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a b s t r a c t

Mutual information is a widely used performance criterion for filter feature selection. However, despite

its popularity and its appealing properties, mutual information is not always the most appropriate

criterion. Indeed, contrary to what is sometimes hypothesized in the literature, looking for a feature

subset maximizing the mutual information does not always guarantee to decrease the misclassification

probability, which is often the objective one is interested in. The first objective of this paper is thus to

clearly illustrate this potential inadequacy and to emphasize the fact that the mutual information

remains a heuristic, coming with no guarantee in terms of classification accuracy. Through extensive

experiments, a deeper analysis of the cases for which the mutual information is not a suitable criterion

is then conducted. This analysis allows us to confirm the general interest of the mutual information for

feature selection. It also helps us better apprehending the behaviour of mutual information throughout

a feature selection process and consequently making a better use of it as a feature selection criterion.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Feature selection is known to be a preprocessing technique of
fundamental importance for many applications in machine learn-
ing, pattern recognition or data mining. Indeed, dealing with
high-dimensional data is a particularly hard task, in practice, due
to many problems and counter-intuitive phenomena such as the
empty space phenomenon and the concentration of distances
[1,2]. Reducing the dimensionality of the datasets to a relatively
low number of features is thus often necessary if one wants to
build, for instance, efficient classification models. While efficient
projection techniques can be used for dimensionality reduction,
feature selection has the advantage of preserving the original
features, which makes it possible to build easily interpretable
models. Such an interpretability is highly appreciated, for
instance, in the industrial and medical areas.

Among the various approaches to feature selection, filter
methods are very popular and often used in practice. Filter
methods are based on a relevance criterion independent of any
classification model. They are thus easy to use and generally
exhibit a low computational cost, especially when compared with
ll rights reserved.
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wrapper methods which try to directly maximize the perfor-
mances of a given prediction model. Filter methods have the
additional advantage of being more general than wrapper or
embedded methods, which perform simultaneously feature selec-
tion and prediction, in the sense that filters can be used in
combination with any prediction model. The reader interested
in feature selection is referred to [3] for a nice overview of
this topic.

Since the seminal work of Battiti [4], the mutual information
[5] has become one of the most widely used criteria for feature
selection; see for example the following works [6–8]. In [6,7], the
authors try to determine a set of maximally informative features
which are mutually as non-redundant as possible, using the
maximum relevance minimum redundancy principle and the
conditional mutual information, respectively. In [8], a forward/
backward search procedure is used to find the most relevant
variables in spectroscopic modelling.

Besides performing often well in practice, the mutual informa-
tion possesses other properties, detailed later in the paper,
making it particularly well-suited for the feature selection task.
These properties include the existence of bounds relating the
mutual information to the probability of classification error.
However, for a certain number of classification problems, mutual
information is not the most appropriate choice of relevance
criterion. Indeed, despite what is sometimes hypothesized, choos-
ing a subset of features maximising the mutual information is not
always equivalent to choosing a subset of features minimizing the
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misclassification probability, which is generally the quantity one
is eventually interested in.

The first objective of this paper is thus to clearly point out this
fact, by illustrating it through an intuitive example. Moreover,
this work also aims at characterizing the problems for which the
mutual information criterion is likely to fail, and in this case to
which extend the loss in misclassification probability is impor-
tant. To this end, extensive experiments have been carried out on
both continuous and categorical datasets, either artificially gen-
erated or corresponding to real-world problems. The idea is to
eventually assess the potential interest of the mutual information
as a feature selection criterion, despite its non-optimality regard-
ing the misclassification probability. This work extends prelimin-
ary results presented in [9]. Balanced datasets are considered and
new experiments are conducted to gain a better insight on the
behaviour of mutual information. A forward feature selection
procedure is also analysed while only pairwise comparisons
between features were considered in [9].

The rest of the paper is organised as follows. Section 2 briefly
recalls basic definitions about the mutual information and details
some of the reasons of its popularity for feature selection. Section
3 discusses and illustrates the potential inadequacy of the mutual
information for feature selection; a problem for which mutual
information is not appropriate is presented and a simple sufficient
condition for its optimality is given. Sections 4–6 present the
experimental results for artificial datasets with discrete features,
artificial datasets with continuous features and real-world data-
sets with continuous features, respectively. Section 7 summarises
the observations drawn from the experiments and Section 8
concludes the work.
2. Mutual information

The aim of this section is to remind fundamental notions about
mutual information and to justify its interest for feature selection
in classification problems.

2.1. Formal definitions

Shannon’s mutual information [10,5] is a measure of the
dependency existing between two random variables X and Y,
considered to be discrete in this section. Let us assume that X

(resp. Y) can take nX (nY) possible different values xi (yi), each with
probability PXðX ¼ xiÞ (PY ðY ¼ yiÞ). The mutual information is then
defined as

IðX;YÞ ¼
XnX

i ¼ 1

XnY

j ¼ 1

PXY ðX ¼ xi,Y ¼ yjÞ

�log2

PXY ðX ¼ xi,Y ¼ yjÞ

PXðX ¼ xiÞPY ðY ¼ yjÞ
ð1Þ

where PXY ðX,YÞ is the joint probability of the X and Y variables.
Eq. (1) actually defines the Kullback–Leibler divergence [5]
between the product of the two distributions PXðXÞ � PY ðYÞ and
the joint probability PXY ðX,YÞ. As can be deducted from Eq. (1), the
mutual information is a symmetric criterion, i.e. IðX;YÞ ¼ IðY ;XÞ.

