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a b s t r a c t

Mode estimation is extensively studied in statistics. One of the most widely used methods of mode

estimation is hill-climbing on a kernel density estimator with gradient ascent or a fixed-point approach.

Within this framework, Gaussian kernels proves to be a natural and intuitive option for non-parametric

density estimation. This paper shows that in the case of high-dimensional data, mode estimation can be

improved by using differently shaped kernels, called flat-top kernels. The improvement are illustrated

with an image denoising application, in which pictures are decomposed into small patches, i.e. groups

of adjacent pixels, that are vectorized. Noise in the patches can be attenuated by substituting them with

the closest mode in the observed distribution of patches. The quality of the denoised picture then

depends on the accuracy of mode estimation in a high-dimensional space. Experiments conducted on

usual benchmarks in the image processing community show that flat-top kernels outperform the

Gaussian one.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Mode estimation is of utmost importance in many domains,
and particularly in signal and image processing. These last two
fields have a great place in our every day life, as widely used
devices in multimedia, entertainment and professional applica-
tions in medicine, geography, or security use advanced signal
processing and image denoising techniques.

One of the most striking use of mode estimation methods is
image denoising. Noise in pictures can arise because of poor light
condition, short exposure and low photon detection, among
others. The origin of this noise determines its statistical proper-
ties; it can be either additive or multiplicative, Gaussian, Poisso-
nian, or follow a more complex model.

Some of the most studied denoising methods have been
developed in the field of mode estimation [1–4] and robust
statistics [5,6]. The underlying assumption is that the noisefree
data should consist of a few repeated patterns, at least locally or
temporarily. From a statistical point of view, the data distribution
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has therefore several modes, whose width depends on the noise
standard deviation. Hence, under usual noise assumptions, the
top of any mode indicates a location that should correspond to a
noisefree pattern. In practice, mode estimation is achieved by
running a hill-climbing procedure [2,3] on a kernel density
estimator (KDE) [1]. This paradigm drives many filters in image
processing. The mean-shift [2,3], local M-smoothers [7,8] and
bilateral filtering [9,10] are the most known among these filters.

Denoising by mode estimation shows its full power when it is
applied on multidimensional data. As in classification tasks,
adding dimensions is thought of as a mean to increase the gap
between the modes, and therefore the probability to identify
them correctly. In most publications, hill-climbing on multivari-
ate probability density functions (PDFs) involves a straightfor-
ward generalization of Parzen’s window estimator [1,11].
Gaussian kernels are used in monodimensional as well as multi-
dimensional spaces. In the case of image filtering, instead of single
pixels, the filtering process uses blocks of images called patches,
which are high-dimensional vectors. The non-local means
(NLmeans) [12,13], unsupervised information-theoric adaptative
filtering (UINTA) [14] and Bayesian approaches [15] are the most
popular of these patch-based filters. Adaptive patch sizes [16] and
iterative updates [16,17] have also been investigated.

In mode estimation methods, pixels (or patches) are compared
using a notion of similarity. This similarity is a function (typically
a Gaussian kernel) of the Euclidean distance between the inten-
sity of patches to be compared. The literature contains many
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publications that give recommendations about the choice of the
optimal kernel and bandwidth [18–20] for the one-dimensional
case (pixel version of the mode estimation filters). As the patches
are high-dimensional vectors, their distance is measured in a
high-dimensional space and is subject to the curse of dimension-
ality [21,22]. The phenomenon of norm and distance concentra-
tion [23] is of particular interest, as KDEs involve pairwise
distances in radial kernels.

Many other paradigms have been used to remove or attenuate
perturbations in order to recover the true image, like wave-
lets [24–26], anisotropic diffusion [27,28] and partial differential
equations [8,29]. Total variation denoising [30–32] uses a regulariza-
tion method balancing a smoothness and fidelity term to produce a
denoising effect. Recently, wavelets and collaborative filtering were
combined to produce BM3D [33], a new filtering algorithm that
provides extremely competitive denoising performances.

