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Abstract

Kernel-based classifiers are neural networks (Ra-
dial Basis Functions) where the probability densities
of each class of data are first estimated, to be used
thereafter to approzimate Bayes boundaries belween
classes. Such algorithm however involves a large num-
ber of operations, and its parallelism makes it an ideal
candidate for a dedicated VLSI implementation. We
present in this paper the architecture for a dedicated
processor for kernel-based classifiers, and the imple-
mentation of the original cells.

1 Introduction

Many different types of neural networks are used
in classification tasks. Classification in this context
means first to estimate in a high-dimensional space
regions attributed to the different classes, according
to given input/output pairs, and then to choose the
best candidate (more probable) between the different
classes when a new input point is presented to the
network.

It is know that the Bayes law can be used directly
to choose the most probable class for each point in the
space, once the probability densities of each class and
the a priori probabilities of the classes are known. Es-
timation of probability densities can be done through
sums of kernels (Gaussian for example). In this pa-
per, we present the implementation of a dedicated
processor for a Bayes classifier based on estimation of
probability densities. After a short description of the
algorithm, we first present the global architecture of
the system and of the processor, and then the imple-
mentation of the specific cells (kernels, analog memory
points and distance computations).
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2 Algorithms for classification tasks

Many neural-like algorithms may be used for classi-
fication tasks. As stated above, we will concentrate on
kernel-based estimators of probability densities, used
to build Bayes classifiers. The proposed implementa-
tion however includes the circuitry for LVQ-like algo-
rithms, as it will become clear with the description of
the processor.

Kernel-based classifiers (KBC) work in two phases.
First, the probability density of the data distribution
inside each class is estimated; then, the Bayes law is
used to determine the boundaries between classes in
the data space, and by this way to classify new input
vectors.

To estimate the probability density of data belong-
ing to a particular class [1], the principle is to sum ker-
nels centered on the data from the learning set avail-
able in this class:

N,
1 = U —
ﬁz‘(Nc:ulwc) = E ® ( ) )
Nc i=1 h

where {z;,1<{< N,.} denotes the samples at dis-
posal in class w.; we suppose that there are C classes
denoted w,,1 < ¢ < C. The scalar parameter h is
called the width factor of the kernel. The kernel ® is
said to be radial if it is only a function of the norm of
its argument. Several types of kernels ® may be used,
the most classical one being a Gaussian function:

(452) - e
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where d is the dimension of u and #;. The convergence
of such estimator is proved in {2]. Let us mention that
the width factor h may be made different for each ker-
nel ®(u—x;/h); in this case the kernels are referred to
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as variable rather than fized. However, the prohibitive
number of operations involved in the case of variable
kernels make them rather inefficient in terms of soft-
ware or hardware implementations; furthermore, tests
have shown that the gain in performances between es-
timators based on fixed and variable kernels is limited,
especially in the case of finite databases. For these rea-
sons, only fixed kernels estimators will be considered
in the following.

Let us finally mention that, even if the probability
density estimators are shown to be asymptotically un-
biased, the number of computations is reduced in prac-
tical applications by reducing the number of samples
through some kind of vector quantization, for exam-
ple a LVQ procedure. In order for the LVQ procedure
to give an appropriate distribution of the centroids in
each class, their number will be set proportional to the
a priori probabilities of the respective classes.

Once the probability densities are estimated in each
class, the Bayes criterion may be used to classify any
new vector z; class w, (1 < ¢ < C) will be attributed
to vector z if

ﬁx(wlwc) P(wc) 2 ﬁx(:clwz) P(wi)’ 1 < i .<_ C, (3)
where P(w;) is the a priori probability of class w;.
Such classifier is mostly interesting because of its prop-
erty to approximate the Bayes limits between classes,
i.e. the boundaries leading to a minimum number
of misclassifications in case of overlapping distribu-
tions; most other classification systems do not have
this property.

3 A mixed architecture for neural net-
work classifier

The main weak point of the algorithm described
above resides in the number of operations involved
in the computation of a class. If there are N ker-
nels, N distances must be evaluated, passed through
non-linear functions, and summed, before deciding the
most probable class, i.e. the largest estimate of the
in-class probability densities (for equal a priori class
probabilities, which will be supposed in the follow-
ing). The fact that all distances and all kernels may
be evaluated simultaneously make this algorithm an
ideal candidate for an analog parallel implementation.

