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a b s t r a c t

Stochastic neighbor embedding (SNE) and its variants are methods of dimensionality reduction (DR)

that involve normalized softmax similarities derived from pairwise distances. These methods try to

reproduce in the low-dimensional embedding space the similarities observed in the high-dimensional

data space. Their outstanding experimental results, compared to previous state-of-the-art methods,

originate from their capability to foil the curse of dimensionality. Previous work has shown that this

immunity stems partly from a property of shift invariance that allows appropriately normalized

softmax similarities to mitigate the phenomenon of norm concentration. This paper investigates a

complementary aspect, namely, the cost function that quantifies the mismatch between similarities

computed in the high- and low-dimensional spaces. Stochastic neighbor embedding and its variant t-

SNE rely on a single Kullback–Leibler divergence, whereas a weighted mixture of two dual KL

divergences is used in neighborhood retrieval and visualization (NeRV). We propose in this paper a

different mixture of KL divergences, which is a scaled version of the generalized Jensen–Shannon

divergence. We show experimentally that this divergence produces embeddings that better preserve

small K-ary neighborhoods, as compared to both the single KL divergence used in SNE and t-SNE and

the mixture used in NeRV. These results allow us to conclude that future improvements in similarity-

based DR will likely emerge from better definitions of the cost function.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Dimensionality reduction (DR) aims at producing faithful and
meaningful representations of high-dimensional data into a
lower-dimensional space. The general intuition that drives DR is
that close or similar data items should be represented near each
other, whereas dissimilar ones should be represented far from
each other. Through the history of DR, authors have formalized
this idea of neighborhood preservation in various ways, using
several models for the mapping or embedding of data from the
high-dimensional (HD) space to the low-dimensional (LD) one.
For instance, principal component analysis (PCA) [1–3] and
classical multidimensional scaling (MDS) [4–6] rely on linear
projections that maximize variance preservation and dot product
preservation, respectively. Nonlinear variants of metric MDS [7]
are based on (weighted) distance preservation: they build a
ll rights reserved.

National Fund of Scientific
low-dimensional embedding that reproduce as faithfully as pos-
sible the pairwise distances measured in the data space. These
distances can be Euclidean or approximation of geodesic lengths
[8–12]. The use of similarities in DR is quite recent and emerged
with methods based on spectral optimization. Among many other
examples, Laplacian eigenmaps [13], locally linear embedding
[14], and diffusion maps [15] involve sparse matrices of simila-
rities, also called affinity matrices. In spite of a sound theoretical
framework, these methods fail to outperform older techniques in
typical visualization tasks [16–18]. A possible explanation is that
these methods can be reformulated into classical MDS achieved in
an unknown feature space [19,20]. In this case, the definition of
the similarities merely determines the implicit, arbitrary non-
linear mapping from the data space to the feature space [21,22].

Genuine similarity preservation appeared later with a techni-
que called stochastic neighbor embedding (SNE) [23]. In contrast
with spectral methods that directly convert the pairwise simila-
rities defined in the HD space into inner products, SNE matches
similarities that are computed both in the HD and LD spaces. To
some extent, the set of normalized similarities between a given
datum and all others can be seen as an a priori distribution of
neighbors, which justifies the term ‘stochastic’ in the method
name. Interest in the new paradigm developed in SNE grew
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significantly after the publication of variants such as Student
t-distributed SNE (t-SNE) [18] and NeRV [24], standing for
neighborhood retrieval and visualization. These variants led to
breakthroughs in terms of DR quality, with outstanding experi-
mental results [18,24]. Nevertheless, the reasons of this perfor-
mance leap remain partly unknown. The role played by SNE’s very
specific similarities has been investigated in [25], where it was
shown that similarities defined as softmax ratios with an appro-
priate normalization benefit from a shift invariance property. This
normalization allows the similarities to alleviate the phenomenon
of norm concentration [26], which has been identified as the main
cause of the poor performance of DR techniques based on distance
preservation [25]. In that perspective, SNE and its variants are
among the seldom nonlinear DR methods that effectively defeat
the curse of dimensionality [27,28]. Another approach is followed
in [29,30], where shift invariance is gained in a MDS variant by
maximizing the Pearson correlation between the (vectorized)
distance matrices in the HD and LD spaces, instead of the norm
of their difference.

This paper focuses on a complementary aspect of similarity-
based DR, namely, the definition of pertinent cost functions [31].
In SNE and its t-distributed variant t-SNE, the cost function is a
sum of Kullback–Leibler (KL) divergences. For each datum, a
divergence measures the mismatch between an a priori distribu-
tion of its neighbors in the HD space and the corresponding
distribution computed in the LD space. As the KL divergence is
asymmetric with respect to the two distributions it compares,
NeRV also involves the ‘dual’ KL divergence, where the two
distributions are swapped. A metaparameter controls the weight
of two dual divergences in the cost function. In an information
retrieval perspective, it has been shown that this metaparameter
allows NeRV to reach different tradeoffs between precision and
recall [24]. According to the nomenclature developed in [32],
NeRV entails a type 1 mixture of KL divergences, that is, a linear
mixture of two dual divergences. For equal mixture weights, the
resulting divergence is symmetric with respect to the two
compared distributions. In this paper, we investigate a type
2 mixture of KL divergences [32], which involves a composite
distribution and also a nonlinear mixture of two divergences. This
second type of mixture is closely related to the generalized
Jensen–Shannon divergence [33,34] and, like the type 1 mixture,
it is also symmetric when both weights are equal to one half.
Using a criterion of K-ary neighborhood preservation, we show
experimentally that the type 2 mixture outperforms both the type
1 mixture and the usual non-blended divergence. A careful
examination of the gradient of each mixture reveals some clues
to justify this better behavior.

The rest of this paper is organized as follows. Section 2
describes the normalized similarities used in SNE and its variants
to define a priori distributions of neighbors. Section 3 deals with
the two different types of divergence mixtures that measure the
mismatch between these distributions. Section 4 focuses on
optimization issues and analyzes the gradient of the considered
divergence mixtures. Section 5 presents and discusses the experi-
mental results. Finally, Section 6 draws the conclusions and
sketches some perspectives.
2 The exact definition of sij in [18] also entails a slightly different normal-

ization of the similarity, with a sum in the denominator that runs over both

indices instead of the second one only. In practice, doing so simplifies the gradient

of t-SNE but has no significant effect on the method results. Our definitions of sij

and sij in (1) reproduce those of SNE in [23] and have the advantage of

instantiating twice the very same template.
2. Shift-invariant softmax similarities

Let N¼ ½ni�1r irN denote a set of N points in some M-dimen-
sional space. Similarly, let X¼ ½xi�1r irN be its representation in a
P-dimensional space, with PrM. The Euclidean distances
between the ith and jth points are given by dij ¼ Jni�njJ2 and
dij ¼ Jxi�xjJ2 in the HD and LD spaces respectively. The term
similarity generally refers to a quantity that decreases as the
distance grows. In SNE, the similarities associated with dij and dij

are defined for ia j by

sij ¼
expð�gijÞP

k,ka iexpð�gikÞ
and sij ¼

expð�gijÞP
k,ka iexpð�gikÞ

, ð1Þ

where gij ¼ gðdij=liÞ and gij ¼ gðdijÞ. Functions g and g are both
non-negative with a non-negative derivative. Parameter li is a
bandwidth that can be seen as a soft neighborhood radius. By
convention, sij ¼ sij ¼ 0 if i¼ j.