This paper is an extended version of [34]: its goal is to show
that using flat-top kernels improves the mode estimation in
high-dimensional data, and in particular, improves the filtering
results compared to the statistical filters using a Gaussian kernel.
Taking the norm concentration into account allows us to define
kernels that are shown experimentally to achieve better mode
estimation than the usual Gaussian kernel. Visually, these kernels
happen to have the shape of a plateau, hence the name ‘flat-top’
kernel.

The rest of this paper is organized as follows. Section 2
introduces the density estimation using kernels in the multi-
dimensional case. Section 3 shows how the hill-climbing mode
estimation procedure can be derived from the density estimation,
and how image denoising is achieved using this method. Section 4
deals with the counter-intuitive properties of norms and dis-
tances in high-dimensional spaces. It also defines similarity
kernels that take these properties into account. Section 5 intro-
duces the image filtering algorithms based on mode estimation by
hill-climbing the kernel density estimator. Section 6 experimen-
tally compares the denoising performance of patch-based filtering
with either a Gaussian kernel or the proposed similarity func-
tions. Finally, Section 7 draws the conclusions.
2. Kernel density estimators

The most widely known KDE is undoubtedly Parzen’s window
estimator [1]. In the multidimensional case, this non-parametric
estimator approximates an unknown PDF pðxÞ defined on RD,
from which a finite sample denoted by X¼ ½xi�1r irN is drawn.
The estimator can be written as

p̂ðxiÞ ¼ C
XN

j ¼ 1

CsðJxi�xjJ
2
2Þ, ð1Þ

where C is a normalization factor that ensures that
R

p̂ðxÞ dx¼ 1
and kernel Cs is a positive and monotonically decreasing func-
tion. J � J2 denotes the Euclidean norm, and s is a bandwidth that
controls the estimator smoothness. As the argument of Cs is a
norm, the resulting function of x is a radial kernel. One usually
chooses Cs as proportional to a Gaussian function, that is,
CsðuÞ ¼ expð�u2=2s2Þ.

Intuitively, the KDE transforms the discrete PDF of the
observed sample, which consists of a finite set of Dirac impulses,
into a continuous PDF. For this purpose, each impulse is blurred
by replacing it with a weighted, smooth, narrow, and monomodal
PDF, such as a Gaussian one.

There exist of course many refinements of Parzen’s window
estimator. The main differences lie in the type of kernel or in the
bandwidth determination [18–20].
3. Mode estimation

As the modes of PDF p(x) correspond to its local maxima,
locating the modes of KDE p̂ðxÞ is a way to approximate these
maxima. For this purpose, we can run a so-called hill-climbing
procedure on p̂ðxÞ [2]. In practice, we can use simple techniques
such as a gradient ascent or fixed-point iterations. The different
maxima can be reached by changing the initialization point.

Obviously, the KDE smoothness is critical in this process. If it is
too low, then the hill-climbing procedure is likely to get stuck in
spurious local maxima, leading to insufficient noise reduction.
Running the procedure several times with different initializations
around the same actual mode of pðxÞ shows that the mode
estimator has a high variance in this case. In contrast, if the
KDE is too smooth, then close modes will not be distinguished
anymore and their estimates will be biased. Mode seeking usually
requires a smoother KDE and thus a larger kernel bandwidth than
in PDF approximation tasks. Indeed the accuracy of the mode
locations is important in this case, not the discrepancy between
the estimated PDF and the true one.

Equating the derivative of Eq. (1) with 0 provides a fixed-point
update that is written as

x̂
ðtþ1Þ
¼

PN
i ¼ 1 Cs

0ðJx̂
ðtÞ
�xiJ

2
2ÞxiPN

i ¼ 1 Cs0ðJx̂ðtÞ�xiJ
2
2Þ,

ð2Þ

where t is the iteration index. If x̂ð0Þ ¼ xi, then iterating the update
amounts to climbing toward the closest hill top on the PDF estimate.
The same kind of mode estimator can also be derived from robust
statistics [5]. Robust statistics aims at finding estimators that are
robust against outliers. In this case, this can be achieved by replacing
Jx̂
ðtÞ
�xiJ

