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This paper introduces a new methodology to perform feature selection in multi-label classification
problems. Unlike previous works based on the χ2 statistics, the proposed approach uses the multivariate
mutual information criterion combined with a problem transformation and a pruning strategy. This
allows us to consider the possible dependencies between the class labels and between the features

based on the permutation test combined with a resampling strategy. Experiments carried out on both
artificial and real-world datasets show the interest of our approach over existing methods.
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1. Introduction

Unlike traditional single-label problems, multi-label classifica-
tion assumes that each data point from a learning set can belong
simultaneously to several classes. The problem of multi-label
classification is thus more general than the single-label one and
has been extensively studied due to its interest in numerous
domains. Those include classification of visual scenes [1], text
categorization [2], classification of music into emotions [3] or
protein function classification [4]. As a simple example, an article
about the Kyoto protocol in text classification can be obviously
associated with both politics and ecology categories.

Two distinct approaches are generally followed to perform
multi-label classification. The first one is to adapt existing classi-
fication algorithms to handle multi-label problems. Among the
most popular methods, one can cite AdaBoost [2], support vector
machines [5], C4.5 [6] and K nearest neighbors [7].

Another popular approach is to transform the multi-label
problem into one or several single-label problems, which can be
addressed using existing methods. The most simple transformation
method is the binary relevance (BR) whose idea is to learn a
separate classification model for each label. Said otherwise, there
are as many prediction models as the maximum number of possible
labels; each model decides whether or not a point belongs to a
ll rights reserved.
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specific class, independent of the result of the other classifiers. The
final label set is obtained by combining the decisions of all
classifiers. The BR approach does not take into account the possible
dependence that could exist between the labels, since the decision
for each class is made separately. To address this problem, a solution
is to consider each unique combination of labels in a training set as
a label for a single-label classifier [8]; such an approach is called
label power set (LP). Since the number of classes created this way
can potentially be huge (2c , where c is the original number of
labels), Read et al. [8] suggested to prune the problem by getting rid
of classes represented by a too small number of instances. Points
belonging to these classes can either be removed or can be assigned
to another class. This methodology is called pruned problem
transformation (PPT) [8].

Feature selection is known to be an important preprocessing
task for many pattern recognition applications, including classifica-
tion. Indeed, the presence of irrelevant and/or redundant features
can harm the performances of classification algorithms. Moreover,
learning with high-dimensional data is a hard task in practice [9].
Eventually, the interpretation of the prediction models and the
understanding of the considered problem can also greatly benefit
from feature selection.

Traditionally, feature selection algorithms are divided into three
main categories. First, wrappers use the classification algorithm to
select a subset of features maximizing the performances of this
algorithm. They are thus expected to lead to good prediction
performances but they also require building many prediction
models, which can be very time-consuming in practice. On the
other hand, filters are independent of any prediction algorithm;
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they are rather based on a relevance criterion, the most frequently
used ones being the correlation coefficient [10] and the mutual
information (MI) [11]. Filters are fast and can be used prior to any
prediction model. Eventually, embedded methods such as the Lasso
[12] perform simultaneously feature selection and prediction
through regularization.

Only a few works address the problem of feature selection for
multi-label classification. The most popular approach is to use the BR
transformation and to evaluate the relevance of each feature for each
of the labels independently using a χ2 statistics [3,13]. The scores
corresponding to the different labels are then combined to get a
global ranking of the features. This strategy has mainly been used for
text categorization [13]. The LP transformation combined with the χ2

statistics has also been used in music classification [3]; this approach
has been shown to outperform the work in [13], mainly because it
takes the dependence between labels into account.