In SNE and NeRV, the similarities are Gaussian, with g and g

being defined as

gðuÞ ¼ gðuÞ ¼ u2=2: ð2Þ

In t-SNE, the similarities in the LD space are defined in a different
way than in the HD space, by using an unnormalized probability
mass function of a Student t distribution with m degrees of
freedom2

sij ¼
ð1þs2

ij=mÞ�ðmþ1Þ=2P
kð1þs2

ij=mÞ�ðmþ1Þ=2
: ð3Þ

This amounts to opting for

gðuÞ ¼
mþ1

2
lnð1þu2=mÞ: ð4Þ

in (1). The heavier tail of the Student t function, as compared to
the Gaussian, induces an exponential transformation between the
HD and LD distances [35]. The longer the distance is in the HD
space, the stronger it is stretched in the LD space.

An important feature of similarities defined as softmax expo-
nential ratios such as above is their normalization, that is,P

jsij ¼
P

jsij ¼ 1. Combined with positivity, it allows the simila-
rities sij and sij to be interpreted as a priori probabilities for nj and
xj to be neighbors of ni and xi, respectively. But more importantly,
normalization implies scale invariance with respect to expð�gijÞ in
sij, which in turn translates into shift invariance with respect to
gðdij=liÞ ¼ d2

ij=ð2l
2
i Þ [25]. Since null distances have a trivial dis-

tribution that differs from that of non-zero distances, they are
excluded from the sum in the normalization denominators in (1).
As a direct result, the shift applicable to d2

ij can range from
�minj,ja id

2
ij to 1. The lower end of this interval ensures that

the shifted distances remain positive. A negative shift close to this
lower bound is particularly interesting to mitigate the phenom-
enon of norm concentration [26]. One manifestation of this
phenomenon is the following: for a finite sample of points
N,minj,ja iJni�njJ grows faster with M than maxjJni�njJ. In other
words, the relative variance of a discrete distribution of Euclidean
distances (namely, its variance divided by the square of its mean)
vanishes when M tends to 1. The changing shape of distance
distributions, depending on the dimensionality, partly explains
the failure of DR methods based on distance preservation. The
distances in LD spaces are always and systematically ‘too scat-
tered’ to match those observed in HD spaces. Invariance to shifts
in similarities circumvents this problem [25].
3. Divergences to measure the similarity mismatch

Thanks to positivity and normalization, vectors ri ¼ ½sij�1r jrN

and si ¼ ½sij�1r jrN can be seen as discrete probability
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distributions. Therefore, divergences can be used to assess their
mismatch.

In SNE, the Kullback–Leibler divergence of si with respect to ri

is used. It is defined as

DKLðri99siÞ ¼
X

j

sij lnðsij=sijÞ: ð5Þ

The cost function of SNE [23] can then be written as

EðX;N,kÞ ¼
X

i

DKLðri99siÞ, ð6Þ

where vector k¼ ½li�1r irN includes all similarity bandwidths
associated with each datum. An advantage of using the KL
divergence is that it contains logarithms that cancels some of
the exponential functions in the similarities, which eventually
leads to a very simple analytical formulation of its gradient.

In NeRV, the cost function blends two dual KL divergences. The
resulting mixture is also a divergence and can be written as

Dk
KLt1ðri99siÞ ¼ ð1�kÞDKLðri99siÞþkDKLðsi99riÞ, ð7Þ
Fig. 1. The three data sets used in the experiments are the spherical shell (3 dimensions

points, right column), and a random subset of the MNIST image bank (784 dimensions,

before dimensionality reduction. In all three cases, a two-dimensional embedding is so
where 0rkr1 is parameter that controls the importance of both
terms. The cost function of NeRV is then

EðX;N,k,kÞ ¼
X

i

Dk
KLt1ðri99siÞ: ð8Þ

Divergence Dk
KLt1ðri99siÞ used in NeRV can be rewritten into

discrete Shannon entropies and cross-entropies, namely,

Dk
KLt1ðri99siÞ ¼ ð1�kÞðHðri,siÞ�HðriÞÞþkðHðsi,riÞ�HðriÞÞ, ð9Þ

where Hðu,vÞ ¼�
P

iui lnðviÞ and HðuÞ ¼Hðu,uÞ. Due to the pre-
sence of cross-entropies, it can easily be seen that Dk

KLt1ðri99siÞ

ranges from 0 to 1. For k¼ 1=2, D1=2
KLt1ðri99siÞ is symmetric,

namely, D1=2
KLt1ðri99siÞ ¼D1=2

KLt1ðsi99riÞ. According to the nomencla-
ture in [32], D1=2

KLt1ðri99siÞ is the type 1 symmetric generalization of
the KL divergence.

Another way to combine two KL divergences is given by

Dk
JSðri99siÞ ¼ kDKLðri99ziÞþð1�kÞDKLðsi99ziÞ, ð10Þ

¼HðziÞ�kHðriÞ�ð1�kÞHðsiÞ, ð11Þ

where zi ¼ kriþð1�kÞsi and 0rkr1. This mixture is known as
the generalized Jensen–Shannon divergence [33,34] (with
, 3000 points, upper left corner), the COIL-20 image bank (16384 dimensions, 1440

6000 points, lower left corner). The COIL-20 and MNIST images are just vectorized

ught.
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only two distributions in this case). For k¼ 1=2, Dk
JSðri99siÞ is

symmetric and referred to as the type 2 symmetric generalization
of the KL divergence [32]. There are only entropies and no cross-
entropies in the JS divergence, which varies between 0 and
Hð½k,1�k�T Þ. When k tends to 0 or 1, it can easily be seen that
Dk

JSðri99siÞ vanishes, even if riasi. This contrasts with Dk
KLt1ðri99siÞ,

for which we have D0
KLt1ðri99siÞ ¼DKLðri99siÞ and D1

KLt1ðri99siÞ ¼

DKLðsi99riÞ. A similar behavior can be obtained with a slightly
different definition of the type 2 mixture, namely,

Dk
KLt2ðri99siÞ ¼

1

kð1�kÞ
Dk

JSðri99siÞ ¼
1

1�k
DKLðri99ziÞþ

1

k
DKLðsi99ziÞ:

ð12Þ

Using l’Hôpital’s rule, the limits for k close to 0 or 1 then become

lim
k-0

Dk
KLt2ðri99siÞ ¼DKLðri99siÞ and lim

k-1
Dk

KLt2ðri99siÞ ¼DKLðsi99riÞ:

ð13Þ

Hence, both the type 1 and 2 mixtures include the two dual KL
divergences DKLðri99siÞ and DKLðsi99riÞ as particular cases. The
division of the JS divergence by kð1�kÞ in the type 2 mixture also
scales up its maximal value, which is moreover no longer
bounded if k is equal to 0 or 1.

