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Feature selection is a task of fundamental importance for many data mining or machine learning

applications, including regression. Surprisingly, most of the existing feature selection algorithms

assume the problems to address are either supervised or unsupervised, while supervised and

unsupervised samples are often simultaneously available in real-world applications. Semi-supervised

feature selection methods are thus necessary, and many solutions have been proposed recently.

However, almost all of them exclusively tackle classification problems. This paper introduces a semi-

supervised feature selection algorithm which is specifically designed for regression problems. It relies

on the notion of Laplacian score, a quantity recently introduced in the unsupervised framework.

Experimental results demonstrate the efficiency of the proposed algorithm.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

When dealing with high-dimensional data sets, feature selec-
tion is a step of major importance for many pattern recognition
applications, including regression. Indeed, learning with high-
dimensional data is generally a complicated task due to many
undesirable facts denoted by the term curse of dimensionality

[1,2].
Moreover, it is quite usual that some features in a data set are

either redundant or even totally uninformative; they can decrease
the performances of the learning algorithms and make them
prone to overfitting [3]. In addition, removing such useless
features generally helps reducing the learning time of the pre-
diction models. Eventually, the interpretation of the models and
the understanding of the original problem can also benefit from
feature selection.

Other dimensionality reduction approaches such as feature
extraction or projection [4,5] can as well be efficient to help
managing high-dimensional datasets; however, they do not pre-
serve the original features and thus prevent from interpreting the
new low-dimensional features. This can be a major drawback in
many areas such as medicine or industry, where interpretation is
crucial.
ll rights reserved.
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Traditional feature selection algorithms are said to be super-

vised, in the sense that the knowledge of the output associated
with each training sample (a class label for classification pro-
blems or a continuous value for regression ones) is assumed to be
available and can be used. On the contrary, unsupervised feature
selection methods completely ignore the outputs and thus only
consider the dataset in order to determine the relevant features.
The most obvious example of unsupervised method is simply the
evaluation of each feature variance, which gives an indication
about the features predictive power.

Halfway between those two situations, in many real-world
problems it is easy to obtain a large number of (unsupervised)
samples, while only a few labeled samples are generally available.
Such a limitation is mainly due to the cost (in terms of time and/
or money) needed to obtain the labels. As an example, in medical
diagnosis problems, a human expertise is usually required to
determine whether or not a patient is ill, based on analyses or
radiographies. Such a task can be hard to perform and time-
consuming, even for a trained practician. In another field, one
may be interested in predicting the fat or sugar content of a
sample food based on a spectroscopic analysis. Even if the
spectroscopic data can be quickly and easily obtained, getting
the true fat or sugar content values will often necessitate
destructive tests (such as burning a piece of meat). Obviously,
such tests cannot be performed easily on thousands of samples.

The above discussion naturally justifies the development of
semi-supervised learning, where the few available labels are used
to improve learning algorithms that are mainly based on the
unsupervised part of the data [6,7]. In this context, many feature
selection algorithms have been proposed recently, whose large
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majority are designed to handle classification problems. Indeed,
to the best of our knowledge, no work has been done up to now to
develop semi-supervised feature selection algorithms specific to
regression problems.

This paper addresses this issue by first introducing a super-
vised feature selection algorithm, which is then extended to
achieve semi-supervised feature selection. Both algorithms are
specifically designed to handle continuous outputs and are based
on the unsupervised developments introduced in [8]. Within the
unsupervised framework, the algorithm in [8] scores features
according to their locality preserving power. Roughly speaking,
good features have close values for close samples and thus
preserve the local structure of the data set. In this work, the idea
is extended by using distance information between the output of
supervised samples. This paper extends preliminary results intro-
duced in [9].