Since the entropy of a discrete random variable X is defined as

HðXÞ ¼ �
Xnx

i ¼ 1

PXðX ¼ xiÞlog2 PXðX ¼ xiÞ, ð2Þ

it can be shown [5] from Eq. (1) that the mutual information can
be equivalently rewritten as

IðX;YÞ ¼HðYÞ�HðY9XÞ ð3Þ
with

HðY9XÞ ¼
XnX

i ¼ 1

XnY

j ¼ 1

PXY ðX ¼ xi,Y ¼ yjÞ

�log2
PXðX ¼ xiÞ

PXY ðX ¼ xi,Y ¼ YjÞ
ð4Þ

being the conditional entropy of Y once X is given. While the
developments have been presented for discrete variables, similar
definitions can as well be derived for continuous random vari-
ables. In this case, the sums are then replaced by integrals.

2.2. Interest for feature selection

Since the work of Battiti [4], the mutual information criterion
has been used extensively for filter feature selection because of
many desirable properties it possesses for this task.

The first important property of mutual information, as detailed
in [4], is its natural interpretation in terms of uncertainty
reduction. Indeed, the entropy is a measure of the uncertainty
on the values taken by a random variable. Consequently, if Y

denotes a target class vector and X is a (set of) feature(s), Eq. (3)
shows that IðX;YÞ can be interpreted as the reduction of uncer-
tainty about the value of Y once X is known. In this regard, mutual
information is thus a quite intuitive criterion to maximize for a
feature subset to be considered as good. If there is no dependency
between X and Y, then HðYÞ ¼HðY9XÞ and IðX;YÞ ¼ 0. Similarly in
Eq. (1), if X and Y are independent, PXY ðX,YÞ ¼ PXðXÞPY ðYÞ and
again IðX;YÞ ¼ 0. On the contrary, if Y ¼ f ðXÞ, then the mutual
information is maximal and IðX;YÞ ¼HðYÞ.

The second main advantage of the mutual information, as also
stressed in [4], is that it is able to measure non-linear relation-
ships between variables. Other criteria, such as the correlation
coefficient, are limited to the detection of linear dependencies.
The ability to detect non-linear dependencies is obviously a
strong advantage since many of the most popular classification
algorithms, such as support vector machines (with a non-linear
kernel) and k-nearest-neighbors, are effectively able to model
non-linear relationships between the features and the class label.

In addition, the mutual information criterion can naturally be
defined for multivariate random variables (and thus for subsets of
features), which is not true e.g. for the correlation coefficient. This
is a property of major importance since greedy search procedures
(such as forward, backward and forward/backward) are often
used in practice to build a feature subset. This is because, in some
situations, some features are only relevant or redundant when
considered together. For example, in the well-known XOR pro-
blem, both features individually do not contain any information
about the output, but together completely determine it. For such
problem, a univariate criterion will never be able to detect any of
the two features as relevant.

Finally, the use of mutual information for feature selection in
classification problems is supported by the existence of bounds
relating the misclassification probability Pe for an optimal classi-
fier that achieves the Bayes risk to the conditional entropy HðY9XÞ,
where Y is again the class label and X the feature subset. Firstly,
Fano [11] derived two lower bounds on Pe. The weaker bound is

HðY9XÞr1þPe log2ðnY�1Þ ð5Þ

where nY is the number of possible classes. The stronger bound
states that

HðY9XÞrHðPeÞþPe log2ðnY�1Þ, ð6Þ

where HðPeÞ ¼�Pe log2 Pe�ð1�PeÞ log2ð1�PeÞ [5].
Both Eqs. (5) and (6) give bounds on HðY9XÞ, but they can be

inverted to provide a lower bound on Pe. However, the stronger
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bound is less easy to manipulate in practice than the weaker
bound because Pe cannot be isolated in Eq. (5) in a closed form,
the bound on Pe has thus to be computed numerically. Never-
theless, the stronger Fano bound in practice is much more useful
than the weak one. Indeed, the weak bound (5) does not apply to
binary classification problems, since in this case, Eq. (5) trivially
reduces to HðY9XÞr1. Eq. (5) cannot thus be inverted to get a
lower bound on Pe when nY¼2. Moreover, the weak bound is
generally much looser than the strong one. This is particularly
true when Pe is small, which is however precisely the situation of
interest for classifier design [12].

The probability of misclassification Pe can also be upper-
bounded by the Hellman–Raviv inequality [13]

Per1
2HðY9XÞ: ð7Þ

Fig. 1, inspired from [12,14], illustrates the three bounds
introduced in Eqs. (5)–(7). As can be seen, decreasing the condi-
tional entropy HðY9XÞ obviously decreases both the upper and the
lower bound on Pe, which motivates the use of this criterion for
feature selection. Notice that H(Y) is a constant value for a given
classification problem since it depends only on the class labels
and not on the selected features. According to Eq. (3), maximizing
the mutual information IðX;YÞ is thus equivalent to minimizing
the conditional entropy HðY9XÞ in this context. Eqs. (5)–(7) give a
justification to the maximisation of the mutual information for
feature selection.