To our best knowledge, Dk
KLt2ðsi99riÞ has never been used as a

substitute for the KL divergence in SNE. Formally, we have thus

EðX;N,k,kÞ ¼
X

i

Dk
KLt2ðri99siÞ: ð14Þ

Due to its direct relationship with the JS divergence, we coined
this novel nonlinear DR method Jensen–Shannon embedding (JSE
in short, to be pronounced like ‘Jessie’).
Fig. 2. Embeddings of the spherical shell with eight different DR methods.
4. Optimization

The cost functions of SNE, t-SNE, NeRV, and JSE can be written
in a generic form as

EðX;N,k,kÞ ¼
X

i

BðriÞþCðsi;riÞ ¼
X

i

X
j

bðsijÞþ
X

j

cðsij;sijÞ

0
@

1
A,

ð15Þ

where we distinguish the terms depending only on sij from those
depending on both sij and sij. In SNE and t-SNE, we have BðriÞ ¼HðriÞ

and Cðsi;riÞ ¼Hðri,siÞ. In NeRV, we have BðriÞ ¼ ð1�kÞHðriÞ and
Cðsi;riÞ ¼ ð1�kÞHðri,siÞþkDKLðsi99riÞ. In JSE, we have BðriÞ ¼HðriÞ=

ð1�kÞ and Cðsi;riÞ ¼Hðri,ziÞ=ð1�kÞþDKLðsi99riÞ=k.
For all methods, each term BðriÞ in (15) is proportional to the

Shannon entropy of ri and can be interpreted as a constant
baseline, which the varying term Cðsi;riÞ is to be compared to.
In this view, the magnitude of each baseline BðriÞ somehow
reflects how important is the embedding quality of each datum
ni relatively to the others. Being proportional to the entropy of ri,
the baseline can largely vary, depending on bandwidth li and the
given distribution of the distances dij around ni. If BðriÞ5BðrjÞ,
then poor preservation of the neighborhood around ni is less
penalized than that of the neighborhood around nj. For these
reasons, it is advised to individually adjust each bandwidth li in
order to equalize all baselines [23,18,24]. In practice, this goal can
be reached by solving B0 ¼ BðriÞ with respect to li, for all i, where
B0 is specified by the user. In [23,18,24], the user indirectly but
conveniently fixes B0 by specifying a perplexity value. The
perplexity of ri is defined as expðHðriÞÞ and can be thought of
intuitively as the size of a soft K-ary neighborhood. For instance, a
perplexity equal to 50 individually adjusts each bandwidth li in
the normalized Gaussian function centered on ni, in such a way
that approximately 50 surrounding vectors nj out of N�1 have a
similarity value sij that is not in the tail of the Gaussian function.

Section 4.1 describes an efficient procedure to equalize all
baseline terms, whereas Section 4.2 deals with the subsequent
minimization of the equalized cost function, in order to determine
the optimal embedding X.
4.1. Equalization of the baselines

In t-SNE [18], the method of solving BðriÞ ¼ B0 to determine li

is a dichotomous search (bisection method). Since BðriÞ is differ-
entiable with respect to li, an alternative possibility is Newton’s
method. This iterative technique finds the closest root of any
differentiable function f(u) by applying repeatedly the update
uðtþ1Þ ¼ uðtÞ�f ðuðtÞÞ=f 0ðuðtÞÞ, where t denotes the current iteration.
Both the dichotomous search and Newton’s method converge
quickly, but the former requires the solution to be bracketed
whereas the latter needs a single initialization value, which is
easier in practice.

In the particular case of the baseline equalization, we need the
partial derivative of BðriÞ with respect to li. For the sake of
simplicity, let us reparameterize BðriÞ by defining the precision as
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pi ¼ l�2
i . Thanks to the chain rule, we can write

@BðriÞ

@pi
¼
X

j

@bðsijÞ

@sij

@sij

@pi
: ð16Þ

The second factor in each term develops into

@sij

@pi
¼
X

k

@sij

@gik

@gik

@pi
¼ sij �

@gij

@pi
þ
X

k

sik
@gik

@pi

 !
, ð17Þ

where gij ¼ gðdij=liÞ ¼ pid
2
ij=2 and therefore

@gij

@pi
¼ d2

ij=2: ð18Þ

Eventually, the final update rule for the precision is

pðtþ1Þ
i ¼ pðtÞi þ

2 B0�BðriÞð ÞP
jsij

@bðsijÞ

@sij
�d2

ijþ
P

ksikd
2
ik

� � : ð19Þ

To avoid negative precisions, an absolute value operator can be
applied to the right-hand side of the update. Since BðriÞpHðriÞ for
Fig. 3. Quantitative assessment of the spherical shell embeddings shown in Fig. 2. E

improvement over a random embedding on various scales (0 means no improvement, 1

pure performance (ordinate) and the average size of the best preserved K-ary neighbo
SNE and all its considered variants, we have bðsijÞpsij lnðsijÞ and

@bðsijÞ

@sij
plnðsijÞþ1 : ð20Þ

For the initialization, we suggest pð0Þi ¼ d�2
ik , where k is the index of

the Kth shortest distance and K is the integer closest to the
specified perplexity.
4.2. Optimization of the low-dimensional coordinates

Once the baselines are equalized and all bandwidths li are
determined, the next step is to minimize the cost function with
respect to X. Using the chain rule, the partial derivative with
respect to the coordinates in the LD space can be written as

@E

@xh
¼
X

i

@Cðsi;riÞ

@xh
¼
X
i,j,p,q

c0ðsij;sijÞ
@sij

@gpq

@gpq

@xh
, ð21Þ

where c0ðu;vÞ denotes the derivative of cðu;vÞ with respect to u.
ach curve in the top diagram is associated with an embedding and reflects its

00 means perfection). The second diagram summarizes each curve by decorrelating

rhoods (in abscissa).