The rest of the paper is organized as follows. Section 2 briefly
mentions related works on feature selection and semi-supervised
learning. Section 3 describes the original unsupervised Laplacian
score. Section 4 introduces the supervised feature selection
criterion, while Section 5 presents the semi-supervised algorithm
which combines in a simple way the information from supervised
and unsupervised samples. Its efficiency is experimentally
demonstrated in Section 6. Eventually, Section 7 concludes the
work and gives possible directions for further investigations.
2. Related work

Due to its importance, feature selection is a problem that has
been widely studied. In the literature, three main approaches can
be distinguished. First, wrappers [10] select a subset of features in
order to directly maximize the performances of a particular
prediction model. They thus require building many of these
models and can be very time-consuming in practice. However,
they traditionally lead to good prediction performances.

On the other hand, filters look for features maximizing a
criterion which does not rely on any specific prediction model.
Among possible criteria, the most popular ones are the mutual
information [11,12] and the correlation coefficient [13]. Filters are
traditionally faster and more generic than wrappers, in the sense
that they can be used prior to any prediction model. Eventually,
embedded methods, whose most well-known examples are
LASSO and its extensions [14,15], perform prediction and feature
selection simultaneously by somehow regularizing an objective
function.

Even if most of existing feature selection algorithms are
designed for supervised problems, feature selection has also been
tackled in the unsupervised learning context; Mitra et al. pro-
posed an approach using feature similarity [16] while [17] is
based on expectation-maximization clustering. Madsen et al. [18]
also proposed to use the dependency between features while a
Graph Laplacian based ranking method has been developed in [8].
This last work is at the basis of the present paper and will be
presented in more details later. It has also inspired [19], which
considers another form of weak supervision: pairwise constraints.
More precisely, in the latter context, the exact class labels are not
available but it is known, for a limited number of samples,
whether or not they belong to same class.

Concerning the semi-supervised paradigm we are interested
in, different solutions for feature selection have been proposed.
Among many others, Zhao and Liu proposed an approach using
spectral analysis [20] while Quinzan et al. introduced an algo-
rithm based on feature clustering, conditional mutual information
and conditional entropy [21]. In [22], the authors use the notion
of Markov blanket. In [23], the authors propose to solve a class
margin maximization problem involving a manifold regulariza-
tion term. In [24], Zhong et al. introduce a ‘‘hybrid’’ method that
selects an initial set of features using the supervised samples,
before expending and correcting this set using the unsupervised
samples and label propagation techniques. Eventually, in [25], the
concept of graph Laplacian is also exploited, with proximity
matrices defined through the available class memberships. The
common feature of all these works is that they are designed for
classification problems only, with no obvious way of extending
them to regression problems.
3. Laplacian score

This section describes the Laplacian score (LS), introduced by
He et al. [8] in the unsupervised framework. Generally speaking,
the method ranks the features according to their locality preser-
ving power, i.e. according to how well they preserve the local
structure of the data set.

Consider a data set X. Let fri denote the rth feature of the ith
sample (i¼ 1 . . .m), xi the ith data point and fr the rth feature.
Build then a similarity graph with m nodes (one for each data
point), which contains an edge between node i and node j if the
corresponding samples xi and xj are close, i.e. if xi is among the k

nearest neighbors of xj or conversely. Even if any measure of
similarity between the samples can be used, the Euclidean
distance will be considered throughout this paper to determine
the nearest neighbors of each point.

From the proximity graph, a matrix Suns can be built by setting

Suns
i,j ¼

e�Jxi�xjJ
2
2=t if xi and xj are close,

0 otherwise,

(
ð1Þ

where t is a suitable positive constant. Define then Duns
¼

diagðSuns1Þ, with 1¼ ½1 . . .1�T , and the graph Laplacian
Luns
¼Duns

�Suns [26].
The mean of each feature, weighted by the local density of data

points, is then removed: the new features are called ~f r and are
given by ~f r ¼ fr�ðf

T
r Duns1=1TDuns1Þ1. Using a weighted normal-

ization has a natural interpretation in terms of spectral graph
theory [8,26]; however, traditional normalization can as well be
used, as suggested in [8]. See also at the end of this section for a
more detailed argument for the normalization.