These approaches suffer from two major drawbacks. First, the
χ2 statistics is originally designed for discrete variables. When the
training set is made of continuous features (as in [3]), it is
necessary to discretize the features before evaluating their rele-
vance; the results of the feature selection are obviously dependent
on the discretization step. A criterion directly able to deal with
continuous variables is thus to be preferred. More importantly, the
χ2 statistics is a univariate relevance criterion, meaning that all the
features are scored individually. This criterion is not able to
consider the possible redundancy between features; in the same
way, it is not able to detect joint relevant features. A multivariate
criterion such as the mutual information, able to score subsets of
features, does not suffer from these drawbacks. Related works
include [14], where a graphical model is used to represent the
relationships among the labels and the features; it is designed for
discrete datasets only. In [15], the authors combine PCA-based
feature extraction with a wrapper feature selection method
implemented through a genetic algorithm. However, this approach
to dimensionality reduction is essentially a feature extraction
method, in the sense that the original features are transformed,
by opposition to feature selection where a subset of the original
features is kept.

This paper proposes a MI-based feature selection algorithm
designed for multi-label problems. The idea is to first transform
the problem using the PPT. A greedy search algorithm based on the
MI criterion is then conducted to select the most relevant features.
The dependence between both the labels and the features is thus
considered by this approach. A way to automatically select the
pruning parameter for PPT is also proposed. This work extends
preliminary results presented in [16].

The paper is organized as follows. Section 2 recalls basic concepts
about the MI criterion. The complete feature selection strategy is
described in Section 3. Section 4 proposes a way to determine the
value of the pruning parameter for PPT. Experiments on both artificial
and real-world datasets are carried out in Section 5. Section 6
concludes the work.
2. Mutual information

This section briefly recalls basic definitions about the MI; next
it presents a MI estimator specifically designed for classification
problems.

2.1. Definitions

MI [17] is a symmetric measure of the amount of information that
two variables X and Y contain about each other. MI has been widely
used for feature selection since the seminal work by Battiti [11]. One of
the main advantages of MI for feature selection is its ability to detect
nonlinear relationships between variables, which is not the case, as an
example, for the popular correlation coefficient. MI can also naturally
be defined for groups of variables (or equivalently for multidimen-
sional variables); this allows one to take the joint relevance and
redundancy of features into account during the feature selection
process.

The MI between X and Y is formally defined in terms of the
probability density functions (PDF) of X, Y and (X,Y), respectively,
denoted as pX, pY and pX;Y :

IðX;YÞ ¼∬ pX;Y ðx; yÞlog
pX;Y ðx; yÞ
pXðxÞpY ðyÞ

dx dy: ð1Þ

The entropy of a random variable X is

HðXÞ ¼�
Z

pXðxÞlog pXðxÞ dx; ð2Þ

the MI can be rewritten as

IðX;YÞ ¼HðXÞ�HðXjYÞ ¼HðYÞ�HðYjXÞ: ð3Þ

Since the entropy has a well-known interpretation in terms of the
uncertainty of a random variable, (3) can be seen as the reduction of
uncertainty about one variable once the other one is known. If X is a
set of features and Y a class label vector, the last part of (3) gives a
natural justification to the MI criterion for feature selection:
maximizing IðX;YÞ with respect to a feature subset X is equivalent
to searching for the subset of features reducing at most the
uncertainty about the class label vector Y.

In practice none of the PDF's in (1) are known for real-world
problems and MI has to be estimated from the data.
2.2. Estimation

In this paper, a MI estimator based on the nearest neighbors
statistics and those introduced by Gomez et al. [18] is used. It is
built from the Kozachenko–Leonenko estimator of entropy [19]:

ĤðXÞ ¼�ψðKÞ þ ψðNÞ þ log ðcdÞ þ
d
N

∑
N

n ¼ 1
log ðϵðn;KÞÞ ð4Þ

where K is the number of nearest neighbors (a parameter of the
estimator), N is the number of samples in X, d the dimensionality
of these samples, cd the volume of a unitary hypersphere of
dimension d, ϵðn;KÞ twice the Euclidean distance from the nth
observation in X to its Kth nearest neighbor and ψ is the digamma
function:

ψðkÞ ¼ Γ′ðkÞ
ΓðkÞ ¼ d

dk
ln ΓðkÞ; ΓðkÞ ¼

Z 1

0
xk�1e�x dx: ð5Þ

The function ψ satisfies the following recursion: ψðxþ 1Þ ¼ ψðxÞ þ
1=x and ψð1Þ ¼ C, C ¼�0:5772… being the Euler–Mascheroni
constant.

