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Abstract : This paper presents a neural network for visual motion detection. The network
uses a novel method to compute the velocity of an object, based on the knowledge of the
motion history. This method solves the well-known aperture problem by giving the global
velocity. The network has two layers of cells ; the first layer computes the local velocity
directly from the image pixels, whereas the second layer can be seen as a decision layer
that remembers the history of the motion to transform the outputs of the first layer into the
global velocity. Simulations show the effectiveness of the network, and the importance of
a parameter named remanence on the motion determination.
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Résumé : Nous présentons ici un réseau de neurones destiné a la détection de
mouvement. Ce réseau utilise une méthode originale pour calculer la vitesse d'un objet,
basée sur la connaissance de I'histoire du mouvement. Cette méthode solutionne le
probléme bien connu d’ouverture en déterminant la vitesse globale. Le réseau comporte
deux couches de cellules ; la premiére couche peut étre vue comme locale directement a
partir des points de I'image, tandis que la seconde couche peut &tre vue comme une
couche de décision qui se rappelle I'histoire du mouvement afin de transformer les
resultats de la premiére couche pour obtenir la vitesse globale. Des simulations ont mis
en évidence ['efficacité du réseau, ainsi que I'importance d'un paramétre, appelé
rémanence, sur la détermination du mouvement.

Mots clés : réseau de neurones, mouvement visuel, vitesse globale, couche de décision,
chaine de connexions latérales
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1. Introduction

From a human point of view, it has always been natural “to see”. During his whole life, a human
being sees what he looks at, without efforts. However, vision is one of the most complex tasks
performed by humans: it requires many neural materials and interconnections implying highly
complex organizations (Van Essen & Maunsell, 1983).

One of these tasks is motion detection (Allman, Miezin & McGuinness, 1985; Felleman &
Van Essen, 1987). There are in the brain specialized structures aimed to detect and analyze motion,
gathered in what is called the visual cortex. The basic feature of such networks is the high
parallelism. Itis also important to note that these structures resolve a fundamental visual processing
problem known as the aperture problem (see below); therefore, it seems very attractive to take
inspiration from these natural structures to mimic such an interesting feature.

These networks can be used in dynamic image segmentation and recognition. Relative motion allows
mobile robot to navigate quickly and efficiently through the environment.

This paper presents an original network based on certain structures of the visual cortex and able to
perform motion detection. We will show how the network behaves regarding the aperture problem,
after explaining what this problem consists in. Other features of the network will be explored and
some simulations will figure how it works.

2. The aperture problem

The aperture problem (Hildreth, 1983; Marr, 1982; Adelson & Movshon, 1982) arises from the fact
that single photoreceptive cell cannot determine the actual motion of an object’s edge. Since each
cell's receptive field is sensitive to visual stimuli only within a spatially local region, or “aperture”,
the direction of an edge moving across this region is ambiguous.

Following Horn and Schunk (1981), we denote the image brightness at point (x,y) in the image plane
at time t by I(x,y,t). When a pattern moves, the brightness of a particular point in the pattern is
constant, so that:

By differentiation, we obtain:
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where V_ = = v, = T the velocity components, are the two unknowns of this simple linear
t t

equation.

This relation by itself is not sufficient to determine the velocity flow. It only defines a constraint line
in velocity space that has the same orientation as does the edge of the moving pattern in physical
space. This ambiguity is known as the aperture problem and is illustrated in figure 1.

Since each edge oi' a moving object generates a constraint line, the standard way to determine the
actual velocity of an object is to compute the intersection of these lines. Figure 1 shows that two
edges give a different constraint line in the velocity space (plane Vy - Vy). The intersection of these
two lines indicates the velocity that satisfies both constraints and is then the actual velocity of the
object. Nevertheless the establishment of these constraint lines requires the computation of the
brightness partial derivatives with respect to time and axes. Furthermore, the intersection of several
constraint lines is not always unique due to the approximations used for the derivatives. A refined
technique must then be used to compute the velocity.
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In this paper, we present a method that uses velocity informations at the same locations but at
different times, instead of instantaneous velocity constraints at different locations, to compute the
velocity field associated with a moving object.
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Figure 1. The aperture problem and velocity determination by
intersection of the constraint lines.