Eventually the Laplacian score of each feature fr is computed
as

Lr ¼
~f

T

r Luns ~f r

~f
T

r Duns ~f r

: ð2Þ

Features are ranked according to this score, in increasing order.
In Ref. [8], the authors also derive a connection between the LS (2)
and the well-known Fisher criterion. As will be made clear in
Section 4.2, the numerator of this criterion has a sound inter-
pretation in terms of the ability of features to preserve a given
local structure. The denominator of (2) is the weighted variance of
the feature fr, considered as an indicator of the feature
predictive power.

We end this section with a brief comment on the reasons why
the normalization ~f r ¼ fr�ðf

T
r Duns1=1TDuns1Þ1 is necessary. The

goal in removing the weighted mean is actually to prevent a
non-zero constant vector such as 1 to be assigned a zero Laplacian
score. This is important since a low Laplacian score corresponds to
a relevant feature while a constant feature obviously does not
contain any information. As detailed in [8], after the proposed
normalization, the numerator of (2) cannot be zero for a constant
feature if the denominator is not zero. If both quantities are
zero, the score of the feature would thus be 0=0, which is an
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indetermination; the feature would then be removed from the
problem. On the contrary, without the normalization, a constant
vector could be assigned a zero score and consequently be ranked
as the most relevant feature.
Table 1
Percentage of experiments for which the relevant features are ranked first on three

artificial problems.

Criterion Y1 Y2 Y3

Correlation 100 25 32

SLS 100 93 100

MI 100 100 100
4. Supervised Laplacian score

This section introduces a new supervised feature selection
method, based on the Laplacian score (2). This criterion will be
useful to eventually propose the semi-supervised algorithm.
However, it presents by itself interesting properties for feature
selection, as will be illustrated below.

4.1. Definitions

Consider again the training set X containing m samples xi

described by n features. As we are here concerned with super-
vised regression problems, an output vector Y ¼ ½y1 . . . ym�ARm is
also available. If the output Y can reasonably be assumed to be a
continuous and smooth function of X, it is quite natural to expect
close samples xi and xj to have close output values yi and yj. In
that sense, good features are thus expected to have close values
for data points whose outputs are close too. Using this idea, a
feature selection criterion can be constructed as follows.

Let the matrix Ssup be defined as

Ssup
i,j ¼

e�ðyi�yjÞ
2=t if xi and xj are close,

0 otherwise

(
ð3Þ

and Dsup
¼ diagðSsup1Þ, Lsup

¼Dsup
�Ssup, ~f r ¼ fr�ðf

T
r Dsup1=1TDsup1Þ1.

For the construction of Ssup, two points xi and xj are considered as
close if one of the corresponding outputs (yi or yj) is among the k

nearest neighbors of the other; t is a suitable (positive) constant.
Criterion (2) can again be used to rank features by computing a
quantity we call the supervised Laplacian score (SLS)

SLSr ¼
~f

T

r Lsup ~f r

~f
T

r Dsup ~f r

: ð4Þ

4.2. Justification

As stated above, a good feature can be expected to have similar
values for points whose outputs are similar too. Consequently, a
quite natural objective to minimize for a relevant feature is the
following one:

min
f

X
i

X
j

ðf ri�f rjÞ
2Ssup

ij : ð5Þ

Indeed, if Ssup
ij becomes large, ðf ri�f rjÞ

2 has to decrease for the
criterion (5) to remain small. Features according to which xi and
xj are not close while they are in the sense of Ssup

ij are thus
penalized. This way, the local structure of the data can be
preserved. In the following, the connection between criteria
(4) and (5) is shown.

