
Pattern Recognition Letters 26 (2005) 1795–1808

www.elsevier.com/locate/patrec
Time series forecasting: Obtaining long term trends with
self-organizing maps

G. Simon a,1, A. Lendasse b, M. Cottrell c, J.-C. Fort d,c, M. Verleysen a,c,*,2

a Machine Learning Group—DICE—Université catholique de Louvain, Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium
b Helsinki University of Technology—Laboratory of Computer and Information Science, Neural Networks Research Centre,

P.O. Box 5400, Fin-02015 Hut, Finland
c Samos-Matisse, UMR CNRS 8595, Université Paris I—Panthéon Sorbonne, Rue de Tolbiac 90, F-75634 Paris Cedex 13, France

d Lab. Statistiques et Probabilités, CNRS C55830, Université Paul Sabatier Toulouse 3 Route de Narbonne 118,

F-31062 Toulouse Cedex, France

Available online 24 May 2005
Abstract

Kohonen self-organisation maps are a well know classification tool, commonly used in a wide variety of problems,

but with limited applications in time series forecasting context. In this paper, we propose a forecasting method specif-

ically designed for multi-dimensional long-term trends prediction, with a double application of the Kohonen algorithm.

Practical applications of the method are also presented.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Self-organizing maps; Time series forecasting; Long-term trends
1. Introduction

Time series forecasting is a problem encoun-

tered in many fields of applications, as finance (re-
0167-8655/$ - see front matter � 2005 Elsevier B.V. All rights reserv

doi:10.1016/j.patrec.2005.03.002

* Corresponding author. Address: Machine Learning

Group—DICE—Université catholique de Louvain, Place du

Levant 3, B-1348 Louvain-la-Neuve, Belgium. Fax: +32 10 47

25 98.

E-mail address: verleysen@dice.ucl.ac.be (M. Verleysen).
1 G. Simon is funded by the Belgian FRIA.
2 M. Verleysen is Senior Research Associate of the Belgian

FNRS.
turns, stock markets), hydrology (river floods),
engineering (electrical consumption), etc. Many

methods designed for time series forecasting per-

form well (depending on the complexity of the

problem) on a rather short-term horizon but are

rather poor on a longer-term one. This is due to

the fact that these methods are usually designed

to optimize the performance at short term, their

use at longer term being not optimized. Further-
more, they generally carry out the prediction of a

single value while the real problem sometimes re-

quires predicting a vector of future values in one
ed.

mailto:verleysen@dice.ucl.ac.be


1796 G. Simon et al. / Pattern Recognition Letters 26 (2005) 1795–1808
step. For example, in the case of some a priori

known periodicity, it could be interesting to

predict all values for a period as a whole. But

forecasting a vector requires either more complex

models (with potential loss of performance for
some of the vector components) or many distinct

single value predicting models (with potential loss

of the correlation information between the various

values). Methods able to forecast a whole vector

with the same precision for each of its components

are thus of great interest.

While enlarging the prediction horizon is of

course of primary interest for practitioners, there
is of course some limit to the accuracy that can

be expected for a long-term forecast. The limita-

tion is due to the availability of the information

itself, and not to possible limitations of the

forecasting methods. Indeed, there is no doubt

that, whatever forecasting method is used, predict-

ing at long term (i.e. many time steps in advance) is

more difficult that predicting at short term, be-
cause of the missing information in the unknown

future time steps (those between the last known

value and the one to predict). At some term, all

prediction methods will thus fail. The purpose of

the method presented in this paper is not to en-

large the time horizon for which accurate predic-

tions could be expected, but rather to enlarge the

horizon for which we can have insights about the
future evolution of the series. By insights, we mean

some information of interest to the practitioner,

even if it does not mean accurate predictions.

For example, are there bounds on the future val-

ues? What can we expect in average? Are confi-

dence intervals on future values large or narrow?

Predicting many steps in advance could be real-

ized in a straightforward way, by subsampling the
known sequence, then using any short-term pre-

diction method. However, in this case, the loss of

information (used for the forecast) is obviously

even higher, due to the lower resolution of the

known sequence. Furthermore, such solution does

not allow in a general way to introduce a stochas-

tic aspect to the method, which is a key issue in the

proposed method. Indeed, to get insights about the
future evolution of a series through some statistics

(expected mean, variance, confidence intervals,

quartiles, etc.), several predictions should be made
in order to extract such statistics. The predictions

should differ; a stochastic prediction method is

able to generate several forecasts by repeated

Monte-Carlo runs. In the method presented in this

paper, the stochastic character of the method re-
sults from the use of random draws on a probabil-

ity law.