Notice that the upper bound (7) on Pe is an increasing concave,
since it is linear with respect to HðY9XÞ. Also, the lower bound (6)
on Pe (as well as its weak form (5) which is linear with respect to
HðY9XÞ) is an increasing convex, since the converse upper bound
on HðY9XÞ

HðPeÞþPe log2ðnY�1ÞZHðY9XÞ ð8Þ

is increasing concave with respect to Pe. Indeed, it can easily be
shown that its first-order derivative

�log2 Peþ log2ð1�PeÞþ log2ðnY�1Þ ð9Þ

is positive and that its second-order derivative

�log2 e

Peð1�PeÞ
ð10Þ

is negative when Per ððnY�1Þ=nY Þ, which is the case since Pe is the
misclassification probability for an optimal classifier. These prop-
erties are used in the next section.
Fig. 1. Weak Fano bound (dashed line), strong Fano bound (plain line) and

Hellman–Raviv bound (dash-dotted line) on the misclassification probability Pe

of an optimal classifier with three classes (nY¼3), in terms of the conditional

entropy HðY9XÞ; figure inspired from [12,14], reprinted with permission from [9].
3. Potential inadequacy of mutual information

As mentioned in Section 1, the actual objective of feature
selection is often to reduce as much as possible the probability of
misclassification of a model built on the selected feature subset.
In other words, the quality and the utility of a feature subset can
be measured through Pe, which actually gives a lower bound for
the misclassification probability of any (suboptimal) classification
model. Based on the convex lower bound and the concave upper
bound in Fig. 1 and Eq. (3), several papers, e.g. [12,14,15], claim
that a feature subset having a higher mutual information with the
output than another one will lead to a smaller probability of
misclassification Pe. Those papers conclude that the mutual
information can therefore be used as a proxy for Pe in a feature
selection context. The objective of this section is to show that
such a conclusion is not always valid in practice. A simple
condition for the optimality of the mutual information as a
feature selection criterion is also given. Eventually, we also derive
a bound relating (i) the maximum value of mutual information
between two feature subsets and the output to (ii) the loss in
misclassification probability induced by the selection of one
subset instead of the other one.

3.1. Relationship between misclassification probability

and conditional entropy

In Fig. 2, the strong Fano bound and the Hellman–Raviv bound
for Pe in terms of HðY9XÞ are again illustrated. Moreover, the figure
also shows many examples of /HðY9XÞ,PeS couples of values.
Each point in Fig. 2 corresponds to a different random binary
classification problem with two binary features. The problems are
generated as follows: (i) the two values PðY ¼ yÞ (for yA ½0,1�) and
the four values PðX ¼ x9Y ¼ yÞ (for xA ½0,1� and yA ½0,1�) are
randomly drawn from the uniform distribution Uð0,1Þ, (ii) these
values are normalised to ensure that they represent probabili-
ties, i.e.

P
yPðY ¼ yÞ ¼ 1 and

P
xPðX ¼ x9Y ¼ yÞ ¼ 1 for each y and

(iii) probabilities P(X) and PðY9XÞ are eventually computed using
marginalisation and the Bayes’ theorem. For each problem, it is
thus possible to compute exactly both Pe and HðY9XÞ because all
the necessary probabilities are known.

As expected, the couples /HðY9XÞ,PeS all lie in the area defined
by the strong Fano lower bound and the Hellman–Raviv upper
bound. Given the value of the mutual information IðX;YÞ, or
equivalently the value of the conditional entropy HðY9XÞ, the
two bounds thus define an interval where Pe belongs. Obviously,
given two different values of conditional entropy, the intervals for
Fig. 2. Several pairs of /HðY9XÞ,PeS values corresponding to random binary

classification problems with two binary features. The strong Fano bound (plain

line) and the Hellman–Raviv bound (dash-dotted line) relating Pe to HðY9XÞ are

shown. From [9], reprinted with permission.



Fig. 3. Example of mutual information failure for feature selection, with the

strong Fano bound (plain line) and the Hellman–Raviv bound (dash-dotted line).
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Pe defined by the bounds could strongly overlap. Therefore, given
two subsets of features X1 and X2 such that HðY9X1ÞoHðY9X2Þ, it
could theoretically be possible that X1 leads to a higher prob-
ability of misclassification Pe than X2. Fig. 2 illustrates the fact
that, in practice, this situation could actually happen. Indeed,
even if the pairs /HðY9XÞ,PeS mainly lie near the lower bound,
they scatter the whole area between the two bounds; for a given
conditional entropy, actual values of misclassification probability
can thus be obtained in the whole interval defined by the bounds.
Consequently, choosing between two feature sets based on the
mutual information criterion could not be optimal (in terms of
misclassification probability), as shown through a simple example
in Section 3.2.