From the definition of the diagonal matrix Dsup
¼ diagðSsup1Þ,

it can be easily deducted that Dsup
ii ¼

P
jS

sup
ij . Remembering that

Lsup
¼Dsup

�Ssup, some basic calculations giveX
i

X
j

ðf ri�f rjÞ
2Ssup

ij ¼
X

i

X
j

ðf 2
riþ f 2

rj�2f rif rjÞS
sup
ij

¼
X

i

X
j

f 2
riS

sup
ij þ

X
i

X
j

f 2
rjS

sup
ij

�2
X

i

X
j

f rif rjS
sup
ij

¼ 2fT
r Dsupfr�2fT

r Ssupfr
¼ 2fT
r ðD

sup
�Ssup

Þfr

¼ 2fT
r Lsupfr: ð6Þ

Therefore it appears clearly that minimizing the numerator
~f

T

r Lsup ~f r of (4) is equivalent to minimizing (5). The denominator
~f

T

r Dsup ~f r, already considered in (2), still penalizes features with a
low variance, but also prevents a non-zero constant vector to get
a zero score.

4.3. Illustration

SLS is now compared to the well-known and widely studied
correlation coefficient and to the mutual information (MI) as a
criterion for feature selection. In this section, the value of the
parameter k in (3) is set to 5 and the MI is estimated as detailed in
[27].

4.3.1. Artificial data sets

SLS is first tested on artificial problems for which the relevant
features are known in advance. The objective is to show the
ability of the method to actually select relevant features and its
greater capability to detect non-linear relationships between each
feature and the output than the correlation. To this end, three
artificial problems are considered.

The first problem has six features X1 . . .X6 uniformly distrib-
uted on [0; 1]. Its output is a linear combination of three features

Y1 ¼ 5X1þ7X2�10X3: ð7Þ

The second problem has eight features X1 . . .X8 uniformly
distributed on [0; 1]. Its output is defined as

Y2 ¼ cos ð2pX1X2Þ sin ð2pX3X4Þ: ð8Þ

The last one consists of four features X1 . . .X4 uniformly
distributed on [0; 1]. The output is defined as

Y3 ¼ X2
1X�2

2 : ð9Þ

For the three problems, the sample size is set to 1000 and 1000
datasets are randomly generated. The criterion of comparison
between feature selection methods is the percentage of cases for
which all the informative features (three, four and two for Y1, Y2

and Y3 respectively) are the best ranked. Table 1 summarizes the
results. As can be seen, when the relationship between the
features and the output is non-linear, the proposed SLS clearly
outperforms the correlation coefficient, which is restricted to
linear dependencies, and compares well with the MI. For the
linear problem (7), all the three methods give satisfactory results.

4.3.2. Real-world problems

SLS is now tested on real-world data sets. Since in this case the
relevant features are not known in advance, a prediction model
has to be used to assess the performances of the feature selection
criteria. In this paper, a 5-nearest neighbors (5-NN) model is used,
both for its simplicity and its sensitivity to irrelevant features.
Two data sets are considered, Delve Census and Orange Juice,
which will be described in details in Section 6; all the available
samples are used for the experiments.



Fig. 1. RMSE of a 5-NN model for two supervised and one unsupervised feature

selection criteria on the Delve Census data set.

Fig. 2. RMSE of a 5-NN model for two supervised and one unsupervised feature

selection criteria on the Orange Juice data set.
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Figs. 1 and 2 show the root mean squared error (RMSE) of the 5-
NN model as a function of the number of selected features for the two
data sets. The RMSE is estimated through a 5-fold cross-validation
procedure. For comparison, the results with the unsupervised Lapla-
cian score are also shown. Again, the interest of the SLS against the
correlation coefficient can be observed. As expected, the unsupervised
method performances are the worse. The MI outperforms its compe-
titors for the Juice dataset and is equivalent to the SLS for the Delve
dataset. However, as will be shown in Section 6 (left column of Figs.
3–6), when the number of labeled samples is low, the MI does not
perform as well anymore; in this situation, the SLS performances are
comparable or slightly better than the ones of the MI. This can be due
to the fact that MI is too complex to be reliably evaluated with such a
few number of samples.
5. Semi-supervised Laplacian score

When a large number of labeled data points are available,
Section 4 shows promising results concerning the use of SLS as a
feature selection criterion. However, when the number of labeled
samples is small, information from the unlabeled part of the data
should also be taken into account.