Gomez et al. used Eq. (4) to derive a MI estimator specific to
classification problems [18] (i.e. for problems where Y is a discrete
variable). In such problems, the probability distribution of the
(discrete) class variable Y can be estimated as pðy¼ ylÞ ¼ nl=N, with
nl the number of points whose class value is yl. Rewriting the
estimated MI in terms of entropies, it gives as

ÎðX;YÞ ¼HðXÞ�HðXjYÞ ¼HðXÞ� ∑
L

l ¼ 1
p̂ðy¼ ylÞ|fflfflfflfflffl{zfflfflfflfflffl}

nl=N

HðXjY ¼ ylÞ; ð6Þ

where L is the total number of classes. This last equation indicates that
only an estimation of H(X) and HðXjY ¼ ylÞ is eventually needed to
estimate I(X ;Y ). More precisely, estimating HðXjY ¼ ylÞ is equivalent
to estimating H(X) using only those points whose class label is yl.
Plugging the entropy estimator (4) into Eq. (6), it is possible to derive
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the following MI estimator:

ÎðX;YÞ ¼ ψðNÞ� 1
N
nlψðnlÞ

þ d
N

∑
N

n ¼ 1
log ðϵðn;KÞÞ� ∑

L

l ¼ 1
∑
n∈yl

log ðϵlðn;KÞÞ
" #

: ð7Þ

In (7), ϵlðn;KÞ has the same meaning as ϵðn;KÞ but the set of possible
neighbors for the nth observation is limited to the points whose class
label is yl.

The MI estimator (7) has the major advantage that it does not
require the direct estimation of any PDF, which is a hard task when
dealing with high-dimensional data, because of the curse of
dimensionality. Indeed, histograms and kernel density estimators,
which are traditionally used for MI estimation, suffer dramatically
from an increase of dimensionality and are not likely to work well
in high-dimensional spaces. By avoiding unreliable and imprecise
PDF estimations, the estimator (7) is expected to be much less
sensitive to the dimension of the data; it thus appears to be a
reasonable choice to achieve multivariate MI estimation. Nearest
neighbors-based MI estimators have already been used success-
fully for feature selection [18,20].
3. Feature selection algorithm

This section presents the complete methodology to perform
feature selection for multi-label classification problems. Let us
consider a dataset D∈RN�f , where f is the original number of
features. Let us also consider, associated with D, a multi-label
output vector O∈f0;1gN�c, where c is the number of possible labels.
Each column of O thus codes for the samples in D to belong to one
particular class.

The first step consists in transforming the problem using the
PPT approach. Every unique combination of class labels in O is thus
considered as a single class label. The points belonging to classes
containing less than p samples are then removed from the dataset.
The transformed dataset and output vector are called Dt and Ot,
respectively. Dt contains Nt ≤N samples and is described by f
features f i; i¼ 1…f .

Another possibility is to keep the points whose class has less
than p samples, but to duplicate them and to assign each copy a
new label, chosen from the labels present in the dataset after the
pruning [8]. This is however not acceptable when working with
the nearest neighbors-based MI estimator (7). Indeed, the pre-
sence of points having the exact same feature values would make
the determination of the exact Kth nearest neighbor of some
points impossible and would therefore harm the MI estimation.

In the proposed methodology, the benefits of the problem
transformation are two-fold. First, it simplifies the problem by
limiting the possible number of classes. PPT thus prevents the MI
estimator from being hurt by the presence of many rare classes
and, in this sense, prevents from overfitting. Then, PPT ensures
that each class has a minimum number of p samples. This is of
major importance since the MI estimator (7) requires the distance
between each point in D and its Kth nearest neighbor in the same
class. Controlling the pruning parameter p allows us to ensure that
condition Kop is fulfilled. This would not be the case for the BR
transformation for which we have no guarantee about the minimal
cardinality of the classes.