Another attractive aspect of the method pre-

sented in this paper is that it can be used to predict

scalar values or vectors, with the same expected

precision for each component in the case of vector

prediction. Having at disposal a time series of val-

ues x(t) with 1 6 t 6 n, the prediction of a vector
can be defined as follows:

½xðt þ 1Þ; . . . ; xðt þ dÞ�
¼ f ðxðtÞ; . . . ; xðt � p þ 1ÞÞ þ et ð1Þ

where d is the size of the vector to be predicted, f is

the data generating process, p is the number of
past values that influence the future values and et
is a centred noise vector. The past values are gath-

ered in a p-dimensional vector called regressor.

The knowledge of n values of the time series

(with n � p and n � d) means that relation (1) is

known for many (n � p � d + 1) time steps in the

past. The modeling problem then becomes to esti-

mate a function f that models correctly the time
series for the whole set of past regressors.

The idea of the method is to segment the space

of p-dimensional regressors. This segmentation

can be seen as a way to make possible a local mod-

eling in each segment. This part of the method is

achieved using the Self-Organizing Map (SOM)

(Kohonen, 1995). The prototypes obtained for

each class model locally the regressors of the corre-
sponding class. Furthermore, in order to take into

account temporal dependences in the series, defor-

mation regressors are built. Those vectors are con-

structed as the differences between two consecutive

regressors. The set of regressor deformations can

also be segmented using the SOM. Once those

two spaces are segmented and their dependences

characterized, simulations can be performed.
Using a kind of Monte-Carlo procedure to repeat

the simulations, it is then possible to estimate the

distribution of these simulations and to forecast

global trends of the time series at long term.



G. Simon et al. / Pattern Recognition Letters 26 (2005) 1795–1808 1797
Though we could have chosen some other clas-

sical vector quantization (VQ) method as only the

clustering property is of interest here, the choice of

the SOM tool to perform the segmentation of the

two spaces is justified by the fact that SOM are
efficient and fast compared to other VQ methods

with a limited complexity (de Bodt et al., 2004)

and that they provide an intuitive and helpful

graphical representation.

In the following of this paper, we first recall

some basic concepts about the SOM classification

tool. Then we introduce the proposed forecasting

method, the double vector quantization, for scalar
time series and then for vector ones. Next we pres-

ent some experimental results for both scalar and

vector forecastings. A proof of the method stabil-

ity is given in Appendix A.
2. The Kohonen self-organizing maps

The self-organizing maps (SOM), developed by

Teuvo Kohonen in the 80�s (Kohonen, 1995), has

now become a well-known tool, with established

properties (Cottrell et al., 1997, 1998a). self-orga-

nizing Maps have been commonly used since their

first description in a wide variety of problems, as

classification, feature extraction, pattern recogni-

tion and other related applications. As shown in
a few previous works (Cottrell et al., 1996,

1998b; Walter et al., 1990; Vesanto, 1997; Koskela

et al., 1998; Lendasse et al., 1998), the SOM may

also be used to forecast time series at short term.

The Kohonen Self-Organizing Maps (SOM)

can be defined as an unsupervised classification

algorithm from the artificial neural network para-

digm. Any run of this algorithm results in a set,
with a priori fixed size, of prototypes. Each one

of those prototypes is a vector of the same dimen-

sion as the input space. Furthermore, physical

neighbourhood relation links the prototypes. Due

to this neighbourhood relation, we can easily

graphically represent the prototypes in a 1- or 2-

dimensional grid.

After the learning stage each prototype repre-
sents a subset of the initial input set in which the

inputs share some similar features. Using Voro-

noi�s terminology, the prototype corresponds to a
centroid of a region or zone, each zone being one

of the classes obtained by the algorithm. The

SOM thus realizes a vector quantization of the

input space (a Voronoi tessellation) that respects

the original distribution of the inputs. Further-
more, a second property of the SOM is that the

resulting prototypes are ordered according to their

location in the input space. Similar vectors in the

input space are associated either to the same pro-

totype (as in classical VQ) or to two prototypes

that are neighbours on the grid. This last property,

known as the topology preservation, does not hold

for other standard vector quantization methods
like competitive learning.