3. A Motion Processing Network

As described above, the velocity can be estimated by the intersection of constraint lines corresponding
to different edges of the moving pattern. By this way, we combine two (or more) measures at the
same time but at different locations. There is another way for computing the velocities: instead of
using velocities at different locations, we use velocities at different times, or, in other words, the time
“history” of the motion. The reason for this is that the velocity of an object cannot change
instantaneously. A network based on this principle will use previous computations of the velocity for
determining the actual velocity. Such a network performs “tracking” of visual features as they move
across the visual field. A simple network with two layers of cells will achieve this task, as shown in
this section; the two layers are named L1 (input layer) and L) (processing layer).

A similar network is described by Marshall (1989), but it uses for L] idealized cells analogous to the
hypercomplex cells found in the visual cortex, i.e. cells sensitive to the orientation (Frégnac &
Imbert, 1984), length and local direction of motion (Cremieux, Orban, Duysens & Amblard, 1987;
Kennedy & Orban, 1983) of visual stimuli in their receptive field. We will use for L simpler cells
more adapted to the VLSI implementation of the network. Indeed, we do not need cells sensitive to
the orientation and the length of an object’s edge, but only to the local direction. These cells detect
the local motion of the edge by comparing two neighboring pixels, one delayed with respect to the
other. The pixels come from light photodetectors.

In the following, we will give a description of the topology of the network. In section 6, simulations
of a simple example will show how it works.

As already said, the network contains two layers of cells (Lj and Lp). The first layer (L1) cells
project excitatory connections forward to cells in L. Each L1 cell projects to a cluster of neighboring
Ly cells (Figure 2). There are as many cells in a cluster as there are directions to detect.

As shown on figure 2, we choose four cells in each cluster; however, this network can be extended
without any problem to other directions. This means that the network will have four preferred
directions (North, West, South, East). This does not mean that the network will be unable to detect
motion in other directions: we will see in next section how the network can deal with such other
directions.

On each L cell locations, the network detects the local direction of the motion, and then excites the
L cell corresponding to that direction in the cluster attached to the Lj cell. Then, the layer Ly
determines whether the local direction given by the layer Lj is compatible with the global direction of
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Figure 2. The excitatory connections from cells L1 to a cluster of cells Lj.

the motion. This is done by means of the lateral connections in layer Lj: each Lj cell in a cluster
receives a strong excitatory input connection from an L, cell displaced spatially in one direction, and
sends a strong excitatory output connection to another L cell displaced in the opposite direction. For
instance, if we denote by “North Ly cell” the cell in a cluster that detects a motion in the North
direction, each North L cell receives a strong excitatory input connection from the “North Ly cell” of
the previous cluster in that direction (that is, the cluster located just at the South), and sends a strong
excitatory output connection to the “North L cell” of the next cluster in that direction (located at the
North). Figure 3 depicts the embedding of an L cluster in its lateral connection chains.

Figure 3. Lateral chains of excitatory connections. Eacl} cell of a
cluster participates in a different chain. The chains for one
cluster are shown with bold arrows.

Moreover, these lateral connections possess a signal transmission latency. In other words, a signal
emitted by one cell does not reach its destination cell until a prescribed time later. The timing of the
lateral transmission latencies figures prominently in the operation of the network. It will determine a
speed motion for which the detection will be optimum. At this speed, the distance between two
photodetectors is covered during the latency. For speeds very different from that optimal speed, the
motion will not be detected any more. This latency should then be adjusted to give the desired speed
range. If the network has to detect several speeds at one time, then it should be provided with some
other L layers with different transmission latencies.
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The final element in the structure of Ly is the set of lateral inhibitory connections between cells in each
cluster (Nabet & Pinter, 1991). Figure 4 shows these connections for one cluster. With these
inhibitory connections, each cluster will indicate only one direction of motion, since only one cell in
each cluster will be excited at once.

Figure 4. The inhibitory connections between the L7 cells of a cluster.

The network described above is able to compute the global velocities of moving patterns. We will see
in section 6 the simulation results (activity of L cells) for a simple motion.