Once Dt and Ot have been obtained, the feature selection procedure
can be used. In this paper, the MI criterion is combined with a forward
greedy search strategy. The procedure starts with an empty set of
features. The feature from Dtwhose individual MI with the output Ot is
the highest is first selected. Then, sequentially, the (still unselected)
feature whose addition to the subset of selected features leads to the
subset having the highest MI with the output is selected. The
procedure is stopped after a predetermined number of features has
been selected or when another stopping criterion is met. Once a
feature has been selected, this choice is never questioned again, hence
the name forward. Obviously, other search procedures can be thought
of, including the backward elimination which starts with all the
features and recursively eliminates them one at a time.

At each step of the forward algorithm, a new feature is added to
the feature subset whose dimension is consequently increased.
This underlies the need for a MI estimator able to deal with high-
dimensional data. Because the MI is estimated between a subset of
features and the output, the above strategy is able to consider the
possible interaction or redundancy between features, which is a
great advantage in a feature selection context. Of course the
computational cost of the proposed multivariate procedure is
much higher than one of a simple ranking method (Oðf 2Þ multi-
variate MI estimations vs. f univariate MI estimations).
4. Determination of the pruning parameter

This section proposes a way to automatically set the pruning
parameter p, i.e. the minimum number of samples belonging to a
class after the transformation procedure. Intuitively, the objective
is to find a compromise between two opposite requirements. First,
it is important to keep as much as possible the original informa-
tion carried by the data, by choosing a not too high value for p.
Indeed, a too aggressive pruning would lead to the removal of
many samples and would make the transformed dataset useless,
as it would not be representative anymore of the original dataset;
only a few classes would actually still be represented.

On the other hand, feature selection or classification algorithms
will not be able to perform well in the presence of many different
classes containing a very small number of samples. Such small
classes represent extremely rare situations which are not relevant
for the considered problem and lead to overfitting.

Since we are interested in MI-based feature selection, it is
natural to use a feature selection process to determine the value of
p. Regarding the above considerations, a good value of p should be
such that the MI is effectively able to use as much relevant
information as possible to determine the important features,
without being harmed by too rare class labels. We are thus
interested in values of p for which the MI criterion is the most
able to discriminate between relevant and irrelevant features. As
the values of the MI are not bounded to a known interval
(contrarily to the absolute correlation coefficient always lying in
½0;1�), one possibility is to compare the distribution of Iðf i;OtÞ with
the distribution IðU;OtÞ, where U denotes a useless feature [21].
The value of p according to which these distributions are best
separated can be chosen. Intuitively, if there are too many small
classes for the MI estimator to return relevant values, there will be
no significant difference between the MI estimated from fi and
from U. The same conclusion will apply if only a small number of
classes are considered, since the dataset would then contain a very
limited amount of information.

In practice, the distribution of Iðf i;OtÞ is not known. One
solution is therefore to use a permutation test, combined with a
k-fold procedure to estimate the mean and the variance of the MI
estimator. Based on the work in [21], the idea is the following. For
a feature fi, assumed to be relevant for the classification task, the
distribution of Iðf i;OtÞ and Iðf i;π ;OtÞ is built, where f i;π denotes a
randomly permuted version of fi. Because of the permutation, f i;π

can be assumed to be independent from Ot and thus irrelevant for
the classification task. To build the necessary distributions, 20
estimations of Iðf i;OtÞ and Iðf i;π ;OtÞ are performed on non-
overlapping subsets of the dataset, using a 20-fold cross-validation
scheme.
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Eventually the value of p can be chosen as the one best
separating the two distributions in the sense of a Student measure

tix ¼
μx�μπxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x þ ðsπx Þ2

q : ð8Þ

In Eq. (8), μx and s2x are, respectively, the estimated mean and
variance of the distribution of Iðf i;OtÞ obtained on the training set
transformed with a pruning parameter p equal to x; μπx and ðsπxÞ2
are the corresponding quantities for the distribution of Iðf i;π ;OtÞ.