2
2=2s2 by upper bounded functions such as Leclerc’s

s2ð1�expð�Jx̂ðtÞ�xiJ
2
2=2s2ÞÞ. The upper bound limits the influence

of the outliers in the mode estimation. The fixed-point maximization
of this generalized non-convex estimator leads to a similar update as
the hill-climbing procedure on a KDE.
4. Norms, distances, and similarities in high-dimensional
spaces

High-dimensional spaces have weird and counter-intuitive
properties. The curse of dimensionality [35,36] refers to the
ensemble of surprising behaviours observed in high-dimensional
spaces. One of these phenomena is the so-called norm concentra-

tion: when increasing the dimensionality of the space, the mean
of usual norms and distances increases, but their variance does
not change. Thus, in high-dimensional spaces, the relative error
made by considering the expectation of the norms of a specific
norm value is very small and gets smaller and smaller as the
dimension increases: the minimum and maximum distances look
also similar. The discrimination power of the norm is thus less
important in high-dimensional spaces. For instance, in the case of
a D-dimensional zero-mean unit-variance Gaussian distribution,
Euclidean norms are wD-distributed, as illustrated in Fig. 1: if x1,
x2 �Nð0,1Þ are two independent D-dimensional normal distribu-
tions, then the Euclidean distance between x1 and x2 isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jx1�x2J

2
q

. As the sum of the square of two independent normal

variables follows a w2 distribution, the Euclidean distance of x1

and x2 thus follows a w distribution.
The aim of a similarity measure is to evaluate how close two

vectors are. Intuitively, a similarity measure should be inversely
proportional to the distance between the vectors, and two vectors
should be considered as similar if they are drawn from the same
mode. Let us assume that data xi and xj are drawn from a
distribution with a single mode located at li. A good similarity
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measure between xi and xj should be high for values of Jxi�xjJ2

comprised between 0 and the most probable similarity measure
in this mode. This measure of similarity can result from the
application of a decaying kernel to pairwise distances. Among all
the possible kernel choices, the most widely used is the Gaussian
function csðuÞ ¼ expð�u2=2sÞ. The application of the Gaussian
function maps Euclidean distances within the interval ½0,1�. In
order to be discriminant, the similarity measure should be close
to 1 for distances between 0 and quantile 0.05 of the distance
distribution, and close to 0 beyond quantile 0.95.

In the next section, it will be shown that, while the choice of
the Gaussian kernel is natural in one-dimensional spaces, it is not
efficient in high-dimensional spaces [38]. Fig. 2 (left) illustrates
the distance distribution in high-dimensional spaces and some
Gaussian kernels with varying s. It is easy to see that the
Gaussian kernel does not have a high discriminant power: it is
not possible to find a Gaussian kernel in which most of the
similarity decay occurs within the interval given by quantiles 5%
and 95% of the distance distribution.
Fig. 1. The Euclidean norm of a random D-dimensional vector x drawn from a

zero-mean identity-covariance normal distribution has a wD distribution.

DAf1,2,3,5,10,20g, from left to right.

Fig. 2. Pairwise distances between points that are all drawn from the same Gaussian di

considered to be similar to each other. A useful similarity measure should thus remain

the distribution right tail. Any observed distance in the right tail should be associated w

left, a Gaussian similarity is obviously too smooth and unable to drop quickly enough

right, a flat-top kernel taking pðJxJ2
Þ into account behaves more appropriately (sAf1:0
In order to find a kernel that satisfies the previous condi-
ions and is discriminant in high-dimensional spaces, let
us assume that the data consist of a sample drawn from a mix-
ture of M modes with 1r jrM. Let us define the simi-
larity between xi and xj as the probability of observing a larger
distance than the one that is measured. That probability is
simðxi,xjÞ ¼ P½

ffiffiffi
2
p

scrJxi�xjJ2�, where c� wD. The similarity is
thus given by the complementary cumulative distribution func-
tion (CCDF) of a scaled wD variable:

simðxi,xjÞ ¼

Z 1
Jxi�xjJ2

ffiffiffi
2
p

GðD=2Þ

c

2s

� �D�1

exp �
c2

4s2

� �
dc¼ Q

c2

4s2
,
D

2

� �
,

ð3Þ

where Q is the regularized upper incomplete Gamma func-
tion [37]. The Gaussian kernel corresponds to the case D¼2.