The architecture presented here is made of two
parts. First, an analog processor implements all oper-
ations that can be found in the kernel-based algorithm
described above; we will see later how this chip can
also be used for LVQ-like algorithms. This processor
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is algorithm-independent, provided that the algorithm
only uses the resources included in the chip: values of
weights can be downloaded or adapted on the chip,
non-linear functions may be used or by-passed, inter-
mediate results may be obtained (for LVQ-like algo-
rithms),... Secondly, all operations are sequenced us-
ing an external digital architecture, which is connected
to the analog processor through the input/output
lines and the control ones. This part is algorithm-
dependent, since different algorithms will need differ-
ent sequences of operations, and the use of different
output lines of the processor. The control part will be
a digital finite-state machine designed according to the
algorithm; it can be realized by a digital specialized
or general-purpose chip, or even with discrete com-
ponents on a printed-circuit board, or by FPGAs. . ..
Combining the analog processor and the digital con-
trol part leads to an efficient architecture for classifi-
cation tasks; the next part of this paper details the
analog processor and the different cells involved in.

4 Analog processor
4.1 Block description of the circuit

To describe in details the analog processor and the
different operations which can be realized, let us ex-
amine the functional description of figure 1.

The core of the system is built around P identical
cells, each of them being composed of memory points
to store the coordinates of the centroid and its class,
together with a distance calculator to compute the
distance between this centroid and an input vector.
Shortly, the system will work as follows. A set of P
centroids pg,1 < k < P will be stored in the proces-
sor; in the case of the KBC algorithm, the coordinate
of the centroid corresponds to the center of the kernel
function Q. Then, when an input vector is presented
to the circuit for classification, all distances between
this input vector and each of the centroids are com-
puted in a parallel way; this is the purpose of the P
mentioned distance computation cells.

The P computed distances are then used in two
ways. On one hand, they are compared to find the
smallest one, in order to select the closest centroid
from the input vector; this is used in LVQ-like algo-
rithms, in the purpose of selecting the winning cen-
troid. On the other hand, the distances serve as in-
puts to P Gaussian-like kernel function, used in KBC
algorithms, as mentioned in equation 2.

In the case of the LVQ algorithm, the selection
of the winning centroid p, completes the recognition



Neuromicro94 proceedings, Turin (Italy), 26-28 September 1994, pp. 138-144

¥ neuron n input vectors classindex  nearestcentre % § probability densities A
log(P) d log(C) log(P) C
/ dis;tance‘computation / — YV » |/I_ —[;I__ —|/I_
d anallo‘g memory point; centre I g »/ decoder /
e ‘ e
c B memory point: class f= | r
0 -
d t
¢ | a
r k
: | e
w i a
}' / distance computation /4 < % - () |l 1.
] ] ] ]
fa, analog memory point: centre I / »/ decoder /
L~ Ny Log(C) | ‘ ]
‘ memory point: class HL— -
* | P winner-take-all  /
analog memory points 10g(©)
refreshment system class output
S £ % w

Figure 1: Functional description of the analog processor

phase of the algorithm. In the case of the KBC algo-
rithm, the P kernel outputs are summed class by class,
according to equation 1, in order to estimate the prob-
ability densities of each class. The parameters of the
kernels, namely their widths and shapes, may be ad-
justed by external commands; this will be detailed in
section 4.2.4. According to the Bayes law (equation 3},
classification of the input pattern is then realized by
selecting the largest probability density from among
the different classes.

A supplementary factor P{w;) is found in equation
3; it corresponds to the a priori probabilities of the
classes. As in the LVQ algorithm [3], these a priori
probabilities are estimated by the relative number of
points in each class, condition which is realized in our
circuit since we have one kernel per input point in the
distribution.

In the following sections we describe the analog cells
used to realize the analog processor. The sizes of all
transistors have been chosen for cells designed in the
MIETEC 2.4 pum technology, and for a circuit with
P = 32 (the number of kernels), d = 16 (the dimen-
sion of the data space) and a precision in the memory
points equal to 8 bits.
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4.2 Description of the analog cells

4.2.1 Analog memory points

Analog memory points have been used to store the
locations of the centroids for silicon area reasons, and
to avoid non-necessary analog/digital conversions in
the chip.

The principle of our analog memory point is to store
a current on capacitor Cy in figure 2. When switch
transistor T is on, the drain and gate of memory tran-
sistor T;, are connected together, and its gate voltage
adjusts to let the input current Iyem flow through the
transistor. When transistor T is switched off, the ca-
pacitor C, will memorize the gate voltage of T;, to
keep the same current I,¢, flowing through the tran-
sistor.