In this paper, we introduce a semi-supervised feature selection
algorithm based on the developments in the two previous
sections. As detailed above, both the LS and the SLS are based
on the ability of the features to preserve the local structure of the
data. In fact, the difference between these two methods precisely
lies in the way the local structure is determined. Indeed, the
structure is defined from the unsupervised part of data for LS (two
points are close if the values of their features are close) and from
the output for SLS (two points are close if their outputs are close).
In order to combine both pieces of information, a quite intuitive
idea is thus to compute the distance between two samples from
their outputs if both are known, and from the unsupervised part
of the data otherwise. Indeed, Section 4.3 showed that, as could
be easily understood, SLS leads to better prediction results than LS
and that the supervised information should thus be used prefer-
entially if available. These considerations are the basis of the
design of the proposed feature selection criterion.

Let us consider a semi-supervised regression problem, which
consists in the training set X and the associated output vector
Y ¼ ½y1 . . . ys�ARs. It is assumed that s5m, i.e. that the number of
supervised samples is small regarding the total number of samples,
which is a traditional assumption in semi-supervised learning.

The developments begin by defining the matrix d of pairwise
distances between each pair of data points

d2
i,j ¼

ðyi�yjÞ
2 if yi and yj are known,

1

n

Xn

k ¼ 1

ðf k,i�f k,jÞ
2 otherwise:

8>><
>>: ð10Þ

In the second case, i.e. if yi, yj or both yi and yj are unknown, the
distance is normalized by the number of features n. This way, all
values of d are kept in a comparable range, which would not be
the case otherwise, since the dimension of the data set is
generally much larger than one. Of course, for this distance
normalization to be meaningful, the features fr as well as the
output vector Y have to be normalized to the same range of
values. Details about this normalization are given in Section 6.

Based on d, a matrix Ssemi is then built as follows:

Ssemi
i,j ¼

e�d2
i,j=t if xi and xj are close

and yi and=or yj is unknown,

C � e�d2
i,j=t if xi and xj are close

and yi and yj are known,

0 otherwise:

8>>>>>>><
>>>>>>>:

ð11Þ

Again, two points are considered as close if one is among the k

nearest neighbors of the other one.
As one can notice, a (positive) constant C is introduced to

weight the values of Ssemi
i,j corresponding to supervised samples. In

practice, this allows us to give more importance to the informa-
tion coming from the supervised part of the data. Indeed, since
the SLS has an obvious advantage over his unsupervised counter-
part, it is reasonable to assume the labels to be more important
than the unsupervised samples for the feature selection problem.

Similarly to what has been done in the previous section, we then
define Dsemi

¼ diagðSsemi1Þ, Lsemi
¼Dsemi

�Ssemi and ~f r ¼ fr�ðf
T
r Dsemi1=

1TDsemi1Þ1.
Eventually, the proposed criterion for semi-supervised feature

selection, called semi-supervised Laplacian score (SSLS), can be



Fig. 3. RMSE of a 5-NN model as a function of the number of selected features with 3% (left) and 5% (right) supervised samples for the Orange Juice data set.

Fig. 4. RMSE of a 5-NN model as a function of the number of selected features with 3% (left) and 5% (right) supervised samples for the Nitrogen data set.

Fig. 5. RMSE of a 5-NN model as a function of the number of selected features with 3% (left) and 5% (right) supervised samples for the Delve Census data set.
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Fig. 6. RMSE of a 5-NN model as a function of the number of selected features with 3% (left) and 5% (right) supervised samples for the Pollen data set.
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defined for each feature fr as

SSLSr ¼
~f

T

r Lsemi ~f r

~f
T

r Dsemi ~f r

� SLSr : ð12Þ

In this last definition, SLSr is the supervised Laplacian score
introduced in Section 4, computed using the few supervised
samples only. Developments similar to (6) can also give a
justification to the first term of the proposed criterion.