Parameter D controls the shape of the kernel; with D¼2,
the kernel is identical to a Gaussian kernel. As D increases, the
slope of the kernel gets steeper and moves to the right.
With kernel (3), the similarity equals 0.5 when the distance
equals the median value of the distribution; depending on how
the modes overlap, this may not be the optimal choice. The
second parameter s can then be adjusted in the same way as the
bandwidth is adjusted and/or optimized in Gaussian kernels.
Kernel (3) is illustrated in Fig. 2 (right); the slope of the kernel
function can easily be adjusted to be located in the main part of
the distance distribution. This kernel is thus able to satisfy the
conditions of a discriminant similarity function in a high-
dimensional space.

The CCDF (3) is expensive to compute and it can prove useful
to approximate it with the CCDF of an ‘all-purpose’ distribution,
such as the Burr type XII distribution [39]. The scaled CCDF of the
Burr type XII distribution is given by Fðb,l,t,yÞ ¼ ð1�ðb=lÞtÞ�y. A
good approximation of the CCDF of the wD distribution can be
found with t¼D, y¼�1, and l¼

ffiffiffi
2
p

s. The Burr CCDF reproduces
the shape of the wD CCDF, with first a flat top, a steep descent, and
a thin tail.

Fig. 3 represents the distance distributions between the
patches in the Lena picture (see Fig. 4), for patches of dimension
D¼{1,25,100} (left, central, and right picture respectively.
See Section 5 for the definition of the patches). The distance
concentration phenomenon is indeed observed: as the dimension
increases, the mean of the distance distribution moves away from
stribution have a distribution given by pðJxJ2
Þ (see also Fig. 1). All these points are

close to one up to main mode and then decrease fast in order to be close to zero in

ith dissimilar points, as its actual probability to occur is otherwise very low. On the

between the main mode and the right tail, whatever the bandwidth is (s). On the

,1:1,1:2,1:3,1:4g). (Similarity functions are scaled to 0:2 for readability purpose.)



Fig. 3. Pairwise Euclidean distances between patches of Lena (see Fig. 6) picture. The modes of the empirical distance distributions move away from 0 as dimension of the

patches increases. Upper row. On the left: one-dimensional patches (single pixels); right: 5�5 patches, D¼25; lower row: 11�11 patches, D¼121.

Fig. 4. Original images. Upper row, left: Couple, middle: Lena, right: Fingerprint. Lower row, left: Hill, middle: House, right: Boat.
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Table 1
Mean root mean square error, variance of root mean square error, mean peak

signal to noise ratio, optimal s, and optimal patch size for 100 repetitions of the

A. De Decker et al. / Neurocomputing 74 (2011) 1402–14101406
zero. Observing these distributions shows how important it is to
deal with the problem of dimensionality in patch-based image
denoising methods.
Lena image.

Lena

RMSE var(RMSE) PSNR s k

snoise ¼ 20

Chi 6.3155 0.1035 32.1227 1.3423 7

Gauss 6.7308 0.1057 31.5695 0.7679 7

Burr 6.2168 0.1104 32.2594 1.5843 9

snoise ¼ 30

Chi 8.8994 0.1854 30.4949 2.0288 9

Gauss 10.1121 0.2443 29.5025 1.1297 7

Burr 9.0007 0.2493 30.4724 2.2849 9

snoise ¼ 40

Chi 15.8218 0.751 29.1436 2.685 9

Gauss 18.2941 0.7446 28.034 1.529 7

Burr 16.5301 0.7921 29.0453 2.9998 9

1 These images can be downloaded at http://www.cs.tut.fi/�foi/GCF-BM3D/

index.html#ref_software.
5. Image filtering by mode estimation

Nowadays, image filtering can be found in a wide range of
applications, from multimedia to entertainment and professional
imaging. The aim of a good denoising algorithm is to recover the
true noiseless image from the noisy observed one. Let us define an
image as a set of pixels located on a regular grid. Each pixel of the
image is associated with a set of coordinates I. The coordinate
vector iA I identifies uniquely each pixel. This pixel is called
abusively the ith pixel. The observed intensity of each pixel is
given by