To compensate for leakage currents effects in the
blocked junction of transistor T),, a refreshment sys-
tem sequentially reads all analog values stored on the
chip and refreshes them. The principle is the follow-
ing. We consider that both the charge injection (when
switching off transistor T;) and the leakage current in
the blocked junction make the voltage V(Cy) between
Vaa and the gate of T, decrease from less than one
LSB in a refreshment period T; this LSB is measured
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over the whole dynamics of stored voltages on C,. In
figure 2, both the leakage current and the charge injec-
tion will have the same sign: the blocked junction will
inject positive charges from V34 to Cy, so as the switch-
ing of transistor T,. We then know the sign of the
slope of V(Cy). If the analog value in a memory point
is now read at regular intervals T, and converted into
the smallest digital value greater than the analog one,
the memory point may be refreshed to its initial level
as illustrated, keeping the stored value fixed up to a
precision of one LSB. All memory points of the circuit
may be refreshed by the same system, an analog-to-
digital converter followed by a digital-to-analog one,
provided that the period T between two refreshments
of the same memory point is small enough to ensure a
decay in V(Cy) less than one LSB; a detailed descrip-
tion of this system may be found in [4].

vdd
—<{ Tr
‘ Tc | 60/5
Tr | 30/5
Tst 3/3
‘Iref

V Imem
Vss

Figure 2: Regulated cascode analog memory point

Another problem is the dependency of the current
in transistor T;, with its drain voltage; the cell im-
plemented on the chip is thus a regulated cascode one
[6] (use of transistors T;, and T.). In figure 2, tran-
sistor T, operates in its linear region to reduce its
transconductance g,,,, as well as the current variation
due to charge injection on C,;. In order to keep the
drain voltage of T;,, as fixed as possible, one has to
increase the gain of the loop formed by 7, and T;;
they are thus both kept in saturation, and transistor
T, operates in weak inversion (through a very small
Loy current) to maximize its gain (transconductance
over output conductance).

The capacitance of Cy must be around 1pF to reach
a 8-bits accuracy in the stored current; to obtain this
value, a supplementary capacitor realized between the
two polysilicon layers of the MIETEC 2.4 um technol-
ogy is added in parallel to the gate capacitor of Tp,.
The maximum current memorized in the cell has been
set to 128 pA one LSB corresponding to 500 nA.

4.2.2  Synapse and input circuitry

The circuit of figure 3 is repeated P x d times on the
chip, and connected to the P xd analog memory points
described in section 4.2.1. The purpose of the circuit

“in figure 3 is twofold. First, it is used as input of
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the corresponding memory point when a current must
be stored. In this mode, an external input voltage
Vin generates a current I, in figure 3, which is the
current Ip,.,, in figure 2; write transistor T is then
switched on, and the current is memorized in the cell.
In the second operation mode, we suppose that a cur-
rent Len, is memorized in the cell of figure 2, and that
it has to be subtracted from current I;,; we will see
in the next section how this difference may be used to
compute the distance between an input vector z; and
a centroid p;. In this mode however, the difference be-
tween currents Iyem and I;, may be allowed to flow
out of these cells; this will also be detailed in section
4.2.3. The principle of the cascode cell in figure 3 is
similar to the principle of the memory point; the sizes
of transistors are given in the figure.

Iin

Vin _.l Tin
Vss

Figure 3: Regulated cascode input circuitry

4.2.3 Distance computation

One of the main operations that must be realized
on-chip is the distance computation between a d-
dimensional input vector and P d-dimensional cen-
troids. Manhattan distance has been used here for
simplicity reasons, since we know that the choice of
distance measure do not influence a priori the perfor-
mances of a classifier [6].

To compute the Manhattan distance between an
input vector # and a centroid p;,1 < i < P, three op-
erations must be realized: subtraction between z and
p; coordinate by coordinate, absolute value, and sum
of these results over all coordinates. The subtraction
has already been addressed in the previous section;
when a memory point is in read mode, the difference
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Figure 4: Computation of the Manhattan distance between the input vector and one centroid

between the memorized currents I,em; and the input
currents Ijn; in figure 4 (1 < ¢ < d) is allowed to flow
out from the cells (transistors T,; are switched on).
This current may either be positive or negative; de-
pending on its sign, it is directed to one of the two
summation current lines in figure 4. The difference
between these two sums must finally be computed by
a set of current mirrors in order to-complete the im-
plementation of the distance computation. Voltages
on lines Iy and I_ are kept fixed through simple op-
erational amplifiers. '

4.2.4 Kernel functions

Recent developments in the theory of KBC algorithms
[7] have shown that the quality of probability density
estimations can be greatly improved by adjusting two
kinds of parameters in the Gaussian kernels. The first
one is classically its width factor, but a second one,
which must be adjusted :depending on the dimension
of the data space, determines the tail curvature of the
Gaussian function, i.e. the rate at which the kernel
function drops off. We show in this section two ways
of implementing kernel functions. .