3.2. Illustration of mutual information failure for feature selection

A simple example is now presented, to illustrate the potential
inadequacy of the mutual information in a feature selection
context. Let us consider a disease diagnosis, where two classes
have the same prior probability

PðYÞ ¼ ð0:5 0:5Þ: ð11Þ

In (11), each column corresponds to one of the two possible
values of YAf0,1g. Let us further assume that the results of two
different tests are available to help classifying a new patient. Both
tests are binary and their outcomes are denoted as X1Af0,1g and
X2Af0,1g. For some practical reasons, the practician can only
perform one of those two tests. This choice is clearly a feature
selection problem, each test corresponding to a feature and the
practician having to chose the best test.

Through previous experimentation, the practician is able to
establish that the conditional distributions PðXi9YÞ of both tests X1

and X2 given Y are given by

Y ¼ 0 Y ¼ 1

X1 ¼ 0 0:287 0:758

X1 ¼ 1 0:713 0:242

and

Y ¼ 0 Y ¼ 1

X2 ¼ 0 0:627 0:999

X2 ¼ 1 0:373 0:001

:

The rows correspond to the possible values of Xi and the columns
again correspond to the values of Y. Using marginalisation and the
Bayes’ theorem, it is straightforward to obtain the posteriors
PðY9XiÞ given by

X1 ¼ 0 X1 ¼ 1

Y ¼ 0 0:275 0:746

Y ¼ 1 0:725 0:254

and

X2 ¼ 0 X2 ¼ 1

Y ¼ 0 0:385 0:999

Y ¼ 1 0:615 0:001

:

Again, rows correspond to values of Y and columns correspond to
values of Xi. It can be understood from the last two probability
tables that the test whose outcome is X1 allows discriminating
fairly well between the classes, whatever its output is. There
remains however a quite important misclassification probability
using X1 (Pe¼0.275 if X1 ¼ 0 and Pe¼0.254 if X1 ¼ 1). The second
test, with the outcome X2, allows discriminating almost perfectly
when it is positive (Pe¼0.001 if X2 ¼ 1). When it is negative
(X2 ¼ 0), it is however much less discriminative than the first test
since the misclassification probability is Pe¼0.385 in that case.
When the results of the first tests are used to select the feature,
one eventually obtains a global misclassification probability of
Pe¼0.265 while IðX1;YÞ ¼ 0:167. Using the second test, one obtains
Pe¼0.314 and IðX2;YÞ ¼ 0:217. Here, it appears that the mutual
information is larger using X2. However, Pe is smaller when X1 is
used, meaning that selecting X2 based on mutual information
leads here to an increased probability of misclassification.

The above example is illustrated in Fig. 3, where each point
/HðY9XÞ,PeS is again shown to lie between the Fano and Hell-
man–Raviv bounds. Obviously, IðX2;YÞ ¼HðYÞ�HðY9X2Þ is larger
than IðX1;YÞ ¼HðYÞ�HðY9X1Þwhile PeðX2Þ is simultaneously larger
than PeðX1Þ.

3.3. A condition of optimality

As illustrated by the previous example, and as shown in the
following sections, the mutual information appears to be a
heuristic with no obvious way to assess its potential interest.
However, in some situations, it is possible to guarantee that the
mutual information is actually an adequate criterion. Let X1 and
X2 be two features sets that have to be compared. If the value of
the Hellman–Raviv bound for X1 is smaller than the value of the
strong Fano bound for X2, then it can be deduced from the bounds
in Fig. 2 that the feature set X1 leads to a smaller misclassification
probability Pe than the feature set X2 does. Thus, if the values of
the conditional entropies for two subsets are different enough,
the corresponding possible intervals for Pe cannot overlap and
ranking feature subsets with the mutual information criterion is
optimal.

In the above example, the Fano bound for X1 is PeZ0:264,
whereas the Hellman–Raviv bound for X2 is Per0:391; it is not
possible to guarantee that mutual information is a relevant
criterion to choose between X1 and X2. Fig. 3 also shows another
candidate X3 for which the Hellman–Raviv bound is Per0:252. In
this case, the new feature X3 is guaranteed to be a better choice.

3.4. Upper bound on the misclassification probability loss

It is also possible to give an upper bound for the difference in
misclassification probability in case of failure, i.e. the supplemen-
tary percentage of samples which are misclassified due to an
incorrect choice of feature subset only. This difference is called
the misclassification probability loss in the following of the paper.
Indeed, the worst case of mutual information failure occurs when
(i) both feature subsets have almost identical mutual information,
(ii) the selected feature subset stands on the Hellman–Raviv
bound (maximum misclassification probability) and (iii) the other
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feature subset stands on the strong Fano bound (minimum
misclassification probability). In such a case, the misclassification
probability loss is simply the difference between the Hellman–
Raviv bound and the strong Fano bound. The upper bound on the
misclassification probability loss is concave with respect to IðX;YÞ,
since the Hellman–Raviv and Fano bounds are increasing concave
Fig. 4. Theoretical upper bound on the misclassification probability loss for binary

classification with balanced classes.