Once tix is obtained for every feature fi and every parameter
value x in a chosen range, the best value for p can be selected as
the one corresponding to the highest value of tix among all the
features. This ensures that no useless feature is taken into account
to choose the value of p. Considering useless features would
indeed make no sense, if they can be considered as independent
from Ot. Of course, one could also decide to consider the m highest
values of tix, or the features for which tix is above a fixed threshold.
This would however require the introduction (and possibly the
tuning) of an additional parameter.

It is worth noting that parameter K of the MI estimator could as
well be set according to the same methodology. To do so, tix should
simply be made dependent to K, to get tixðKÞ (with Kop). The
maximum value of tixðKÞ over all features then gives the best
couple of parameters for (p,K). Of course, the computational cost of
the procedure is multiplied by K when compared to the case
where only p has to be determined. In this paper, the value of K is
set arbitrarily, as preliminary experiments have shown that it does
not influence significantly the feature selection process when
chosen in a reasonable range.
5. Experimental results

This section presents experimental results illustrating the
shortcomings of existing multi-label feature selection algorithms
and showing the interest of the proposed approach. Experiments
are carried out on both artificial and real-world datasets. The
proposed methodology is compared to the one introduced in [3],
detailed in Section 1 and later denoted as χ2. It is also compared to
the use of the univariate MI to rank the features, without taking
any joint redundancy or relevance into account. The discretization
needed for the χ2 approach follows [22]. Parameter K is set to 4 in
the MI estimator, while the value of the pruning parameter p is
chosen between 5 and 20. As it is needed that p4K , we have
chosen a relatively small value for K. Moreover, we set a maximum
value of 20 for p in order to limit the amount of removed samples.
5.1. Artificial datasets

Two artificial multi-label datasets whose characteristics are
given in Table 1 are considered. For the first one, ten features
(f 1…f 10) are drawn from a uniform distribution on the ½0;1�
interval. Five supplementary features are then constructed:
f 11 ¼ ðf 1�f 2Þ=2, f 12 ¼ ðf 1 þ f 2Þ=2, f 13 ¼ f 3 þ 0:1, f 14 ¼ f 4�0:2 and
f 15 ¼ 2� f 5.
Table 1
Characteristics of the artificial datasets.

Samples Attributes Labels Classes

Problem 1 (9) 1000 15 4 8
Problem 2 (10) 1000 8 4 8
The multi-label output O¼ ½O1…Oc ¼ 4� is then built as follows:

O1 ¼ 1 if f 14 f 2

O2 ¼ 1 if f 44 f 3

O3 ¼ 1 if O1 þ O2 ¼ 1
O4 ¼ 1 if f 540:8

Oi ¼ 0 otherwise ði¼ 1…4Þ:

8>>>>>>><
>>>>>>>:

ð9Þ

Obviously, only features f11 (or f1 and f2), f3 (or f13), f4 (or f14) and f5

(or f15) are needed to entirely determine the output.
20 artificial datasets of sample size 1000 have been randomly

generated. Using the MI-based algorithm, feature f11 is always
selected first. The next best ranked features are then f5 or f15, f3 or
f13 and f4 or f14. Thus only relevant and non-redundant features are
always ranked in the top four positions, as could be expected from
an efficient feature selection algorithm. When the χ2�based
method is used, the first three best ranked features are always
f5, f15 and f11 in a random order. Then f1 or f2 is ranked in the 4th
position in half of the experiments (and are redundant with f11).
From one experiment to another, 6 to 8 features have to be
considered to select the 4 necessary ones. The irrelevant features
are, however, always ranked in the last places. This simple example
clearly shows the interest of considering the redundancy when
looking for small subsets of relevant features. Indeed, the proposed
algorithm leads to features subsets of up to half the size of those
returned by the χ2�based strategy for an identical quantity of
information. The results obtained with the univariate MI are
extremely similar to the ones obtained using the χ2 approach

The second artificial dataset consists in 8 features (f 1…f 8)
randomly drawn from a uniform distribution on the ½0;1� interval.
The output vector is built as follows:

O1 ¼ 1 if ðf 140:5 and f 240:5Þ or if ðf 1o0:5 and f 2o0:5Þ
O2 ¼ 1 if ðf 340:5 and f 440:5Þ or if ðf 3o0:5 and f 4o0:5Þ
O3 ¼ 1 if ðf 140:5 and f 440:5Þ or if ðf 1o0:5 and f 4o0:5Þ
O4 ¼ 1 if ðf 240:5 and f 340:5Þ or if ðf 2o0:5 and f 3o0:5Þ
Oi ¼ 0 otherwise ði¼ 1…4Þ:

8>>>>>>><
>>>>>>>:

ð10Þ

Hence, only features f1–f4 are relevant. Moreover, these features are
relevant only if considered in pairs. Said otherwise, f1 alone carries no
information about O while f1 and f2 together do; they completely
determine O1. The same observation is true for the (f1, f4), (f2, f3) and
(f3, f4) couples of features.

Again, 20 datasets of sample size 1000 are randomly generated.
For each of the experiments, the χ2�based approach returns a zero
score for every feature, meaning that it considers 8 features as
equally and totally irrelevant. Similarly, the univariate Mi criterion
gives a very low score to each feature. When the proposed MI-
based forward feature selection approach is considered, things are
quite different. The first (few) feature(s) are of course chosen at
random and can thus be irrelevant. However, as soon as one of the
relevant features is chosen, the three other ones are always
consecutively selected. The multivariate MI criterion is thus able
to detect relevant subsets of features.

Moreover, we also used a backward search procedure using the
multivariate MI criterion on the same 20 artificial datasets; for
each run of the experiment, the relevant features were always
eliminated last, showing the interest and the flexibility of the
proposed methodology. As a ranking method which does not
consider any interaction between features, the χ2 and the uni-
variate MI-based method are obviously never able to detect any
jointly relevant or redundant features.



Table 2
Characteristics of the real-world datasets.

Samples Attributes Labels Classes

Yeast 2417 103 14 198
Scene 2407 294 6 15
Emotions 593 72 6 37
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5.2. Real-world datasets

To further demonstrate the interest of the proposed approach
for feature selection, this section shows experiments carried out
on three real-world multi-label datasets.

5.2.1. Datasets
The first dataset is called Yeast. The objective is to associate

genes with a set of functional classes. The dataset has been
preprocessed by Elisseeff and Weston, as detailed in [5], in order
to consider only the known structure of the functional classes. The
dataset has 103 features and 14 distinct labels. The sample size is
1500 for the training set and 917 for the test set. Note that an
interesting reference for the use of MI in gene selection is [23],
where the authors are concerned with single label classification.

The Scene dataset [1] is concerned with the semantic classifi-
cation of pictures. There are 294 features and 6 labels. The sample
size is 1211 for the training set and 1196 for the test set.

The last dataset is named Emotions. The goal is to classify
pieces of music according to the kind of emotions they raise. The
number of features is 72 and 6 labels are possible. There are 391
samples in the training set and 202 in the test set. The character-
istics of the three datasets are summarized in Table 2. The
proposed divisions of the samples into the training and test sets
are the ones suggested on the website of the Mulan project, where
the three datasets can be downloaded in ARFF format [25].

5.2.2. Performance criteria
For real-world datasets, relevant features are not known in

advance as they were for artificially built datasets. The quality of
feature selection algorithms cannot thus be directly evaluated but
can be measured by the performances of a classification model
using the selected features. Four popular multi-label performance
criteria are considered in this work. Let us call M the number of
points in the test set, Oi (i¼ 1…M) the set of true class labels for
sample i, Ôi the set of class labels predicted by a multi-label
classifier h for sample i and N̂ i the set of non-predicted labels. Let
us also define, for sample i, ri(o) as the position of label o in the
predicted ranking.