Figure 5 shows the differential pair used to realize
the first type of Gaussian-like kernel. Let us first men-
tion that the exact kernel shape is not critical for the
approximation of probability densities as soon as two
such parameters can be adjusted; moreover, only half
of the Gaussian function has to be realized, since its
argument is always positive (distances). We thus use
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the non-linear characteristics of a differential pair to
evaluate the Gaussian-like functions.

vdd
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Tout
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Le)
%llo o lIo :
Vss

Ve
Vss
Figure 5: Kernel Gaussian-like function

In figure 5, the input voltage V;, is generated by
flowing the argument of the kernel function, namely
the difference between currents I, and I_ in figure
4, into a transistor in its linear region. The width
of the kernel is determined by voltage V;.;, while its
curvature is adjusted by modifying voltage V, which
acts on the conductance of transistor T5.

Figure 6 respectively shows a simulation of the ker-
nel Gaussian like function for only one Vi and V.
ranging from 0.5 to 2.5 V, and for V;..s fixed to 1.5 V
and a sweep of V. ‘The chip is currently under test
and the measurements are not yet available.

Another implementation of a Gaussian kernel,
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Figure 6: Simulation of the kernel Gaussian like func-
tion: influence of V;..; and of V¢

which respects more closely the equation of a Gaussian
kernel (2) is also proposed here. The principle of the
circuit is illustrated in figure 7. The Gaussian function
is constructed into two steps. First, a MOS transistor
in saturation Ty performs the square function of the
input voltage; secondly, a negative exponential circuit
realizes the Gaussian function.

To understand how the circuit of figure 7 works,
let vus first suppose that transistors 73 and Ty act
as resistors, identified by R; and Rz. The reference
current Ig is set small enough to put transistors 77 and
T5 in weak inversion. If we note Vpi1, Vpa, Vi1, Vsa,
and Vg respectively the drain voltages of Ty and T5,
their source voltages, and their common gate voltage,
we have if Vp; and Vpy are much greater than ur:

Vo V.

Ip=Ise™re 1 4)
Vi Vi

Io=Isemre 1 (5)

where ur = kT/q and n the subthreshold slope. Di-
viding both expressions and substituting Vg and Vg
leads to

R, Ip~Rg—Ig—RaI

Iy = Ige T

(6)

Finally, assuming that I > Ig, and then [y < Ig,
which can be easily guaranteed since Ig is small as
before, we have

Rol
I~ Ige” o1 (7)
The output current Iy decreases exponentially with
current I;, which was the expected behavior; the value
of R, determines the exponential constant.

The value of Ry is then determined by transistor
Ty, working in strong inversion and in its linear re-
gion; assuming that the drain voltage of T, is small,

Vss

Figure 7: Kernel Gaussian function

its output conductance is controlled by V¢ and given
by:

Jdsa = RL =B (Ve — V) (8)
4

where g4s4 is the transconductance of transistor Ty,
Vrn the threshold voltage of N-type transistors and
B their conductance parameter. Transistor T5 is sat-
urated and in strong inversion too, and current I; is
then given by:

L = g—’;(vm ~ |Vrpl)? (9)

where Vpp is the threshold voltage of P-type transis-
tors, Bp their conductance parameter, and A takes the
substrate effect into account. Combining 7, 8 and 9

leads to:
__8p(Vin—lvrpl)?
Iy = Ige *7én(Vo-"rN (10)

which has the desired Gaussian form; V¢ controls the
parameter of the Gaussian function, and the constant
Vrp can be compensated by an offset voltage shifting
the center of the function.

Figure 8 shows the measured output of the circuit
for V¢ varying between 1 and 4V (with a step of 1V),
and for an input voltage between 0 and 5V. The cell
has been realized in UCL SOI (Silicon-On-Insulator)
3um technology.

5 Conclusion

We described in this paper the analog implementa-
tion of a kernel-based classifier, based on estimation
of in-class probability densities. The global architec-

" ture of the system was detailed, together with the im-
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plementation of some specific 'blocks, including mea-
surements on the Gaussian kernels realized in Silicon-
On-Insulator technology. Such analog processor may
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Figure 8: Chip measurements of Kernel Gaussian
function

be used in any classification system when speed and
portability are necessary, together with the high per-
formances of Bayes classifiers. Work still to achieve
concern the implementation of a large system (only
sparse cells were realized and tested up to now) and
the programming of a digital controller to sequence
the operations in the processor.
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