Fig. 5. Results for artificial binary classification problems with a 2-value discrete fea
and convex with respect to HðY9XÞ, respectively. Fig. 4 shows the
upper bound on the misclassification probability loss for the
above example. Here, the misclassification probability loss is
bounded by 0.159 for the selected feature X2, whereas the actual
misclassification probability loss is 0.049. Interestingly, the max-
imum misclassification probability loss decreases for extreme
(small or large) values of the mutual information. It suggests that
mutual information failures have less important consequences in
these cases.
4. Artificial classification problems with discrete features

This section discusses the use of mutual information for
feature selection using three simple artificial monovariate binary
classification problems. The input of the classifier is a discrete
feature with 2d possible modalities. This may be viewed as
equivalent to a binary classification problem with d binary
features.

4.1. Experimental settings

The three artificial problems discussed in this section are
designed to simulate low, medium and high levels of difficulty
in binary classification. This is achieved by choosing different
ture and a Dirichlet prior with a¼ 4 for the conditional probabilities PðX ¼ xi9YÞ.
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domain sizes for the discrete feature X and different prior
distributions for its conditional probabilities PðX9YÞ. For each of
the three problems, a large number of pairs of possible features
are generated, which are compared pairwise to assess whether
mutual information is consistent with the misclassification prob-
ability. Notice that the classifier remains univariate: the possible
features are compared by pairs, to decide in each pair which
feature will be used as input to the classifier. The conditional
probabilities PðX ¼ xi9YÞ of each feature are drawn from a sym-
metric Dirichlet distribution

f ðx1, . . . ,xm9aÞ ¼GðamÞ
Ym

i ¼ 1

xa�1
i

GðaÞ
ð12Þ

where xi is the ith modality of feature X, G is the gamma function
and a is the concentration parameter. Conditional probabilities
PðX9YÞ are drawn instead of conditional probabilities PðY9XÞ
because it allows us to keep constant the class prior P(Y). Indeed,
the proportion of instances in each class should not depend on the
feature which is used to classify them. Moreover, this is necessary
to compute the bounds which are visualised in the figures below.
Large values of a correspond to conditional distributions of X

given Y where almost all probabilities are equal, whereas only one
probability is non-zero for small values of a. In other words, class
Fig. 6. Results for artificial binary classification problems with a 8-value discrete fea
discrimination is expected to be easier with small values of a. In
addition, classes are usually easier to discriminate in high-
dimensional spaces. By choosing the problem parameters
/m¼ 2,a¼ 4S, /m¼ 8,a¼ 1S and /m¼ 128,a¼ 0:06S, three
families of problems are obtained with high, medium and low
levels of difficulty, respectively. The class prior is uniform, i.e.
PðY ¼ yÞ ¼ 1

2 for each y, in order to avoid class imbalance effects.
For each set of binary classification problem parameters, 106

pairs of features are generated. For each pair, the features are
compared in terms of mutual information with the class Y and
misclassification probability, which can be computed exactly
since all the required probabilities are known. The feature with
the largest mutual information is chosen. If the misclassification
probability is also larger for the chosen feature, the pair is an
example of failure for mutual information as a feature selection
criterion. In case of failure, the difference in misclassification
probability is called the misclassification probability loss DPe, i.e.
the percentage of samples which are misclassified due to an
incorrect choice of feature. The average and conditional probabil-
ities of failure can be estimated by counting failures among
the pairs.

Each artificial problem is illustrated in Figs. 5–7, respectively.
Mutual information is computed in base 2, whereas all probabil-
ities are given in percents. The first row consists of a histogram of
ture and a Dirichlet prior with a¼ 1 for the conditional probabilities PðX ¼ xi9YÞ.



Fig. 7. Results for artificial binary classification problems with a 128-value discrete feature and a Dirichlet prior with a¼ 0:06 for the conditional probabilities PðX ¼ xi9YÞ.
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the misclassification probability, a histogram of the mutual
information and a two-dimensional histogram (with hexagonal
bins whose opacity indicates the number of samples in each bin)
of these two quantities, with the Fano and Hellman–Raviv
bounds. The second row shows an estimate of the conditional
probability of failure given the misclassification probability and
given the mutual information, and a histogram of the misclassi-
fication probability loss in case of failure. Eventually, for failures,
the last row shows two-dimensional histograms of (i) the mis-
classification probability and the misclassification probability
loss, (ii) the mutual information and the misclassification prob-
ability loss (with the theoretical bound derived in Section 3.4) and
(iii) the mutual information difference and the misclassification
probability loss. In the last two rows, which correspond to mutual
information failures, the mutual information and the misclassifi-
cation probability are those of the feature which is selected using
mutual information. Indeed, what we are mainly interested in is
to know when a feature selected by mutual information is likely
to be a bad choice.

4.2. Results

For m¼2 and a¼ 4, classes are very difficult to discriminate,
as seen in Fig. 5(a) and (b), but only 0.6% of the pairs are failures.
The conditional probability of failure remains small in Fig. 5(d) and
(e), where the failure probability decreases for small mutual informa-
tion values and large misclassification probabilities. Fig. 5(f) shows
that 95% of the misclassification probability losses remain below 1.5%.
In Fig. 5(g) and (h), the misclassification probability loss decreases for
small mutual information values and large misclassification probabil-
ities. Eventually, Fig. 5(i) shows that failures occur when comparing
pairs of features which are close in terms of both mutual information
and misclassification probability.