4. Motion in a non-preferred direction

When the motion direction of a pattern does not correspond with one of the preferred directions of the
network — that is, in this paper, the four directions North, West, South and East — it is a little more
complicated to see how the “tracking” will be achieved. Let's suppose, for instance, that we have an
edge moving across the visual field in South-East direction, as shown on figure 5. At layer Ly, the
motion that will be detected is the local motion of the edge. Obviously, the edge seems to move in the
East direction when we look at a small part of it. This is exactly the phenomenon described in
section 2, the aperture problem. The Ly cells will fire the L, cells whose preferred direction is East
(called “East Ly cells” in the previous section) since it corresponds to the local direction of the
motion. The global direction will be determined here by looking at the set of Ly cells that fire. This
set is surrounding the arrow drawn on the figure 6, showing the movement of the rightmost edge.

/1

Figure 5. Example of non-preferred direction : South-East.
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I we take a look closer to the bottom edge, we will observe that it is here the “South L cells” that
iite, us shown on figure 7. A set of firing L cells can also be noticed, from which can be deduced
the movement of the bottom edge (the arrow on the figure). Obviously, the two figures show the
sar > movement, as the two edges are both parts of the same pattern. Hence, the two sets indicate the
actaal (or global) direction of motion, by their shape.

The fustis that the layer Ly will detect the velocity component perpendicular to the moving edge (local
motion). For this reason, the example shown here is one of the worst because the two edges are
perpendicular to two preferred directions of the network. If this is not the case, the set of cells that
will fire would be much more narrow. If necessary, a more accurate detection can be obtained by
adding other L cells in each cluster, with new connection chains in layer Ly. The L structure with
four cells per cluster leads to the optimal detection of four motion directions (North, West, South and
East). For the detection of a combined direction such as South-East (the example given above), four
new cells should be inserted in each cluster.

5. Cell activity remanence

When a motion is detected, the activity of some Ly cells will increase to indicate the direction of the
motion. As the motion is a time dependent event, the activity will also vary during the detection. We
call remanence the time needed by the Ly cell to return to its initial state, where the activity is
considered to be zero (no motion detected or, equivalently, motion in all directions leading to the
same activity for all L cells of the cluster). This parameter is important and has to be related to the
size of the moving patterns. Indeed, we have seen that the network is able to detect moving edges,
but if the pattern is uniform in brightness, then no further motion will be detected until another edge
passes across the Lj cell. If the remanence is high, then the (detected) motion will “last” longer than
with a low remanence. As a consequence, if we look at an instantaneous image, there will be motion
at an edge and behind the edge. A set of L cells will still fire (with decreasing activity) just where
the edge passed some time ago. The higher the remanence, the larger the set will be. This effect
allows to detect motion at a location where there are no more variations of the brightness (inside the
pattern): there will be a larger part of the moving pattern for which motion is detected (depending on
the size and the remanence).

The drawback of this effect is that motion will also be detected behind the extremity edge (edge that
closes the pattern) where no real motion exists. This can become confusing if a second pattern passes
before the activity of the cells has returned to “zero”. For that reason, the remanence should not be
set ata very high value. Figure 8 depicts the sets of L; cells firing because of the remanence.

el LI

Figure 8. The remanence effect on the activity of the Ly cells.

6. Simulations

In this section, we will show the results of simulations for a simple motion example. The pattern
considered is a square (10 x 10 pixels) moving toward East on a uniform background (32 x 32
pixels) as shown on figure 9. The speed of the square is chosen to give the optimal detection (in
other words, the square moves by one pixel at each image).
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Figure 9. A simple motion example for the simulations.

Figure 10. Normal remanence. (a) - (e) East Ly cells activities at t=2, t=5,
t=10, t=15 and t= (f) North Ly cells activities at t=10.
(g) West L cells activities at t=10 (h) South Ly cells activities at
t=10.
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Figure 11. High remanence. (a) - (e) East L} cells activities at t=2, t=5, t=10,
t=15 and t=20. (f) North Ly cells activities at t=10. (g) West Ly
cells activities at t=10. (h) South L7 cells activities at t=10.

The pictures on figures 10 and 11 show the evolution of the activities of the L; cells, figure 10 for a
normal remanence and figure 11 for a high remanence. A high activity is represented by a white
pixel, “zero” activity by dark gray, while a black pixel means no motion in that direction but well in
another direction.