The Hamming loss is defined as

HLðh;MÞ ¼ 1
jMj ∑

jMj

i ¼ 1

1
c
jOiΔÔi ;j ð11Þ

where Δ is the symmetric difference between two sets, i.e. the
difference between the union and the intersection of the two sets.
Again, c is the maximum number of possible labels. The Hamming
loss counts the number of times a label not associated to a sample
is predicted or a label associated to a sample is not predicted. Of
course, the smaller the Hamming loss, the better the performances
of the model.

The second criterion is the accuracy defined as

Accuracyðh;MÞ ¼ 1
jMj ∑

jMj

i ¼ 1

jOi∩Ôi j
jOi∪Ôi j

: ð12Þ

It is important to note that all samples in the dataset are assumed
to belong to at least one class. If it was not the case, the accuracy as
defined above (12) could be infinite. Of course, the higher the
accuracy, the better the classification performances.

The ranking loss is defined as

RLðh;MÞ ¼ 1
jMj ∑

jMj

i ¼ 1

jðo; o′Þ∈Ôi � N̂ ijriðoÞ4riðo′Þj
jÔi jj N̂ ij

ð13Þ

and corresponds to the mean proportion of pairs of labels which
are not correctly ordered.

Eventually, coverage is defined as

Coðh;MÞ ¼ 1
jMj ∑

jMj

i ¼ 1
max
o∈Oi

riðoÞ�1: ð14Þ

It corresponds to the average number of predicted labels required
to cover the complete set of true labels. The lower the ranking loss
and the coverage, the better the performances of the model.

The four presented criteria are very popular in multi-label
classification and are more detailed in [24], where the interested
reader will find a very general and complete survey of multi-label
classification.

5.3. Results and discussions

To compare the feature selection algorithms, ML-KNN, a K
nearest neighbors-based multi-label classifier introduced in [7]
has been used. The basic idea is to first identify the K nearest
neighbors of the sample to be classified. The maximum a poster-
iori principle is then used to predict the label set. This algorithm
has been chosen for both its simplicity and its high sensitivity to
the presence of irrelevant features. Indeed, a K nearest neighbors
algorithm gives the same weight to each feature and is not able to
perform any kind of embedded feature selection. It is important to
note that the feature transformation method has only been used to
perform feature selection. After feature selection, the original
dataset with all instances is considered for the classification step.
This way, we address the same classification problem and use the
same learning set as for the χ2�based algorithm. Parameter K of
the MI estimator is again set to 4, while the pruning parameter p is
set as described in Section 4 and is chosen between 5 and 20. The
values 8, 12 and 9 have been obtained for p for the Yeast, Scene
and Emotions datasets, respectively; they confirm that the range of
tested values was reasonable since they lie in the middle of it.

Figs. 1–3 show the accuracy, the Hamming loss, the ranking
loss and the coverage of the ML-KNN classifier as a function of
the number of selected features for the three datasets. The
results have been obtained on the test set, independent of the
training set. The proposed method (denoted as MI forward) is
compared with the one in [3] and with a ranking of the features
based on the individual MI between the features and the outptut
(denoted MI).

The results confirm the superiority of the proposed methodol-
ogy, already observed with the artificial datasets. First, the forward
MI-based approach is the only one leading to improved classifica-
tion performances for the three datasets and according to the four
performance criteria, when compared to the case where all
features are used. This is of course a very desirable quality for a
feature selection algorithm, which demonstrates that the method
is effectively able to detect relevant features. For the three
datasets, it is also the only method that consistently achieves
good performances. Indeed, the univariate MI fails for the Scene
dataset, while the χ2 approach leads to poor results on the Yeast
dataset. Both univariate methods are comparable on the Emotions
dataset. The performances of the two MI-based approaches are
similar for the Yeast dataset, possibly because the relevant features
in this dataset are not redundant. On the Scene dataset, the
univariate MI fails while the multivariate forward procedure



Fig. 1. Four quality criteria of the K nearest neighbors classifier as a function of the number of selected features for the Yeast dataset.

Fig. 2. Four quality criteria of the K nearest neighbors classifier as a function of the number of selected features for the Scene dataset.

Fig. 3. Four quality criteria of the K nearest neighbors classifier as a function of the number of selected features for the Emotions dataset.