For m¼8 and a¼ 1, classes are moderately difficult to dis-
criminate, as seen in Fig. 6(a) and (b). The percentage of failure is
4.6, what is higher than in the m¼2 and a¼ 4 case. The
conditional probability of failure is also larger in Fig. 6(d) and
(e); Fig. 6(f) shows that the misclassification probability loss is
larger, but remains below 4.3% in 95% of the failures. Fig. 6(g)–
(i) leads to similar conclusions than with m¼2 and a¼ 4.

For m¼128 and a¼ 0:06, classes are quite easy to discrimi-
nate, as seen in Fig. 7(a) and (b). The percentage of failure is
3.8 and the conditional failure probability decreases for large
mutual information values and small misclassification probabil-
ities. Similarly, Figs. 7(g) and (h) show that the misclassification
probability loss decreases for large mutual information values and
small misclassification probabilities. In Fig. 7(f), 95% of the
misclassification probability losses remain below 1.5%.
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4.3. Discussion

In the above experiments, mutual information fails to select
the feature with the best misclassification probability in only a
few percents of the cases. Moreover, such failures do not lead to
large misclassification probability losses, which means that the
consequences of the failures are not too important. Failures
appear to be more probable when classes are moderately difficult
to discriminate, i.e. for intermediate values of mutual information
and misclassification probability. In such cases, the misclassifica-
tion probability loss is also larger. For all problems, failures
mostly occur for pairs of features which are close in terms of
both mutual information and misclassification probability.
5. Artificial classification problems with continuous features

This section discusses the use of mutual information for
feature selection using three simple artificial three-class classifi-
cation problems with a single continuous feature.

5.1. Experimental settings

Similar to Section 4, the three artificial problems discussed in
this section are designed to simulate low, medium and high levels
of difficulty in three-class classification. For each of the three
problems, a large number of features are generated, which are
compared pair-wise to assess whether mutual information is
consistent with the misclassification probability. For each class,
each feature has a unidimensional Gaussian conditional distribu-
tion. The standard deviations of the feature values are randomly
drawn from a gamma distribution

f ðs9k,yÞ ¼
sk�1

ykGðkÞ
e�s=y, ð13Þ

where k is the shape parameter and y is the scale parameter. In
the experiments, the parameter values k¼2 and y¼ 0:5 are used
in order to obtain realistic and diversified standard deviations.
The means of the feature values in the three classes are m0 ¼�D,
m1 ¼ 0 and m2 ¼D, where D is a parameter which determines the
difficulty of the classification problem. Large values of D corre-
spond to easy problems with well-separated Gaussian distribu-
tions, whereas difficult problems with overlapping Gaussian
distributions are obtained for small values of D. The problem
parameters are D¼ 0:5, D¼ 2 and D¼ 4 and the class priors are
uniform, i.e. PðY ¼ yÞ ¼ 1

3 for each y. Fig. 8 shows an example for
each difficulty of three-class classification problem.

Similar to Section 4, 106 pairs of features are generated
for each of the three-class classification problems. In each pair,
Fig. 8. Examples of three-class balanced classification problems of various difficultie

gamma distribution with shape k¼2 and scale y¼ 0:5, whereas centers are chosen usi
the two features are compared in terms of mutual information
and misclassification probability. Mutual information is com-
puted in base 2, whereas all probabilities are given in percents.
Since the distribution P(X) is a mixture of Gaussian distributions,
it is impossible to obtain exact values for the entropy H(X) and the
mutual information. Only the conditional entropy HðY9XÞ and the
conditional probabilities PðX9YÞ can be computed analytically. In
order to solve this problem, for each feature, 104 samples are
drawn from each class. The conditional probabilities PðX9YÞ of the
samples are computed analytically and used to obtain an estimate
of the mutual information and the misclassification probability.
Given the large number of samples and the low dimensionality of
the data, the estimates are expected to be accurate. However, to
deal with approximation errors, failures with a mutual informa-
tion difference below 0.01 or a misclassification probability loss
below 0.1% are ignored. Remaining computations and Figs. 9–11
are obtained similarly to Section 4.
5.2. Results

For D¼ 0:5, the three classes are quite difficult to discriminate,
as seen in Fig. 9(a) and (b). The percentage of failures is 1.2 and
the failure probability decreases for extreme (i.e. small or large)
mutual information values and extreme misclassification prob-
abilities in Fig. 9(d) and (e). Fig. 9(f) shows that 95% of the
misclassification probability losses remain below 3.2%. In
Fig. 9(g) and 9(h), the misclassification probability loss decreases
for extreme mutual information values and misclassification
probabilities. Eventually, Fig. 9(i) shows that failures mostly occur
for pairs of features which are close in terms of both mutual
information and misclassification probability.

For D¼ 2, classification is of medium difficulty, as seen in
Fig. 10(a) and (b). The percentage of failure is 0.9 and the failure
probability decreases for large mutual information values and
small misclassification probabilities in Fig. 10(d) and (e).
Fig. 10(f) shows that 95% of the misclassification probability
losses remain below 2.7%. In Fig. 10(g) and (h), the misclassifica-
tion probability loss decreases for large mutual information
values and small misclassification probabilities. Again, failures
occur for pairs of features which are close in terms of both mutual
information and misclassification probability, as seen in Fig. 10(i).