Fig. 4. Embeddings of the COIL-20 image bank with eight different DR methods.
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The second factor in each term develops into

@sij

@gpq

¼

expð�gpqÞ
2
�expð�gpqÞ

P
kexpð�gpkÞP

kexpð�gpkÞ

� �2
if p¼ ia j¼ q

expð�gpqÞexpð�gpjÞP
kexpð�gpkÞ

� �2
if p¼ ia jaq

0 otherwise

8>>>>>>>>><
>>>>>>>>>:
¼

ðspq�1Þspq if p¼ ia j¼ q

spjspq if p¼ ia jaq

0 otherwise

8><
>: : ð22Þ

The third factors are given by

@gpq

@xh
¼ g0ðdpqÞ

@dpq

@xh
: ð23Þ

If the distances dpq in the LD space are Euclidean, we can further
write

@gpq

@xh
¼

g0ðdhqÞ

dhq
ðxh�xqÞ if p¼ h

g0ðdphÞ

dph
ðxh�xpÞ if q¼ h

0 otherwise

8>>>>>><
>>>>>>:

: ð24Þ

Since @sij=@gpq is null if pa i and @gpq=@xh is null if both i and q are
different from h, we can simplify the partial derivative of the cost
function into

@E

@xh
¼
X
j,q

c0ðshj;shjÞ
@shj

@ghq

@ghq

@xh
þ
X

i,j

c0ðsij;sijÞ
@sij

@gih

@gih

@xh
, ð25Þ

@E

@xh
¼
X

q

X
j

c0ðshj;shjÞ
@shj

@ghq

0
@

1
A @ghq

@xh
þ
X

i

X
j

c0ðsij;sijÞ
@sij

@gih

0
@

1
A @gih

@xh
:

ð26Þ

After renaming h into i, i and q into j, and j into k, we can expand
all partial derivatives and we obtain

@E

@xi
¼
X

j

ðxi�xjÞ
g0ðdijÞ

dij
sij �c0ðsij;sijÞþ

X
k

sikc0ðsik;sikÞ

 !

þ
X

j

ðxi�xjÞ
g0ðdijÞ

dij
sji �c0ðsji;sjiÞþ

X
k

sjkc0ðsjk;sjkÞ

 !
:

If we define

wij ¼ sij �c0ðsij;sijÞþ
XN

k ¼ 1

sikc0ðsik;sikÞ

 !
, ð27Þ

then we end up with

@E

@xi
¼
XN

j ¼ 1

ðwijþwjiÞ
g0ðdijÞ

dij
ðxi�xjÞ: ð28Þ

This partial derivative provides a search direction that can be
plugged in many gradient-based optimization techniques. Most of
them work in an iterative fashion, with several successive updates
of an initial guess. Newton and quasi-Newton techniques being
too demanding in terms of memory consumption, a simplified but
still generic update can be written as

xðtþ1Þ
i ¼ xðtÞi �m

ðtÞ
i

@E

@xi
, ð29Þ

where mðtÞi is a step size. In order to accelerate convergence, each
step size should ideally be the quotient of an adaptive gain factor
divided by the magnitude of the second derivative @2E=@x2

i . In the
spirit of Newton’s method, this amounts to a diagonal, positive
semidefinite approximation of the Hessian matrix, like in Sam-
mon’s nonlinear mapping [7]. The magnitude of the second
derivatives in the denominators contribute to a steep falloff of
the cost function in the first iterations, whereas the adaptive
numerators, initialized to one, are intended to compensate for the
incomplete Hessian.

4.2.1. Type 1 mixture of KL divergences

NeRV minimizes EðX;N,k,kÞ ¼
P

iD
k
KLt1ðri99siÞ. This amounts to

instantiating the generic cost function in (15) with the terms

cðsij;sijÞ ¼ ðk�1Þsij lnðsijÞþksij lnðsij=sijÞ, ð30Þ

whose derivative with respect to sij is

c0ðsij;sijÞ ¼ ðk�1Þsij=sijþkð1þ lnðsij=sijÞÞ: ð31Þ

Therefore it yields

wij ¼ ð1�kÞðsij�sijÞþksijðlnðsij=sijÞþDKLðsi99riÞÞ: ð32Þ
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The last formula is valid for NeRV, SNE, and t-SNE. In SNE and
t-SNE, we have k¼ 0 and therefore wij ¼ sij�sij. In NeRV and SNE,
we have

gðdijÞ ¼ d2
ij=2 and

g0ðdijÞ

dij
¼ 1: ð33Þ

In t-SNE, we have

gðuÞ ¼
mþ1

2
lnð1þu2=mÞ and

g0ðdijÞ

dij
¼

mþ1

mþd2
ij

: ð34Þ
4.2.2. Type 2 mixture of KL divergences

JSE minimizes EðX;N,k,kÞ ¼
P

iD
k
KLt2ðri99siÞ. This amounts to

instantiating the generic cost function in (15) with the terms

cðsij;sijÞ ¼
1

k�1
sij lnðzijÞþ

1

k sij lnðsij=zijÞ, ð35Þ
Fig. 5. Quantitative assessment of the C
where zij ¼ ksijþð1�kÞsij. The derivative of cðsij;sijÞ with respect
to sij is

c0ðsij;sijÞ ¼
1

k
lnðsij=zijÞ, ð36Þ

which yields

wij ¼
sij

k
lnðzij=sijÞþDKLðsi99ziÞ
� �

: ð37Þ

Using l’Hôpital’s rule, the limit for k tending to zero is wij ¼ sij�sij,
as expected. In JSE, Dk

KLt2ðri99siÞ is used in conjunction with
gðuÞ ¼ u2=2. Therefore, g0ðdijÞ=dij ¼ 1. The next subsection justifies
why t-distributed similarities are not necessary in JSE.