xi ¼ yiþei, ð4Þ

where yi is the noisefree pixel and ei is the noise, independent and
identically distributed for each pixel. The noise is assumed to be
Gaussian with zero mean and standard deviation n : ei � Gð0,n2Þ.
In practice, a combination of several physical phenomena pro-
duces the noise, and the assumptions of independence and
normality are often invalidated. However, in most cases, using a
Gaussian noise hypothesis provides a simple and powerful back-
ground to develop efficient filtering algorithms. Furthermore, if
the noise is clearly different from the Gaussian hypothesis, it is
often possible to come back to a Gaussian noise problem by using
an appropriate variance stabilizing transform (VST) [42], like the
Fisz or Anscombe transforms. The aim of an image filtering
method is to find ŷi, that is the best possible approximation of
yi, from the observed xi, 8iA I. A good filtering algorithm should
have a strong denoising effect while preserving the edges and
salient features in the images.

In practice, patch-based filters based on mode estimation like
the non-local means [12] can be derived from robust statistics.
These filters work by averaging pixels sharing similar neighbour-
hoods. To identify similar neighbourhoods, similarities between
patches are computed using a kernel whose argument is the
Euclidean distance between two vectorized image patches. Let us
define an image O. The distance between the ith and jth pixel is
then defined as Ji�jJ1. A (square) neighbourhood around the ith
pixel is defined as Pi ¼ fj s:t:Ji�jJ1rrg, where r is the radius of
the neighbourhood. The intensity of the ith pixel is denoted by xi.
A patch can then be denoted by xi ¼ ½xj�jAPi

.
Let us write a local kernel density estimation on the patch

space p̂ðxiÞ ¼
P

jA ICsðJxi�xjJ
2
2=2Þ. The fixed-point update is

found by equating to 0 the partial derivative with respect to xk:

xðtþ1Þ
k ¼

P
iAPk

P
jA IwijCs

0ðJxðtÞi �xjJ
2
2Þx
ðtÞ
jþ i�kP

iAPk

P
jA IwijCs

0
ðJxðtÞi �xjJ

2
2Þ

, ð5Þ

where t is the iteration index and xk
(0) is initialized to xk. In images,

it is convenient to assume that the content of the images is
similar locally only, so most of the important pixels are located in
the neighbourhood of the pixel to be filtered. For this reason, wij, a
decaying function of Ji�jJ2 chosen in order to keep an acceptable
computational load is introduced. This decaying function is
usually chosen as a Gaussian kernel with width r.

Eq. (5) is in fact an iterative generalization of the well known
non-local means [12]. Many variations of this filter exists such as
UINTA [14], SAFIR [40], and many others [15–17,41,43,44]. How-
ever, most of these variations still use the Gaussian kernel as a
measure of similarity, even when using high-dimensional vectors
as patches. Some attempts at reducing the effect of the curse of
dimensionality can however be found in the literature: [45] uses a
principal component analysis in the patch space in order to
reduce the dimension. In [15], it is suggested to shift the
distribution of patch distances toward zero, just by subtracting
a dimensionality-dependent constant from each distance.

In this paper, we propose to fight the curse of dimensionality
by replacing the classical Gaussian kernel CsðuÞ ¼ expð�u2=2s2Þ

with

CsðuÞ ¼

Z u

0
Q

v2

4s2
,
D

2

� �
v dv ð6Þ

or by its corresponding Burr type XII approximation. Eq. (6) is
heavy to compute and makes the filtering process slower if
evaluated for each patch to patch comparison. However, our
implementation tabulates the kernel values for a given set of
distances before the image is filtered. During the filtering process,
when an evaluation of the kernel is needed, the closest pre-
computed value of the kernel is used. With this method, filtering
with the different kernels is virtually equivalent in terms of
computational load.
6. Experiments

The experiments feature six images with 512�512 pixels and
256 gray levels. These images (Lena, Couple, Hill, House, Finger-
print and Boat images) are widely used in the image processing
community1 (see Fig. 4).