For D¼ 4, the three classes are quite easy to discriminate, as
seen in Fig. 11(a) and (b). The percentage of failure is 0.2 and the
failure probability decreases for large mutual information values
and small misclassification probabilities in Fig. 11(d) and (e).
Fig. 11(f) shows that 95% of the misclassification probability
losses remain below 1%. Figs. 11(g)–(i) lead to similar conclusions
than for D¼ 2.
s. Standard deviations of the Gaussian distributions are randomly drawn from a

ng D¼ 0:5, D¼ 2 and D¼ 4.



Fig. 9. Results for 106 pairs of artificial three-class problems with one continuous feature. Class distributions are Gaussians centered at x¼�0.5, x¼0 and x¼0.5 and

whose widths are randomly drawn from a gamma distribution. Mutual information values and misclassification probabilities are estimated using 104 samples from

each class.
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5.3. Discussion

The lessons of the above experiments are similar to those of
the experiments in Section 4. Mutual information fails to select
the feature with the best misclassification probability in only a
few percents of the cases and the misclassification probability
loss remains quite small. Again, failures appear to be more
probable and to have more important consequences when classes
are moderately difficult to discriminate, i.e. for intermediate
values of mutual information and misclassification probability.
For all problems, failures mostly occur for pairs of features which
are close in terms of both mutual information and misclassifica-
tion probability.
6. Real-world classification problems with continuous
features

This section discusses the use of mutual information for
feature selection using three real-world classification problems
with continuous features. Feature selection is performed using a
mutual information-based forward search algorithm [16], with
the aim of assessing whether mutual information failures are
more likely to occur at certain stages of a multivariate feature
selection process.

6.1. Experimental settings

This section presents the results obtained with real-world
datasets from the UCI repository [17]. Three balanced datasets
with a large number of instances are chosen, in order to obtain
reliable estimates of the mutual information and the misclassifi-
cation probability. Firstly, Digits is a 10-class digit recognition
dataset which contains 10,992 instances with 16 continuous
features. Secondly, Wallrobot is a two-class robot navigation
dataset which contains 4302 instances with 24 continuous
features. The original dataset contains four classes, but only the
two majority classes are kept in order to obtain a balanced
dataset. Eventually, Wave is a three-class waveform dataset
which contains 5000 instances with 21 continuous features. All
datasets are almost perfectly balanced.

For each dataset, the feature selection process is repeated 5000
times. For each repetition, 10 features are randomly chosen
among the set of available features in order to obtain a sub-
problem whose characteristics remain similar to the full problem.
Then, a forward search is performed to find feature subsets of



Fig. 10. Results for 106 pairs of artificial three-class problems with one continuous feature. Class distributions are Gaussians centered at x¼�2, x¼0 and x¼2 and whose

widths are randomly drawn from a gamma distribution. Mutual information values and misclassification probabilities are estimated using 104 samples from each class.
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increasing sizes. The selection criterion is the mutual information,
which is estimated as detailed below. For each forward step in
each repetition, the misclassification probabilities are also esti-
mated. A forward step is a failure if the feature subset which is
selected in order to maximise the mutual information does not
minimise the misclassification probability, i.e. if there exists a
feature subset with a lower misclassification probability at this
step. The mutual information and the misclassification probabil-
ities are directly estimated using the conditional probabilities
PðY9XÞ of each sample. These conditional probabilities are
obtained from the conditional probabilities PðX9YÞ, which are
estimated using the Kozachenko–Leonenko estimator [18], by
using the Bayes rule and marginalisation. Mutual information is
computed in base 2, whereas all probabilities are given in
percents. Moreover, in case of failure, the mutual information
difference and the misclassification probability loss are computed
between the feature with the best mutual information and the
feature with the best misclassification probability. Fig. 12 shows a
two-dimensional histogram of the mutual information and the
misclassification probability for each dataset. The Fano and Hell-
man–Raviv bounds hold, what illustrates the validity of the above
procedure.
Figs. 13–15 show several plots for each real-world problem.
The first row consists of a histogram of the misclassification
probability, a histogram of the mutual information and the
misclassification probability for different feature subset sizes.
The second row shows an estimate of the conditional probability
of failure given the misclassification probability and given the
mutual information, and the mutual information for different
feature subset sizes. The third row shows two-dimensional
histograms of (i) the misclassification probability and the mis-
classification probability loss, (ii) the mutual information and the
misclassification probability loss (with the theoretical bound
derived in Section 3.4) and (iii) the mutual information difference
and the misclassification probability loss. The fourth row shows
the mutual information difference and the misclassification
probability loss for different feature subset sizes, and an estimate
of the conditional probability of failure given the feature subset
size. In the last three rows, which correspond to mutual informa-
tion failures, the mutual information and the misclassification
probability are those of the feature which is selected using mutual
information. Indeed, what we are mainly interested in is to know
when a feature selected by mutual information is likely to be a
bad feature in terms of misclassification probability.



Fig. 11. Results for 106 pairs of artificial three-class problems with one continuous feature. Class distributions are Gaussians centered at x¼�4, x¼0 and x¼4 and whose

widths are randomly drawn from a gamma distribution. Mutual information values and misclassification probabilities are estimated using 104 samples from each class.