This criterion (12) thus combines the influence of both the
unsupervised and the supervised part of the data, but gives
however this last part more importance. More precisely, the SSLS
is the SLS corrected with a term slightly influenced by the sole
values of X. As will be seen in the next section, even such a small
influence can significantly improve the feature selection perfor-
mances compared to methods using the supervised samples only.
In this work, the product has been chosen to combine the
information from the supervised and the unsupervised part of
the data, as preliminary results suggested the interest of doing so.
Obviously, other possibilities could as well be considered.
2 http://www.ucl.ac.be/mlg/.
3 http://kerouac.pharm.uky.edu/asrg/cnirs/.
4 http://www.cs.toronto.edu/�delve/data/census-house/desc.html.
5 http://lib.stat.cmu.edu/datasets/.
6. Experimental results and discussion

This section illustrates the interest of the proposed semi-
supervised feature selection approach. First, the impact of differ-
ent feature selection criteria on the performances of a prediction
model is studied. Then, it is quickly verified that the proposed
SSLS is able to efficiently use the few supervised samples, by
showing how its performances are influenced by the number
of labeled samples. Eventually, we discuss the influence of the
different parameters of our method and give some simple
considerations to choose empirically good values for these
parameters.

6.1. Prediction performances

Four real-world data sets are used in this section. The first two
ones concern near-infrared spectra analysis problems. With the
Orange Juice dataset, the goal is to estimate the level of sacchar-
ose of orange juice samples from their measured near-infrared
spectrum. About 218 samples each defined by 700 features are
available. The dataset can be downloaded from the website of the
UCL’s Machine Learning Group.2 For the Nitrogen dataset, con-
taining originally 141 spectra discretized at 1050 different wave-
lengths, the objective is the prediction of the nitrogen content of a
grass sample. The dataset is available from the Analytical Spectro-
scopy Research Group of the University of Kentucky.3 In order to
lower the original number of features, each spectrum is repre-
sented by its coordinates in a B-splines basis as a preprocessing
step (see [28] for details). About 105 new features are built
this way.

The next data set is the well-known Delve-Census, from which
only the 2048 first samples are considered. The data can be
obtained from the University of Toronto.4 The objective is to
predict the median price of houses in different small regions.
Originally, each sample was described by 139 demographic
features about these regions; however, only 104 features are
considered here, since those which are too correlated with the
output have not been kept for the experiments.

Eventually, experiments are also carried out on the Pollen data
set from the StatLib repository.5 It is a synthetic data set,
reproducing characteristics of pollen grains. There are 481 sam-
ples and four features.

The proposed SSLS is compared with the MI and the correla-
tion coefficient, but also with the SLS, its supervised counterpart.
Indeed, it is important to check that, with a small number of
supervised samples, supervised methods are not able to perform
well. As the results with the unsupervised LS have already been
seen as being the worse ones [9], they are not reproduced here,
for the sake of clarity.

As in Section 4.3.2, the compared feature selection algorithms
are evaluated through the root mean squared error (RMSE) of a 5-
NN model. More precisely, the experimental setup is the follow-
ing one. First, a few supervised samples are randomly selected
from the training set. Features are then selected on the training
set; all samples of the training set are considered for the SSLS,
while only the supervised ones are used to evaluate the MI, the
correlation coefficient and the SLS as those three last methods are
not able to take unsupervised samples into account. A 5-NN
prediction model that considers only the selected features is then

http://www.ucl.ac.be/mlg/
http://kerouac.pharm.uky.edu/asrg/cnirs/
http://www.cs.toronto.edu/~delve/data/census-house/desc.html
http://www.cs.toronto.edu/~delve/data/census-house/desc.html
http://lib.stat.cmu.edu/datasets/
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used to predict the output of the points of an independent test set.
For the prediction step, the samples in the training set are all
assumed to be supervised. This is because the model would
probably perform badly if a too low number of supervised
samples were available; the obtained results would then have
no meaning. This assumption actually ensures that the perfor-
mances reflect the quality of the feature selection itself, and are
not too much influenced by the prediction model. The compared
algorithms are tested with 3% and 5% of randomly selected
supervised samples. The RMSE is estimated through a 5-fold cross
validation procedure repeated 10 times.