These images are polluted by additive Gaussian white noise
with standard deviation snoise ¼ 20, 30 and 40. For each image,
different parameters of the filter are tested: k is the patch size
varies from 3�3 to 9�9 patches and r is fixed as a Gaussian
kernel with swij

¼ 10 pixels. The width s of kernel C is optimized
in order to minimise the mean RMSE on 100 independent
repetitions of the polluted images, for each patch size. The root
mean square error (RMSE), its variance and the peak signal to
noise ratio (PSNR) are then evaluated on a new set of 100 images,
polluted with the same noise model. This procedure is applied on
each image, for the traditional Gaussian kernel, the w CCDF, and
the Burr type XII CCDF. Results are reported in Tables 1–6: for
each image it presents the mean of the RMSE, its variance and the
mean PSNR over the 100 repetitions for the optimal s and k used
to obtain these results. A statistical test has been performed to
evaluate the significance of these results: for all images and all
noise levels, the denoising effects resulting from the use of the w,
and of the Burr kernels have been tested as significantly better

http://www.cs.tut.fi/&sim;foi/GCF-BM3D/index.html#ref_software
http://www.cs.tut.fi/&sim;foi/GCF-BM3D/index.html#ref_software
http://www.cs.tut.fi/&sim;foi/GCF-BM3D/index.html#ref_software


Table 4
Mean root mean square error, variance of root mean square error, mean peak

signal to noise ratio, optimal s, and optimal patch size for 100 repetitions of the

Hill image.

Hill

RMSE var(RMSE) PSNR s k

snoise ¼ 20

Chi 8.1808 0.0004 29.8749 1.2259 5

Gauss 8.5442 0.0004 29.4973 0.7412 5

Burr 8.2256 0.0006 29.8274 1.5051 7

snoise ¼ 30

Chi 9.8072 0.0007 28.2998 1.9584 9

Gauss 10.4783 0.0007 27.725 1.128 5

Burr 9.8617 0.0009 28.2518 2.2206 9

snoise ¼ 40

Chi 15.8218 0.2138 24.142 2.4776 9

Gauss 18.2941 0.1625 22.8825 1.6768 5

Burr 16.5301 0.1749 23.7626 3.1002 9

Table 5
Mean root mean square error, variance of root mean square error, mean peak

signal to noise ratio, optimal s, and optimal patch size for 100 repetitions of the

House image.

House

RMSE var(RMSE) PSNR s k

snoise ¼ 20

Chi 6.0352 0.0026 32.5167 1.3148 5

Gauss 6.4571 0.0026 31.9297 0.8258 5

Burr 5.9574 0.0033 32.6293 1.5726 9

snoise ¼ 30

Chi 7.42 0.0064 30.7222 2.026 9

Gauss 8.5187 0.0057 29.523 1.1927 5

Burr 7.4609 0.0064 30.6744 2.2742 9

snoise ¼ 40

Chi 8.8442 0.0103 29.197 2.6423 9

Gauss 10.4509 0.0091 27.7473 1.6001 5

Burr 9.0149 0.0103 29.031 2.9645 9

Table 6
Mean root mean square error, variance of root mean square error, mean peak

signal to noise ratio, optimal s, and optimal patch size for 100 repetitions of the

Boat image.

Boat

RMSE var(RMSE) PSNR s k

snoise ¼ 20

Chi 8.3176 0.0005 29.7308 1.2466 5

Gauss 8.6265 0.0004 29.4141 0.7645 5

Burr 8.268 0.0004 29.7828 1.5143 5

snoise ¼ 30

Chi 10.1054 0.0011 28.0397 1.933 7

Gauss 10.8238 0.0008 27.4432 1.1342 5

Burr 10.1124 0.0013 28.0337 2.2782 9

snoise ¼ 40

Chi 11.6133 0.0029 26.8316 2.635 9

Gauss 12.7309 0.0019 26.0336 1.5317 5

Burr 11.6831 0.0026 26.7796 2.9844 9

Table 3
Mean root mean square error, variance of root mean square error, mean peak

signal to noise ratio, optimal s, and optimal patch size for 100 repetitions of the

Fingerprint image.