Fig. 12. Mutual information values and misclassification probabilities with random subsets of 10 features for the Digits, Wallrobot and Wave datasets, with Fano and

Hellman–Raviv bounds.
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6.2. Results

Figs. 13(a)–(c) and (f) show that forward search goes through a
wide range of problem difficulties for the Digits dataset. As the
feature subset size increases, the misclassification probability
decreases slowly. The percentage of failures is 7.8, but
Figs. 13(g)–(i) show that 95% of the misclassification probability
loss remain below 2%. The dark hexagonal bin in these figures
indicates the failures occur when the feature with the best mutual
information and the feature with the best misclassification
probability are close in terms of both mutual information and
misclassification probability. The misclassification probabi-
lity loss decreases for large mutual information values and
small misclassification probabilities. In Fig. 13(d) and (e), the



Fig. 13. Results of mutual information-based forward search with random subsets of 10 features for the Digits dataset.
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misclassification probability loss decreases for large mutual
information values and small misclassification probabilities.
Figs. 13(j)–(l) show that the probability of failure is maximum
at the beginning of the forward search, where the misclassifica-
tion probability loss is small, and decreases quickly as the features
subset size increases.

The results for the Wallrobot dataset are similar to the result for
the Digits dataset, except (i) that classification performances are
already optimal with about three features, as seen in Fig. 14(c) and
(f), and (ii) that failures are much more likely to occur at the first
step of the forward search, as seen in Fig. 14(l), what corresponds to
intermediate values of mutual information and the misclassification
probability. Consequently, Fig. 14(j) shows that the misclassification
probability loss is only significant for subsets with a single feature.
It corresponds to the peak of probability of failure in Fig. 14(d) and
(e) and to the dark hexagonal bin in Fig. 14(g)–(i). The percentage of
failures is 2.4 and 95% of the misclassification probability losses
remain below 1%.

Figs. 15(a)–(c) and (f) show that the Wave dataset corresponds
to a quite difficult problem. The percentage of failure is 0.2.
Contrary to the Digits and Wallrobot datasets, the conditional
probability of failure in Fig. 15(l) first increases for small features
subset sizes, achieves its maximum for three features and then
quickly decreases. The misclassification probability is large for the
two first feature subset sizes in Fig. 15(c), what suggests again that
failures more likely occur for intermediate mutual information



Fig. 14. Results of mutual information-based forward search with random subsets of 10 features for the Wallrobot dataset.
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values and misclassification probabilities. Figs. 15(d) and (e) show
a peak of probability of failure which corresponds to the dark
hexagonal bin in Fig. 15(g)–(i), where 95% of the misclassification
probability losses remain below 0.4%.

6.3. Discussion

The results of the above experiments on real-world datasets
show that mutual information is more likely to fail in the first
stages of the forward search. These situations correspond to
intermediate values of mutual information. For the three datasets,
misclassification probability losses remain in the order of the
percent. This shows that mutual information failures do not have
important consequences in practice. In each experiment, failures
occur when the feature with the best mutual information and the
feature with the best misclassification probability are close in terms
of both mutual information and misclassification probability.
7. Meta-analysis of the experimental results

This section reviews and summarises the experimental results
and the elements discussed in Sections 4–6, in order to extract
several general conclusions. Firstly, the experiments show that



Fig. 15. Results of mutual information-based forward search with random subsets of 10 features for the Wave dataset.
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mutual information can fail for feature selection in a wide range
of artificial and real-world problems. However, the average
percentage of failure is relatively small (often below 5%) and the
misclassification probability loss remains in the order of a few
percents. In particular, for the three real-world problems, the
misclassification probability loss remains below 2% for 95% of the
failures. Secondly, mutual information failures are more probable
for intermediate values of mutual information. In forward selec-
tion, this case occurs in the first steps, when the feature subset
size is still small. Hence, on a practical point of view, it could be a
good idea to perform several backward steps after the first steps
of the forward search, when the algorithm has reached a region
where mutual information is more likely to be a reliable criterion
for feature selection. Another effective option is to start a forward
search with all combinations of 2 or 3 features (when computa-
tionally affordable) rather than with a single feature. Moreover,
experiments suggest that the backward search algorithm could
obtain more reliable feature subsets, since it directly starts in the
region where mutual information is reliable and only reaches the
dangerous zone after having found satisfying feature subsets.
Thirdly, failures occur when comparing features which are close
in terms of both mutual information and misclassification prob-
ability. Fourthly, in all experiments, the misclassification prob-
ability loss remains below the theoretical bound given in Section
3 and the Fano and Hellman–Raviv bounds are satisfied, what
supports the validity of the experimental results.
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8. Conclusion

This paper shows that in a classification context, mutual
information is not always an optimal criterion to achieve feature
selection, if the actual goal is eventually to minimize the prob-
ability of misclassification. Indeed, as it is first illustrated through
a simple example, the Fano and Hellman–Raviv bounds do not
guarantee such an optimality, contrary to what can be read in the
literature. Extensive experiments on both continuous and discrete
datasets confirm this fact and allow detecting the situations for
which the mutual information criterion is the more likely to fail. It
results that, taking some precautions and possibly adapting the
search algorithm, mutual information remains a very interesting
heuristic for feature selection.
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