The parameters are set follows. t is set to 1; five neighbors are
considered for computing the unsupervised (1) and supervised (4)
score, while 30 neighbors are considered for the semi-supervised
scores (11). Indeed, the number of supervised samples being
small, increasing the number of neighbors considered in the
analysis allows to take such samples into account with a greater
probability. The parameter C in (11) is set to 5. This quite
moderate value gives the supervised samples a large importance,
but nevertheless gives a significant weight to the information
coming from the unsupervised data points. The maximum num-
ber of selected features is set to 50. Eventually, before any
distance computation, the features and the output vector are
normalized by removing their mean and dividing them by their
standard deviation. For the prediction step, the outputs are not
normalized anymore.

The parameter values have been determined empirically, as
they consistently led to good performances in the experiments.
However, those values should probably depend on the data set
and a way to automatically set them would be of great interest.

Figs. 3–6 show the RMSE as a function of the number of
selected features for the different data sets. Results first show
how the use of unlabeled data can improve the feature selection
procedure for regression purposes when compared with a purely
supervised approach. Indeed, it is particularly obvious for the
Orange Juice (Fig. 3) and the Pollen (Fig. 6) data sets that the SSLS
outperforms the SLS when only a few supervised samples are
available. Results on the Nitrogen (Fig. 4) data set are also in favor
of the semi-supervised criterion, which is more able to quickly
detect relevant variables (at least in terms of regression perfor-
mances). Results obtained with the Delve data set (Fig. 5) are
quite comparable for both methods. These observations indicate
that the knowledge coming from the unsupervised samples is
efficiently taken into account in the feature selection procedure,
and that it positively impacts the determination of relevant
features.

Moreover, it can also be observed that the proposed SSLS
performs better than the correlation coefficient for the four
examples. More precisely, with only a few exceptions for the
Nitrogen data set and 3% supervised samples, the RMSE obtained
with the SSLS is never larger than the one obtained with the
correlation coefficient. The SSLS thus seems to have an advantage
over both unsupervised and supervised approach to feature
selection. The SSLS also outperforms the MI for the Juice and
the Pollen datasets. Results are comparable on the two other
datasets.

6.2. Efficient use of the supervised samples

One desirable property of a semi-supervised algorithm is that
it should be able to efficiently use the information coming from
the few (and precious) labeled samples. More specifically, it is
interesting to see how the performances of the proposed criterion
are affected by the number of supervised samples, especially
when a very low number of them is available. To this end, the
same experimental framework as in Section 6.1 has been
considered and the SSLS criterion has been tested with different
small numbers of supervised samples.

Figs. 7–9 present the results on three data sets (the results on
the second spectroscopic data sets are not shown for concision
reasons). As can be seen, the SSLS always benefits from the
addition of supervised samples. Indeed, for the three data sets,
the performances of the 5-NN prediction model with the selected
features obviously increase with the number of supervised
samples.

Of course, it can be reasonably supposed that the above
conclusions will only be true when a small amount of supervised
samples are considered. Indeed, it is likely that, as the number of
available supervised samples grows, the behavior of both the SLS
and the SSLS will become similar; consequently, the influence of
the unsupervised samples in the SSLS will tend to decrease in that
case. This is, however, not a drawback of the proposed methodol-
ogy, since we are particularly interested in the situations where
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very few supervised data points are available or, said otherwise,
where traditional supervised algorithms do not have enough
information to perform well.

6.3. Discussion on the parameters

The proposed algorithm involves various parameters whose
values have to be determined in practice. In this section, we
consequently discuss the actual influence of these parameters and
efficient solutions to fix them.