Fingerprint

RMSE var(RMSE) PSNR s k

snoise ¼ 20

Chi 10.9277 0.0006 27.3602 1.3116 5

Gauss 11.5619 0.0007 26.8702 0.824 5

Burr 10.6613 0.0008 27.5745 1.6983 9

snoise ¼ 30

Chi 13.5576 0.0008 25.4871 1.9951 7

Gauss 15.0958 0.0012 24.5537 1.1413 5

Burr 13.392 0.0011 25.5939 2.3645 9

snoise ¼ 40

Chi 15.6762 0.0019 24.226 2.6941 9

Gauss 18.3237 0.0027 22.8705 1.4124 9

Burr 15.7793 0.0026 24.169 3.0417 9

Table 2
Mean root mean square error, variance of root mean square error, mean peak

signal to noise ratio, optimal s, and optimal patch size for 100 repetitions of the

Couple image.

Couple

RMSE var(RMSE) PSNR s k

snoise ¼ 20

Chi 8.5052 0.0006 29.5371 1.2306 5

Gauss 8.9471 0.0005 29.0972 0.7488 5

Burr 8.4413 0.0006 29.6026 1.5394 7

snoise ¼ 30

Chi 10.4926 0.0012 27.7131 1.9127 7

Gauss 11.4348 0.0011 26.9662 1.1082 5

Burr 10.5253 0.0018 27.686 2.2674 9

snoise ¼ 40

Chi 12.1315 0.0017 26.4525 2.5988 9

Gauss 13.4349 0.0011 25.5661 1.5003 5

Burr 12.2984 0.0022 26.3338 2.9443 9
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than in the Gaussian kernel case (po0:01 on all cases). The
optimal value of s is larger in the case of the flat-top kernels,
because of the steeper slope of these kernels. The difference
between the results increases as the noise increases, suggesting
that the gain of performances is more important as the noise is
intense.
Example results for the Lena image are shown in Figs. 5–7. The
images were cropped in order to be able to better see the fine
details of the images. For all noise levels, the visual quality is
slightly better when the flat-top kernels are used instead of the
Gaussian kernel. This impression gets stronger as the noise level
increases, as the RMSE and PSNR suggest.
7. Conclusions

Mode estimation is a useful tool in signal processing and
image denoising, especially for denoising tasks. Modes are typi-
cally searched by running a hill-climbing procedure on the kernel
density estimator. This iterative approach can be used in mono-
dimensional as well as multidimensional spaces. However, this
paper has shown that the generalization to several dimensions is
not as straightforward as it seems at first glance. More specifi-
cally, the widely used Gaussian kernel, interpreted as a local
similarity measure, no longer appears to be optimal and shows a
poor discrimination power. Taking into account the phenomenon
of norm concentration suggests on the other hand that flat-top
kernels are more appropriate in high-dimensional spaces.

The theoretical developments are supported and illustrated
with an image denoising application. Data are generated by
decomposing pictures into overlapping patches, which are then
vectorized. Denoising is performed by replacing each patch with



Fig. 6. Examples of results obtained for the Lena image with snoise ¼ 30. Upper row, left: noisy image. Right: denoised image with Gaussian kernel. Lower row, left:

denoised image with Chi kernel. Right: denoised image with Burr kernel.

Fig. 5. Examples of results obtained for the Lena image with snoise ¼ 20. Upper row, left: noisy image. Right: denoised image with Gaussian kernel. Lower row, left:

denoised image with Chi kernel. Right: denoised image with Burr kernel.
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Fig. 7. Examples of results obtained for the Lena image with snoise ¼ 40. Upper row, left: noisy image. Right: denoised image with Gaussian kernel. Lower row, left:

denoised image with Chi kernel. Right: denoised image with Burr kernel.
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its closest mode in the observed image-specific patch distribution.
Eventually, the resulting patches are reassembled into a denoised
image. The experimental section shows that the kernel shape has
a significant impact on quantitative performance measures. The
experiments feature six different images, three noise levels, and
100 noise samples for three different kernels. In each case, the
flat-top kernels outperform the Gaussian kernel.
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1—Panthéon-Sorbonne in 2002–2004. He is a former
Research Director with the Belgian FNRS (Fonds
National de la Recherche Scientifique) and a Professor
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