4.2.3. Interpretation as a force-directed layout

Some nonlinear DR methods and graph embedding techniques
[36,37] stem from analogies with mechanical or electromagnetic
systems. Each datum is then considered as a mass or a charged
particle, which interacts with other data by means of
springs or electromagnetic forces. These techniques proceed by
OIL-20 embeddings shown in Fig. 4.
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transposing the observed mechanical or electromagnetic system
in a low-dimensional space, where they let it evolve and reach a
state of equilibrium in which all attractive and repulsive forces
cancel each other. The result is usually referred to as a force-
directed layout. Within this framework, the cost function can be
interpreted as free energy to be minimized. Similarly, the partial
derivative in (28) can be seen to some extent as the sum of all
forces applied to xi by all other points xj, for 1r jrN. Unit vector
ðxi�xjÞ=dij indicates the direction of each force, whereas
ðwijþwjiÞg

0ðdijÞ gives its magnitude. For the sake of simplicity
and without loss of generality, let us consider the relative
magnitude ðwijþwjiÞg

0ðdijÞ=dij and its constituting asymmetric
contributions denoted by Fij ¼wijg

0ðdijÞ=dij.
In the case of SNE, the terms of the relative magnitude turn out

to be the similarity differences, namely, Fij ¼ sij�sij. This means
that the force between xi and xj vanishes only if sij ¼ sij and
sji ¼ sji. In contrast, in t-SNE, we have

Fij ¼ ðsij�sijÞ
mþ1

ðmþdijÞ
: ð38Þ

The second factor modulates the force magnitude, which
decreases when dij grows. For a large distance value, this provides
an alternative possibility to nearly cancel the force.

In NeRV, the terms of the relative magnitude are given by

Fij ¼ ð1�kÞðsij�sijÞþksijðlnðsij=sijÞþDKLðsi99riÞÞ: ð39Þ

In this case, the force vanishes only if DKLðsi99riÞ ¼ 0 and
DKLðsj99rjÞ ¼ 0. Notice however that the second term of Fij is
multiplied by sij, which decreases when dij grows, like the
modulation factor in t-SNE. This means that NeRV is in an
intermediate position between SNE and t-SNE, with a modulation
factors that fully plays its role only if k¼ 1.

In JSE, the terms of the relative magnitude are given by

Fij ¼
sij

k
ðlnðzij=sijÞþDKLðsi99ziÞÞ: ð40Þ

Like in t-SNE, they are modulated with a factor that decreases
when dij grows, except in the limit case k¼ 0.

One may suppose that the presence of a modulation factor is a
desirable feature in a nonlinear DR method. This conjecture has
already been verified in the case of DR methods based on distance
preservation [12,38]. At least, it explains why Demartines’ curvi-
linear component analysis [39] outperforms Sammon’s nonlinear
mapping [7]. The presence of a modulation factor can also
account for the superiority of t-SNE over SNE, which precisely
lacks such a factor. With only a partial modulation, one can expect
NeRV to perform somewhere in between, depending on the value
of k. Eventually, JSE benefits from a full modulation like t-SNE and
yields comparable or even improved experimental results, such as
detailed below.
Fig. 6. Embeddings of the MNIST image banks with eight different DR methods.
5. Experiments and results

This section aims at evaluating experimentally the embedding
performances of the two different types of divergence mixtures.
For this purpose, several data sets are used (Section 5.1). Quality
assessment is achieved with recent rank-based criteria (Section
5.2). The divergence mixtures are compared to each other and to
four other standard NLDR methods (Section 5.3). Eventually, the
results are presented and discussed (Section 5.4).

5.1. Data sets

The experiments involve three data sets. The first one contains
3000 points that are uniformly sampled from the surface of a
sphere, as illustrated in the upper left corner of Fig. 1. In all
representations of this spherical shell, the rainbow colors are
constant along the longitudes and join together at the North and
South poles. The goal is to re-embedded this locally two-
dimensional manifold in a two-dimensional space, such as a
planisphere. In this academic exercise, the main difficulty is
essentially to succeed in cutting the manifold in the most
appropriate way, which is not an easy task for all NLDR methods.
Without any cut, the embedding from three to two dimensions
entails a necessary superimposition of two hemispheres.

The second data set is the COIL-20 image bank [40]. It contains
72 gray-level images of 20 different objects, as shown in the right
of Fig. 1. The 72 images correspond to 4-degree rotations around
each object; nine of them are represented in Fig. 1. All images are
square, with height and width of 128 pixels. The images are
converted into 1282-dimensional vectors that are fed into the
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various NLDR methods, without any further preprocessing (no
feature selection nor any linear projection). The two most promi-
nent characteristics of this data set are its very high dimension-
ality and the presence of 20 one-dimensional manifolds [31]. Each
of them is topologically equivalent to a ring, the only degree of
freedom being the rotation angle. The goal is to get a two-
dimensional representation of the 1440 points.

The third data set is a random subset of the MNIST image bank
[41]. It contains 6000 gray-level images of scanned handwritten
digits (out of 60 000). There are about 600 images of each of the
ten digits; a few of them are shown in the lower left corner of
Fig. 1. Like in the previous data set, each 28-by-28 image is
vectorized and fed into the various NLDR methods without any
other processing, in order to get a two-dimensional representa-
tion. The main characteristics of this data set are its high
dimensionality and the presence of ten clusters that might over-
lap, due to the resemblance between some 4 and 9 or some 3 and
8, for instance. The intrinsic dimensionality of each cluster is
likely to be high, due to noise and the numerous degrees of
freedom that affect hand writing.
Fig. 7. Quantitative assessment of the M
5.2. Quality assessment

The quality criterion used to assess the various embeddings
evaluates the preservation of K-ary neighborhoods [17]. The rank
of nj with respect to ni in the HD space is written as
rij ¼ 9fk : dikodij or ðdik ¼ dij and 1rko jrNÞg9, where 9A9
denotes the cardinality of set A. Similarly, the rank of xj

with respect to xi in the LD space is rij ¼ 9fk : diko
dij or ðdik ¼ dij and 1rko jrNÞg9. The K-ary neighborhoods of ni

and xi are the sets defined by nK
i ¼ fj : 1rrijrKg and

nK
i ¼ fj : 1rrijrKg, respectively. A first performance index can be

written as

QNXðKÞ ¼
XN

i ¼ 1

9nK
i \ nK

i 9
KN

: ð41Þ

This criterion varies between 0 and 1 and measures the average
normalized agreement between corresponding K-ary neighborhoods
in the HD and LD spaces. If the coranking matrix [17,42] is defined as
Q ¼ ½qkl�1rk,lrN�1 with qkl ¼ 9fði,jÞ : rij ¼ k and rij ¼ lg9, then we can
NIST embeddings shown in Fig. 6.



Fig. 8. Embeddings of the spherical shell with type 1 and 2 mixtures of KL

divergence (NeRV and JSE, respectively), with a varying value of k (mentioned

after the method name).
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rewrite QNXðKÞ as

QNXðKÞ ¼
X

1rkrK

X
1r lrK

qkl

KN
: ð42Þ

Hence, QNXðKÞ counts in the upper left K-by-K block of Q both the
preserved ranks (on the main diagonal) and the within-neighborhood
permutations (on each side of the diagonal). The coranking matrix
also allows us to refine the quality assessment with a second
criterion, defined as

BNXðKÞ ¼
X

1rkrK

X
1r lok

qkl

KN

 !
�

X
1rkrK

X
ko lrK

qkl

KN

 !
: ð43Þ

The sign of BNXðKÞ indicates whether the majority of rank errors is
located above or below the main diagonal of the upper left K-by-K

block. This criterion allows us to distinguish between two types of
errors [17]: neighboring points in the HD space that are pulled away
in the LD space (neighborhood extrusions, BNXðKÞo0) and non-
neighbors in the HD space that are erroneously represented close to
each other in the LD space (neighborhood intrusions, BNXðKÞ40).
This distinction exists in other (pairs of) quality indices [43]. It stems
from an analogy with false positives and false negatives, which also
motivates the use of dual divergences in NeRV [24].