The first parameter is the number of neighbors considered in
the construction of the proximity matrices (1), (3) and (11). For
the unsupervised and supervised score, a small value of 5 is
chosen, in order for the graph to reflect the local structure of the
data. This value is successfully used in related works such as
[8,25]. For the semi-supervised score (11), the number of neigh-
bors has been increased, to take the supervised samples into
account with a greater probability. While the particular value of
30 has been chosen, any intermediate value can in practice be
used. Preliminary experiments with 50 neighbors, and up to 100
for the larger Delve dataset, confirmed this intuition with non-
significant differences observed in the final performances.

The second parameter is t in Eqs. (1), (3) and (11). It has
actually been introduced essentially to remain consistent with the
notations of the original LS paper [8]. However, we have chosen to
set it at 1 for the following reasons. First, the data we deal with
are assumed to be normalized to have zero mean and unit
variance. Then, we only consider a small number of neighbors
to build the proximity matrix. It is therefore not useful to consider
a fast decaying exponential function to represent the local
structure of the data. The same choice would not necessarily be
adequate if, for instance, all samples were considered to build
matrices (1), (3) and (11).

Eventually, parameter C aims at giving more weight to the
supervised information in the construction of Ssemi (11). While
this parameter could be helpful in practice, experiments on the
four considered datasets have shown that its value only slightly
impacts the results. As an example, Fig. 10 shows the perfor-
mances of the SSLS with 10 supervised samples and different
values for C. As expected, when the value of C remains low, the
performances of the method are close. When the value of C

becomes too high, the unsupervised samples are not taken into
account anymore and the performances of the method decrease.
Empirically, the value of C can thus be set to 1 to get satisfactory
results. When the proportion of supervised samples is extremely
low (e.g. less than 1%), we however suggest a moderate value of
C¼5.

In conclusion, the number of neighbors in Eq. (11) is not
decisive while parameters t and C can reasonably be omitted in
practice. This consequently simplifies the proposed feature selec-
tion procedure. We however mention those parameters as they
can prove to be useful in some situations, in particular when the
total number of samples allows the user to use cross-validation
procedures.
7. Conclusions and future work

This paper tackles the important, and surprisingly not studied,
problem of feature selection for semi-supervised regression
problems. To this end, two algorithms are proposed.

The first one is purely supervised and serves as a basis to the
development of the semi-supervised one. Nevertheless, experi-
ments show that the supervised method, called supervised
Laplacian score (SLS), presents interesting properties for super-
vised feature selection, especially when compared with the very
popular correlation coefficient criterion. Both proposed algo-
rithms are inspired by the Laplacian score, a feature selection
criterion recently introduced in the unsupervised context. Both
methods are based on the ability of the features to locally
preserve a defined structure of the data. In other words, the
proposed criteria give the highest rating to the features which are
the most coherent with a similarity measure defined between
samples.

In supervised learning, the similarities are estimated using the
outputs only as they are supposed to be particularly useful in a
regression problem context. For semi-supervised problems, simi-
larities are computed through the outputs if they are known and
through the (unlabeled) data points otherwise. This leads to a
semi-supervised score, which is then used to transform the SLS
into the proposed criterion, called the semi-supervised Laplacian
score (SSLS).

Experimental results prove the interest of the proposed approach,
for both the supervised and the semi-supervised feature selection
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problems. More precisely, for the real-world data sets considered in
the paper, SSLS appears to be superior to the correlation coefficient
and to the unsupervised Laplacian score. This last observation shows
that the proposed SSLS is effectively able to take advantage of the few
supervised samples to detect relevant features.

Moreover, SSLS also leads to better prediction performances
than its supervised version; it thus also takes advantage of the
unsupervised samples when the number of supervised points is
particularly low.

In addition, experiments indicate that when few labeled
samples are available, the performances of the SSLS grow with
the number of these instances. This indicates that the method
integrates in an efficient way the information coming from the
supervised part of the data, which is a very desirable property for
semi-supervised algorithms.
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