The ordered prototypes of a SOM can easily be

represented graphically, allowing a more intuitive

interpretation: the 1- or 2-dimensional grid can

be viewed as a 1- or 2-dimensional space where

the inputs are projected by the SOM algorithm,

even if, in fact, the inputs are rather projected on

the prototypes themselves (with some interpola-
tion if needed in the continuous case). This projec-

tion operation for some specific input is proceeded

by determining the nearest prototype with respect

to some distance metric (usually the Euclidian

distance).
3. The double quantization method

The method described here aims to forecast

long-term trends for a time series evolution. It is

based on the SOM algorithm and can be divided

into two stages: the characterization and the fore-

casting. The characterization stage can be viewed

as the learning, while the forecasting can be viewed

as the use of a model in a generalization procedure.
For the sake of simplicity, the method is first

presented for scalar time series prediction (i.e.

d = 1 in (1)) and then detailed later on for vector

forecasting. Examples of the method application

to scalar and vector time series will be provided

in Section 4.

3.1. Method description: characterization

Though the determination of an optimal

regressor in time series forecasting (at least in a



1798 G. Simon et al. / Pattern Recognition Letters 26 (2005) 1795–1808
nonlinear prediction case) is an interesting and

open question (Verleysen et al., 1999), it is consid-

ered here that the optimal, or at least an adequate,

regressor of the time series is known. Classically,

the regressor can for example be chosen according
to some statistical resampling (cross-validation,

bootstrap, etc.) procedure.

As for many other time series analysis methods,

conversion of the inputs into regressors leads to

n � p + 1 vectors in a p-dimensional space, where

p is the regressor size and n the number of values

at our disposal in the time series. The resulting

regressors are denoted:

xtt�pþ1 ¼ fxðtÞ; xðt � 1Þ; . . . ; xðt � p þ 1Þg; ð2Þ

where p 6 t 6 n, and x(t) is the original time series

at our disposal with 1 6 t 6 n. In the above xtt�pþ1

notation, the subscript index denotes the first tem-
poral value of the vector, while the superscript

index denotes its last temporal value.

The obtained vectors xtt�pþ1 are then manipu-

lated and the so-called deformations ytt�pþ1 are cre-

ated according to:

ytt�pþ1 ¼ xtþ1
t�pþ2 � xtt�pþ1. ð3Þ

Note that, by definition, each ytt�pþ1 is associ-
ated to one of the xtt�pþ1. In order to highlight this

link, the same indices have been used.

Putting all ytt�pþ1 together in chronological order

forms another time series of vectors, the deforma-

tions series in the so-called deformation space to

be opposed to the original space containing the

regressors xtt�pþ1. Of course, there exist n � p defor-

mations of dimension p.
The SOM algorithm can then be applied to each

one of these two spaces, quantizing both the origi-

nal regressors xtt�pþ1 and the deformations ytt�pþ1

respectively. Note that in practice any kind of

SOM map can be used, but it is assumed that

one-dimensional maps (or strings) are more ade-

quate in this context.

As a result of the vector quantization by
the SOM on all xtt�pþ1 of the original space, n1
p-dimensional prototypes �xi are obtained (1 6 i 6

n1). The clusters associated to �xi are denoted ci.

The second application of the SOM on all defor-

mations ytt�pþ1 in the deformation space results
in n2 p-dimensional prototypes �yj, 1 6 j 6 n2.

Similarly the associated clusters are denoted c0j.
To perform the forecasting, more information is

needed than the two sets of prototypes. We there-

fore compute a matrix f(ij) based on the relations
between the xtt�pþ1 and the ytt�pþ1 with respect to

their clusters (ci and c0j respectively). The row fij
for a fixed i and 1 6 j 6 n2 is the conditional prob-

ability that ytt�pþ1 belongs to c0j, given that xtt�pþ1

belongs to ci. In practice, those probabilities are

estimated by the empirical frequencies:

fij ¼
#fxtt�pþ1 2 ci and ytt�pþ1 2 c0jg

#fxtt�pþ1 2 cig
ð4Þ

with 1 6 i 6 n1, 1 6 j 6 n2.

Note that, for a fixed i, elements fij (1 6 j 6 n2)

sum to one; this justifies the fact that each row of

the matrix is an (empirically estimated) probability

law. Therefore the matrix will be called transition

matrix in the following.