In each of the following experiments, we compare several
embeddings. For each of them we report in a first diagram the
curve given by

RNXðKÞ ¼
ðN�1ÞQNXðKÞ�K

N�1�K
, ð44Þ

for 1rKrN�2. A value of zero for this criterion corresponds to a
random embedding (QNXðKÞ � K=ðN�1Þ) [17], whereas 1 means
perfect K-ary neighborhood agreement (QNXðKÞ ¼ 1). In the legend
of each curve, we also provide the average of 100BNXðKÞ, that is,
Bavg

NX ¼ ð100=ðN�1ÞÞ
PN�1

K ¼ 1 BNXðKÞ. It indicates which kind of neigh-
borhood errors dominates in the embedding (neighborhood
intrusions or extrusions). See Fig. 3 for an example. Notice the
dotted isolevels for both RNXðKÞ (horizontal) and QNXðKÞ (curved),
as well as the logarithmic scale for the abscissa, allowing for an
easier inspection of local neighborhoods.

In a second diagram, we try to provide a synthetic representa-
tion of each RNXðKÞ curve. Considering each curve as a set of points
with coordinates ðK ,RNXðKÞÞ, our goal is to visually separate the
overall performance level, given by RNXðKÞ alone, from scale
information, that is, how RNXðKÞ is distributed along the K-axis.
In order to reflect the overall performance level, we compute the
percentiles 5, 10, 25, 50, 75, 90, 95, and 100 of fRNXðKÞg1rK rN�2,
whereas the weighted average

Kavg
¼

PN�2
K ¼ 1 KRNXðKÞPN�2
K ¼ 1 RNXðKÞ

ð45Þ

indicates where the gross mass of each RNXðKÞ curve is distributed
along the K-axis. We plot these percentiles vertically at the
abscissa indicated by Kavg. Hence, this second diagram allows a
quick visual comparison of all curves (the higher the better; local
preservation to the left, global preservation to the right).

5.3. Methods

Eight DR methods are compared in the experiments. The first
and oldest one is principal component analysis (PCA) [3], which is
equivalent to Torgerson–Gower classical metric multidimensional
scaling (MDS) [4,5,44]. The linear projection along the principal
directions is found by spectral decomposition of the covariance
matrix (or the Gram matrix for classical MDS). The second
method is Sammon’s nonlinear mapping [7], which is a nonlinear
variant of stress-based MDS. The embedding is computed by
gradient descent, with a diagonal approximation of the Hessian
matrix to accelerate convergence. The third method is Shepard–
Kruskal nonmetric MDS (NMDS) [45,46], which combines gradi-
ent descent and isotonic regression in each iteration. The fourth
method is yet another variant of nonlinear stress-based MDS,
namely, curvilinear component analysis (CCA) [39]. It relies on a
specific optimization technique, very close in spirit to stochastic
gradient descent. All three nonlinear variants of MDS minimize
the following generic stress function,

EðX;NÞ ¼
X
ja i

bijðfðdijÞ�dijÞ
2, ð46Þ

where dij and dij are the pairwise Euclidean distances in the HD
and LD spaces, respectively. For Shepard–Kruskal MDS, weight bij

is equal to 1 and the positive and monotonic function f is
determined by isotonic regression. For NLM and CCA, f is the
identity function. In Sammon’s NLM, bij ¼ d�1

ij . In Demartines’ CCA,
bij ¼Hð‘�dijÞ, where ‘ is a neighborhood radius and H is a step
function. To avoid poor local minima, ‘ slowly decreases after
each iteration in the specific optimization procedure of CCA. Quite
clearly, Hð‘�dijÞ corresponds to a (binary) modulation factor such
as discussed in Section 4.2.3.
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The last four methods are based on similarity preservation.
They are SNE [23], t-SNE [18], NeRV [24] (type 1 mixture of KL
divergences), and JSE (type 2 mixture of KL divergences, our
proposal). The cost functions of these four methods are mini-
mized by gradient descent with a diagonal approximation of the
Hessian matrix to accelerate convergence, like in Sammon’s NLM.
Information about the magnitude of the second derivatives
significantly speeds up convergence and simplifies the initializa-
tion and update of adaptive gain factors in the gradient descent.
Like in CCA, poor local minima are avoided by running first the
method with a few higher perplexity values than the targeted
one. The highest perplexity value is N/2, where N is the data set
size, whereas its final value is N/20¼150 for the spherical shell,
N/20¼72 for the COIL-20 images (72 is the cluster size), and
N/20¼300 for the MNIST digits (300 is half the cluster size, some
cluster overlap being expected).

All eight methods are deterministic, in the sense that they
always sort the input data set in a unique way and start with a
PCA initialization of the embedding. Therefore, repeated runs
even with shuffled data sets lead exactly to the same outcome.
Fig. 9. Quantitative assessment of the sphe
Due to space and readability constraints, the experiments are
limited to the eight methods mentioned above. Comparisons
between other methods and t-SNE or NeRV can be found in [18,24].

5.4. Results

Two different experiments are reported and discussed. The
first one is a comparison between the eight competing methods
applied on the three data sets. In the case of the type 1 and
2 mixtures of divergences, k is equal to one half. The divergences
are thus symmetric with respect to ri and si. The influence of
balancing parameter k is studied in a second experiment, where
only the type 1 and 2 mixtures are compared.
5.4.1. All methods

Fig. 2 shows the 2D embeddings of the spherical shell with the
eight considered methods.

A quick glance shows that the methods follow two very
different strategies to embed the sphere. Four methods (PCA,
rical shell embeddings shown in Fig. 8.
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divergence (NeRV and JSE, respectively), with a varying value of k (mentioned

after the method name).
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NLM, NMDS, SNE) just squash the sphere onto the 2D plane, while
the four others (CCA, t-SNE, NeRV, and JSE) cut the sphere and
unfold it. Without any surprise, these last four methods are
precisely those benefitting from a modulation factor in the
force-directed interpretation developed in Section 4.2.3. Since
any cut can be characterized by long, stretched distances in the
LD space, the modulation factor is low or null and the patches that
are torn apart undergo a very weak attraction. All terms of the
gradient that would otherwise contribute to ‘heal’ the cut have a
negligible magnitude compared to those ensuring the cohesion
with closeby neighbors.