G. Doquire, M. Verleysen / Neurocomputing 122 (2013) 148–155 153
actually leads to good results. This indicates that the MI criterion
has interest by itself but that univariate procedures can get stuck
in selecting huge groups of relevant but redundant features. This
can obviously degrade the classification performances. Consider-
ing multivariate procedures is thus extremely important in
practice.

The determination of the pruning parameter is also an important
aspect of the proposed feature selection algorithm. It is thus
necessary to check in practice that it leads to good feature selection
performances. Since no other solution currently exists in the
literature, we compare the results obtained by the proposed method
with the results obtained using other potential pruning parameter
values. More precisely, Figs. 4 and 5 show, respectively, for the Yeast
and Emotions datasets, the mean accuracy and Hamming loss
obtained using all pruning parameter values between 5 and 15
but the one obtained with the proposed criterion. Those classifica-
tion performances are compared with the ones resulting from the
proposed approach. As can be observed, choosing a pruning para-
meter value using the suggested permutation test leads to better
classification performances than what is obtained on average using
reasonable values. Indeed, in the four cases illustrated in Figs. 4 and
5, the proposed criterion leads to the global best performances (i.e.
smallest Hamming loss or highest accuracy). Even if the differences
in performances are not huge, this indicates the interest of the
suggested methodology compared to the random choice of what is
believed to be a good value.
6. Conclusion

This paper addresses the feature selection problem in the
context of multi-label classification. The proposed approach first
suggests transforming the problem using the PPT into a single-
label problem. The mutual information criterion is then combined
with a greedy search strategy to select a relevant set of features.
The mutual information is estimated through a nearest neighbor
based estimator that is robust in high-dimensional spaces. The
interest of the chosen transformation is twofold. First, it leads to a
simplified version of the problem where too rare class labels are
not taken into account. Then, it ensures that the mutual informa-
tion estimator is able to work correctly, by being able to find a
sufficient number of nearest neighbors of each class for each
sample of the training set. While being quite straigthforward, the
PPT approach requires the determination of parameter p (the
minimum number of samples per class), for which an adequate
value cannot be easily guessed in practice.

Consequently, a sound criterion to determine a good value of the
pruning parameter for the problem transformation is also presented.
The idea is to choose the value for which the distribution of the
mutual information between a relevant feature and the output is
best separated from the distribution of the mutual information
between the same output and an irrelevant feature. To this end, a
resampling strategy combined with a k-fold cross-validation proce-
dure has been considered.
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Fig. 4. Accuracy and Hamming loss obtained using the proposed permutation test (red) and average accuracy and Hamming loss obtained using all pruning parameter values
between 5 and 15 but the one given by the permutation test (blue) on the Yeast dataset. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)
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Fig. 5. Accuracy and Hamming loss obtained using the proposed permutation test (red) and average accuracy and Hamming loss obtained using all pruning parameter values
between 5 and 15 but the one given by the permutation test (blue) on the Emotions dataset. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)
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The main limitation of this feature selection algorithm con-
cerns the problem transformation. If each combination of labels
only appears a limited number of times in the training set, the
cardinality of each class after the problem transformation will be
low (and a small value for parameter p will have to be used). This
could lead to poor MI estimation and low learning performances.

Fortunately, the advantages of the proposed methodology over
ranking methods based on the MI or the χ2 are numerous and
largely compensate for this drawback. First, the proposed proce-
dure is multivariate, which makes it possible to take into account a
possible joint relevance or a joint redundancy between the
features regarding the output to predict. Then, it does not require
the discretization of the continuous features, which can greatly
harm the selection process. Eventually, the same mutual informa-
tion relevance criterion can be combined with other search
procedures if needed. For instance, the backward strategy has
shown its interest for problems where individual features carry a
low amount of information about the class labels. However, this
procedure starts with all the features and the MI estimation can
become unreliable if the original dimension of the dataset is too
high. Experimental results clearly illustrate how the mentioned
advantages actually translate into better classification perfor-
mances in practice.
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