista, M.C. Monard, A study of k-nearest neighbour as an imputation
method, in: Second International Conference on Hybrid Intelligent Systems,
vol. 87, Santiago, Chile, 2002, pp. 251–260.

[6] G.E. Batista, M.C. Monard, An analysis of four missing data treatment methods
for supervised learning, Applied Artificial Intelligence 17 (5–6) (2003) 519–533.

[7] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University
Press, Oxford, UK, 1995.

[8] J.G. Brown, Using a multiple imputation technique to merge data sets, Applied
Economics Letters 9 (5) (2002) 311–314.

[9] T.M. Cover, Estimation by the nearest neighbor rule, IEEE Transactions on
Information Theory 14 (1968) 50–55.

[10] T.M. Cover, P.E. Hart, Nearest neighbor pattern classification, IEEE Transac-
tions on Information Theory 13 (1) (1967) 21–27.

[11] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley-Interscience,
New York, 1991.

[12] N. Cristianini, J. Shawe-Taylor, Support Vector Machines and Other Kernel-
Based Learning Methods, Cambridge University Press, Cambridge, 2000.

[13] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley-Interscience, New
York, 2000.

[14] S.A. Dudani, The distance-weighted k-nearest-neighbor rule, IEEE Transac-
tions on Systems, Man and Cybernetics 6 (4) (1976) 325–327.

[15] D. Francois, F. Rossi, V. Wertz, M. Verleysen, Resampling methods for
parameter-free and robust feature selection with mutual information,
Neurocomputing 70 (7–9) (2007) 1276–1288.

[16] B. Gabrys, Neuro-fuzzy approach to processing inputs with missing values in
pattern recognition problems, International Journal of Approximate Reason-
ing 30 (3) (2002) 149–179.



ARTICLE IN PRESS

P.J. Garcı́a-Laencina et al. / Neurocomputing 72 (2009) 1483–1493 1493
[17] Z. Ghahramani, M.I. Jordan, Supervised learning from incomplete data via an
EM approach, in: J.D. Cowan, G. Tesauro, J. Alspector (Eds.), Advances in NIPS,
vol. 6, Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1994, pp. 120–127.

[18] M. Halatchev, L. Gruenwald, Estimating missing values in related sensor data
streams, in: Jayant, R. Haritsa, T.M. Vijayaraman (Eds.), COMAD, Computer
Society of India, 2005, pp. 83–94.

[19] B. Hammer, T. Villmann, Generalized relevance learning vector quantization,
Neural Networks 15 (8–9) (2002) 1059–1068.

[20] K. Hechenbichler, K. Schliep, Weighted k-nearest-neighbor techniques and
ordinal classification. Technical Report, Ludwig–Maximilians University
Munich, 2007.

[21] H. Ishibuchi, A. Miyazaki, K. Kwon, H. Tanaka, Learning from incomplete
training data with missing values and medical application, in: Proceedings of
IEEE International Joint Conference on Neural Networks, 1993, pp. 1871–1874.

[22] J.M. Jerez, I. Molina, J.L. Subirats, L. Franco, Missing data imputation in breast
cancer prognosis, in: BioMed’06: Proceedings of the 24th IASTED Interna-
tional Conference on Biomedical Engineering, ACTA Press, Anaheim, CA, USA,
2006, pp. 323–328.

[23] H. Kim, G.H. Golub, H. Park, Imputation of missing values in DNA microarray
gene expression data, in: IEEE Computational Systems Bioinformatics
Conference, 2004.

[24] H. Kim, G.H. Golub, H. Park, Missing value estimation for DNA microarray
gene expression data: local least squares imputation, Bioinformatics 21 (2)
(2005) 187–198.

[25] S. Kullback, Information Theory and Statistics, Wiley, New York, 1959.
[26] N. Kwak, C.-H. Choi, Input feature selection by mutual information based on

Parzen window, IEEE Transactions on Pattern Analysis and Machine
Intelligence 24 (12) (2002) 1667–1671.

[27] R.J.A. Little, Methods for handling missing values in clinical trials, Journal of
rheumatology 26 (8) (1999) 1654–1656.

[28] R.J.A. Little, D.B. Rubin, Statistical Analysis with Missing Data, second ed.,
Wiley, NJ, USA, 2002.

[29] M.K. Markey, A. Patel, Impact of missing data in training artificial neural
networks for computer-aided diagnosis, in: International Conference on
Machine Learning and Applications, December 2004, pp. 351–354.

[30] G.J. McLachlan, T. Krishnan, The EM Algorithm and Extensions, Wiley, New
York, 1997.

[31] T.M. Mitchell, Machine Learning, McGraw-Hill, New York, 1997.
[32] S. Narayanan, R.J. Marks II, J.L. Vian, J.J. Choi, M.A. El-Sharkawi, B.B. Thompson,

Set constraint discovery: missing sensor data restoration using auto-associa-
tive regression machines, in: Proceedings of the 2002 International Joint
Conference on Neural Networks, Honolulu, May 2002, pp. 2872–2877.

[33] D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, UCI repository of machine
learning databases, 1998.

[34] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, Los
Altos, CA, 1993.

[35] F. Rossi, A. Lendasse, D. Francois, V. Wertz, M. Verleysen, Mutual information
for the selection of relevant variables in spectrometric nonlinear modeling,
Chemometrics and Intelligent Laboratory Systems 80 (2006) 215–226.

[36] D.B. Rubin, Multiple Imputation for Nonresponse in Surveys, Wiley, New York,
1987.

[37] J.L. Schafer, Analysis of Incomplete Multivariate Data, Chapman & Hall,
Florida, USA, 1997.

[38] M.S.B. Sehgal, I. Gondal, L. Dooley, Collateral missing value imputation: a new
robust missing value estimation algorithm for microarray data, Bioinfor-
matics 21 (10) (2005) 2417–2423.

[39] Y. Song, J. Huang, D. Zhou, H. Zha, C.L. Giles, IKNN: Informative k-nearest
neighbor pattern classification, in: 11th European Conference on Principles
and Practice of Knowledge Discovery in Databases, Warsaw, Poland, 2007,
pp. 248–264.

[40] O. Troyanskaya, M. Cantor, O. Alter, G. Sherlock, P. Brown, D. Botstein, R.
Tibshirani, T. Hastie, R. Altman, Missing value estimation methods for DNA
microarrays, Bioinformatics 17 (6) (2001) 520–525.

[41] S. Tsumoto, Problems with mining medical data, in: 24th International
Computer Software and Applications Conference, IEEE Computer Society,
Washington, DC, USA, 2000, pp. 467–468.

[42] T. Villmann, F.-M. Schleif, B. Hammer, Comparison of relevance learning
vector quantization with other metric adaptive classification methods, Neural
Networks 19 (5) (2006) 610–622.

[43] K. Weinberger, J. Blitzer, L. Saul, Distance metric learning for large margin
nearest neighbor classification, in: Y. Weiss, B. Schölkopf, J. Platt (Eds.),
Advances in NIPS 18, MIT Press, Cambridge, MA, 2006, pp. 1473–1480.

[44] D. Wettschereck, D.W. Aha, T. Mohri, A review and empirical evaluation of
feature weighting methods for a class of lazy learning algorithms, Artificial
Intelligence Review 11 (1–5) (1997) 273–314.
Pedro J. Garcı́a-Laencina was born in 1981 in
Cartagena, Spain. He received the M.S. degree in
Telecommunication Engineering in 2004 from Univer-
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