The result of PCA looks quite natural, since any linear projec-
tion of the sphere lead to the superimposition of two hemi-
spheres. For the NLM, NMDS, and SNE, the impossibility to cut the
manifold stems from the high penalty associated with any cut. In
contrast, in CCA, t-SNE, NeRV, and JSE, this cost is much lower,
thanks to their modulation factor.

The capability to tear a manifold comes however at a high
price. It introduces many local minima in the cost function,
since in the case of the sphere many different cuts can lead to
almost equivalent results. In this respect, one sees that CCA and
JSE produces the two most satisfying embeddings, with neat
cuts and a good rendering of the uniform point density. This
can be confirmed by looking at the quality curves in Fig. 3.
Both CCA and JSE score very high for the preservation of small
neighborhoods. They are closely followed by NeRV and then t-
SNE. The curves corresponding to ‘squashing’ methods show a
different shape. Because they basically embed two hemispheres
on top of each other, these methods are totally unable to
preserve small neighborhoods. On the other hand, they render
pretty well the global, spherical structure of the shell. Thanks to
isotonic regression, NMDS can modify the distances measured
in the HD space and it achieves the best score for K larger
than 1650.

The first diagram in Fig. 3 also indicates the value of Bavg
NX for

each method in the legend, in front of its name. The methods
achieving the highest RNXðKÞ values for small neighborhoods have
a negative Bavg

NX , which reveals their propensity to tear and cut.
Conversely, Bavg

NX is positive for methods that squash the sphere
and therefore have worse results in terms of small neighborhood
preservation.

The COIL-20 image bank is a much more difficult problem
than the spherical shell, due to the very high dimensionality of
the vectorized images. As already shown in the literature
[18,24,31], one can expect DR methods based on similarity
preservation to largely outperform the older ones. Fig. 4
confirms this intuition. Only SNE, t-SNE, NeRV, and JSE
yield embeddings that faithfully reveal the intrinsically
unidimensional structure of all twenty manifolds. As can be
seen in Fig. 5, JSE brings the best quantitative result for
small-size neighborhoods; t-SNE, NeRV and SNE follow. The four
other methods that do not rely on similarities fail to preserve
small neighborhoods. Like with the sphere, they are instead
quite good at representing the global arrangement of the
data set, except CCA. In this respect, NMDS works the best,
followed by the NLM and PCA. In contrast with the sphere,
embedding the COIL-20 data set does not require any significant
manifold cut or tear and all methods therefore yield a positive
Bavg

NX value. Nevertheless, the methods that best preserve small
neighborhoods are those having the lowest Bavg

NX values. The
second diagram in Fig. 5 shows that CCA performs poorly on
all scales, likely because it progressively overlook the global
structure as its parameter ‘ decreases during the optimization
process.

The MNIST and COIL-20 image banks share almost the same
characteristics: a very high dimensionality and the presence of
clusters. All four DR methods that do not rely on similarities yield
highly cluttered representations of the ten clusters corresponding
to the ten digits, as shown in Fig. 6. Separation between the
various clusters is much better rendered with methods using
similarities. The quality curves in Fig. 7 provide a quantitative
assessment of the eight embeddings. Considering intra-cluster
neighborhoods (Kr600), the ranking from best to worst is: JSE, t-
SNE, NeRV, SNE, CCA, NMDS, the NLM, and PCA. As to larger
neighborhood sizes (K � 3000), the list becomes: NMDS, the NLM,
NeRV, CCA, SNE, JSE, t-SNE, and PCA. All values of Bavg

NX are positive;
the ranking from low to high: JSE, t-SNE, CCA, NeRV, PCA, NMDS,
SNE, and NLM.
5.4.2. Type 1 and 2 mixtures with varying k
In this second experiment, only two methods are considered:

similarity preservation with cost functions defined as either
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type 1 or type 2 mixtures of KL divergences, namely, NeRV
and JSE.

Fig. 8 shows the embeddings of the spherical shell for
NeRV and JSE, with k equal to 0.05, 0.35, 0.65, and 0.95. If
k¼ 0, then both mixtures degenerate into the single KL
divergence used in SNE. The corresponding embedding can be
found in Fig. 2, as well as those of NeRV and JSE for k¼ 0:5.
As can be intuitively expected, the lowest value of k in this
experiment (k¼ 0:05) yields embeddings that closely resemble
that of SNE, for both mixture types. The sphere is squashed
onto the 2D plane without any cut. Once k grows, the modulated
terms in the gradient of NeRV gain in importance and conse-
quently tears and cuts progressively appear in the embeddings.
The same effect can be observed with JSE, although it is
much faster, since, unlike NeRV, JSE has no non-modulated
terms in its gradient. Already at k¼ 0:35, JSE nicely unfolds
Fig. 11. Quantitative assessment of the C
the sphere without any twist. NeRV requires k to be close to
0.95 to reach a similar result. Fig. 9 quantitatively confirms
this analysis. For small neighborhood sizes, the curves of JSE
for k equal to 0.35, 0.65, and 0.95 are the highest and lie very
close to each other. The corresponding curves for NeRV are
somewhat lower and show an increased sensitivity to k. Looking
at the values of Bavg

NX in the legend, this sensitivity is obvious: a
higher k translates into a lower Bavg

NX . The range of Bavg
NX for NeRV is

between 16.6 and �9.6, whereas JSE travels between 31.8 and
�23.9.

In contrast with the spherical shell, embedding the COIL-20
image bank does not require important tears and cuts. The
embeddings in Fig. 10 show little variations and a weak sensitiv-
ity to k. For the highest values of k, one can however see that the
strings associated with the three cars are better unfolded and
better separated from the two ‘car-looking’ boxes. Like with the
OIL-20 embeddings shown in Fig. 10.
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sphere, JSE attains this result with a lower value of k and NeRV is
slightly more sensitive to k. On the quantitative side, in Fig. 11,
NeRV and JSE barely differ from each other, although JSE system-
atically outperforms NeRV for neighborhoods smaller than the
cluster size. Like with the sphere, k directly influences the value
of Bavg

NX . A larger k reduces the risk of erroneous neighborhood
intrusions, increases the propensity to tear them, and globally
leads to higher RNXðKÞ values for small K.