Pictures (a) to (e) correspond to the “East L cells” at time t=2, 5, 10, 15 and 20 (time t=1 is for the
first image when the motion begins, t being incremented at each new image). Pictures (f), (g) and (h)
show the activities of, respectively, the “North L cells”, the “West L cells” and the “South Ly cells”
at time t=10.

The pictures show that the detection is maximum at the vertical edges, as expected since they are
perpendicular to the direction of motion. At the beginning (first picture), the “history” of the motion
is short; therefore, the sets of firing L cells are small, showing motion (toward East) only at the two
edges. After a while, the sets grow because of the remanence (if the remanence were zero, we would
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only notice motion at the two edges, like on the first picture), and the differences between the two
simulations become clear.

It is also interesting to observe what happens at the horizontal edges. As there is no motion
perpendicular to these edges, the “North-" and the “South Ly cells” activities are very low, indicating
a motion in one of the two other directions. Indeed, there is a motion toward East, but it is only the
history of the motion that raises the “East Ly cells” activities (and lowers the “West Ly cells”
activities) at this location. From layer L, we would see that there is no local motion detected at these
edges.

7. Conclusion

Although motion detection is a very complex task, which requires many neurons in the brain, it has
been shown that a simple two-layers network can mimic some of the features of the visual cortex,
especially the gathering of local direction computations into a decision layer (L2) determining the
global direction of motion. There is no problem any more with the aperture; the reason is that the
network “remembers” the history of the motion to “track” it across the visual field. The network has
been successfully simulated on a standard Sparcstation by using some synthetic images.

Moreover, the network can be adapted to the size of the object by adjusting the remanence (within
certain limits). It has been shown how this factor influences the evolution of the L cells activities.

On the other hand, the outputs of the network (activities of Ly cells) can be used for further image
processing. Indeed, it is possible to build other layers of processing units on the top of L to analyze
special features of the motion. Speed selection, for instance, or detection of moving objects with a
certain size,... These kinds of process can be easily achieved by using the network discussed in this
paper.

References

Adelson, E. H., & Movshon, J. A. (1982). Phenomenal coherence of moving visual patterns.
Nature, 300, 523-525.

Allman, J., Miezin, F., & McGuinness, E. (1985). Direction and velocity-specific responses from
beyond the classical receptive field in the middle temporal visual area (MT). Perception, 14,
105-126.

Cremieux, J., Orban, G. A., Duysens, J., & Amblard, B. (1987). Response properties of area 17
neurons in cats reared in stroboscopic illumination. Journal of Neurophysiology, 54, 21 1-
222.

Felleman, D. J., & Van Essen, D. C. (1987). Receptive field properties of neurons in area V3 of
macaque monkey extrastriate cortex. Journal of Neurophysiology, 57, 889-920.

Frégnac, Y., & Imbert, M. (1984). Development of neuronal selectivity in primary visual cortex of
cat. Physiological Reviews, 64, 325-434.

Hildreth, E. C. (1983). Computing the velocity field along contours. Proceedings of the ACM
SIGGRAPH / SIGART Interdisciplinary Workshop on Motion (pp. 26-32). Association for
Computing Machinery.

Kennedy, H., & Orban, G. A. (1983). Response properties of visual cortical neurons in cats reared
in stroboscopic illumination. Journal of Neurophysiology, 49, 1071-1095.

Marr, D. (1982). Vision: A computational investigation into the human representation and processing
of visual information. San Francisco: W. H. Freeman and Company.

Marshall, J. A. (1990). Self-Organizing Neural Network for Perception of Visual Motion. Neural
Networks, 3, 45-74.

Nabet, B., & Pinter, R. B. (1991). Sensory Neural Networks: lateral inhibition. Boca Raton: CRC
Press, Inc.

Van Essen, D. C. , & Maunsell, J. H. R. (1983). Hierarchical organization and functional streams in
the visual cortex. Trends in Neurosciences, 6, 370-375.

229



	neurocimes92eh
	neurocimes92eh-2
	neurocimes92eh-3
	neurocimes92eh-4
	neurocimes92eh-5