Changing k in the case of the MNIST image bank leads to the
embeddings shown in Fig. 12. When k grows, NeRV better
separates the ten clusters, whereas JSE achieves this result
already with low values of k. With both methods, the numerous
outliers present in this data set (abnormally bold and deformed
Fig. 12. Embeddings of the MNIST image bank with type 1 and 2 mixtures of KL

divergence (NeRV and JSE, respectively), with a varying value of k (mentioned

after the method name).
digits) are more faithfully represented. From a quantitative point
of view and for neighborhood sizes smaller than the cluster size,
JSE outperforms NeRV, which however gives a better rendering of
the global inter-cluster arrangement. This is shown in Fig. 13,
where the lower sensitivity to k of JSE is also visible. Like with the
other data sets, the larger k is in NeRV, the lower Bavg

NX , and the
higher RNXðKÞ for small K.
5.5. General discussion

The experimental results reported above confirm the intuition
developed in Section 4.2.3: the cost function that measures the
similarity mismatch in SNE and its variants has a significant
impact on the embedding quality. In particular, the cost function
must have flexible penalties and the ability to ‘cut some slack’
when necessary. Putting equal effort in the preservation of all
neighborhood relationships is hopeless and leads to mediocre
results for all of them. On the other hand, sacrificing completely a
few of these relationships, with for instance some manifold tears
and cuts, allows the vast majority of them to be better preserved.
In Section 4.2.3, the low penalty associated with tears and cuts
takes a visible form when looking at the gradient of the various
cost functions, which can be interpreted as the sum of attractive
or repulsive forces applied to each pair of points in the
embedding.

There are basically three strategies to modulate the
gradient:
�
 t-SNE uses non-identical similarity definitions in the HD and
LD spaces. This introduces an additional factor in each term of
its gradient, compared to SNE. The main drawback of this
approach is that it also implicitly induces an exponential
transformation between the HD and LD distances. In other
words, t-SNE cannot yield isometric embeddings of a linear
manifold.

�
 NeRV blends two dual divergences, but only one of them leads

to a modulated gradient. NeRV directly inherits the other
divergence from SNE.

�
 JSE relies on a slightly more complicated mixtures of diver-

gences, which leads to a fully modulated gradient like in t-SNE.
Unlike the latter, however, JSE gains this advantage while
keeping identical similarity definitions in the HD and LD
spaces.

6. Conclusion and perspectives

Nonlinear DR methods based on similarity preservation
occupy a more and more enviable place in the state of the art.
Although the specific similarity definitions used in these methods
is certainly one key of their success, thanks to their immunity to
norm concentration in HD spaces, other aspects such as the
cost function that measures the similarity mismatch cannot
be overlooked. Switching from a simple asymmetric KL diver-
gence to parameterized mixtures of KL divergences improves
the DR results, which then become comparable to those of the
best SNE variants around, like t-SNE. This shows that other
approaches than the use of heavy-tailed similarities in the
LD space work very well too, without having to cope with the
inconsistency of non-identical similarity definitions in the HD
and LD spaces. In the near future, we will extend the frame-
work of type 1 and 2 mixtures to ab-divergences [47]. This
family includes generalized KL divergence as a special case, as
well as the sum of squared differences and the Itakura–Saito
divergence.



Fig. 13. Quantitative assessment of the MNIST embeddings shown in Fig. 12.

J.A. Lee et al. / Neurocomputing 112 (2013) 92–108106
References

[1] K. Pearson, On lines and planes of closest fit to systems of points in space,
Philos. Mag. 2 (1901) 559–572.

[2] H. Hotelling, Analysis of a complex of statistical variables into principal
components, J. Educ. Psychol. 24 (1933) 417–441.

[3] I. Jolliffe, Principal Component Analysis, Springer-Verlag, New York, NY, 1986.
[4] G. Young, A. Householder, Discussion of a set of points in terms of their

mutual distances, Psychometrika 3 (1938) 19–22.
[5] W. Torgerson, Multidimensional scaling, I: theory and method, Psychome-

trika 17 (1952) 401–419.
[6] I. Borg, P. Groenen, Modern Multidimensional Scaling: Theory and Applica-

tions, Springer-Verlag, New York, 1997.
[7] J. Sammon, A nonlinear mapping algorithm for data structure analysis, IEEE

Trans. Comput. CC-18 (5) (1969) 401–409.
[8] J. Tenenbaum, Mapping a manifold of perceptual observations, in: M. Jordan,

M. Kearns, S. Solla (Eds.), Advances in Neural Information Processing Systems
(NIPS) 1997, vol. 10, MIT Press, Cambridge, MA, 1998, pp. 682–688.

[9] J. Tenenbaum, V. de Silva, J. Langford, A global geometric framework for
nonlinear dimensionality reduction, Science 290 (5500) (2000) 2319–2323.

[10] J. Lee, A. Lendasse, N. Donckers, M. Verleysen, A robust nonlinear projection
method, in: M. Verleysen (Ed.), Proceedings of ESANN 2000, Eighth European
Symposium on Artificial Neural Networks, D-Facto Publications, Bruges,
Belgium, 2000, pp. 13–20.

[11] J. Lee, A. Lendasse, M. Verleysen, Curvilinear distances analysis versus isomap, in:
M. Verleysen (Ed.), Proceedings of ESANN 2002, 10th European Symposium on
Artificial Neural Networks, d-side, Bruges, Belgium, 2002, pp. 185–192.
[12] J. Lee, M. Verleysen, Curvilinear distance analysis versus isomap, Neurocom-
puting 57 (2004) 49–76.

[13] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding
and clustering, in: T. Dietterich, S. Becker, Z. Ghahramani (Eds.), Advances in
Neural Information Processing Systems (NIPS 2001), vol. 14, MIT Press, 2002.

[14] S. Roweis, L. Saul, Nonlinear dimensionality reduction by locally linear
embedding, Science 290 (5500) (2000) 2323–2326.

[15] B. Nadler, S. Lafon, R. Coifman, I. Kevrekidis, Diffusion maps spectral
clustering and eigenfunction of Fokker–Planck operators, in: Y. Weiss,
B. Schölkopf, J. Platt (Eds.), Advances in Neural Information Processing
Systems (NIPS 2005), vol. 18, MIT Press, Cambridge, MA, 2006.

[16] J. Lee, M. Verleysen, Nonlinear Dimensionality Reduction, Springer, 2007.
[17] J. Lee, M. Verleysen, Quality assessment of dimensionality reduction: rank-

based criteria, Neurocomputing 72 (7–9) (2009) 1431–1443.
[18] L. van der Maaten, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn.

Res. 9 (2008) 2579–2605.
[19] B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as a

kernel eigenvalue problem, Neural Comput. 10 (1998) 1299–1319, also
available as technical report 44 at the Max Planck Institute for Biological
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the Université d’Evry Val d’Essonne (France) in 2001,
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