The computation of this transition matrix com-

pletes the characterization part of the method.

3.2. Method description: forecasting

Once the prototypes in the original and defor-

mation spaces together with the transition matrix
are known, we can forecast a time series evolution

over a rather long-term horizon h (where horizon 1

is defined as the next value t + 1 for time t).

The methodology for such forecasting can be

described as follows. First, consider a time value

x(t) for some time t. The corresponding regressor

is xtt�pþ1. Therefore we can find the associated pro-

totype in the original space, for example �xk (this
operation is in fact equivalent to determining the

class ck of xtt�pþ1 in the SOM). We then look at

row k in the transition matrix and randomly

choose a deformation prototype �yl among the �yj
according to the conditional probability distribu-

tion defined by fkj, 1 6 j 6 n2. The prediction for

time t + 1 is obtained according to relation (3):

x̂tþ1
t�pþ2 ¼ xtt�pþ1 þ �yl; ð5Þ

where x̂tþ1
t�pþ2 is the estimate of the true xtþ1

t�pþ2

given by our time series prediction model. How-

ever x̂tþ1
t�pþ2 is in fact a p-dimensional vector, with



G. Simon et al. / Pattern Recognition Letters 26 (2005) 1795–1808 1799
components corresponding to times from t � p + 2

to t + 1 (see relations (2) and (3)). As in the scalar

case considered here we are only interested in a

single estimate at time t + 1, we extract the scalar

prediction x̂ðt þ 1Þ from the p-dimensional vector
x̂tþ1
t�pþ2.

We can iterate the described procedure, plug-

ging in x̂ðt þ 1Þ for x(t) in (2) to compute x̂tþ2
t�pþ3

by (5) and extracting x̂ðt þ 2Þ. We then do the same

for x̂ðt þ 3Þ, x̂ðt þ 4Þ; . . . ; x̂ðt þ hÞ. This ends the

run of the algorithm to obtain a single simulation

of the series at horizon h.

Next, as the goal of the method is not to per-
form a single long-term simulation, the simula-

tions are repeated to extract trends. Therefore a

Monte-Carlo procedure is used to repeat many

times the whole long-term simulation procedure

at horizon h, as detailed above. As part of the

method (random choice of the deformation

according to the conditional probability distribu-

tions given by the rows of the transition matrix)
is stochastic, repeating the procedure leads to dif-

ferent simulations. Observing those evolutions

allows estimating the simulation distribution and

infer global trends of the time series, as the evolu-

tion of its mean, its variance, confidence intervals,

etc.

It should be emphasized once again that the

double quantization method is not designed to
determine a precise estimate for time t + 1 but is

more specifically devoted to the problem of long-

term evolution, which can only be obtained in

terms of trends.

3.3. Generalisation: vector forecasting

Suppose that it is expected to predict vectors
xtþd
tþ1 of future values of the times series x(t); xtþd

tþ1

is a vector defined as:

xtþd
tþ1 ¼ fxðt þ dÞ; . . . ; xðt þ 2Þ; xðt þ 1Þg; ð6Þ

where d is determined according to a priori

knowledge about the series. For example when

forecasting an electrical consumption, it could be

advantageous to predict all hourly values for one

day in a single step instead of predicting iteratively

each value separately.
As above regressors of this kind of time series

can be constructed according to:

xtt�pþ1 ¼ fxtt�dþ1; x
t�d
t�2dþ1; . . . ; x

t�pþd
t�pþ1g; ð7Þ

where p, for the sake of simplicity, is supposed to

be a multiple of d though this is not compulsory.

The regressor xtt�pþ1 is thus constructed as the con-

catenation of d-dimensional vectors from the past

of the time series, as it is the concatenation of sin-

gle past values in the scalar case. As the xtt�pþ1

regressor is composed of p/d vectors of dimension
d, xtt�pþ1 is a p-dimensional vector.

Deformation can be formed here according to:

ytt�pþ1 ¼ xtþd
t�pþdþ1 � xtt�pþ1. ð8Þ

Here again, the SOM algorithm can be applied

on both spaces, classifying both the regressors
xtt�pþ1 and the deformations ytt�pþ1 respectively.

We then have n1 prototypes �xi in the original space,

with 1 6 i 6 n1, associated to classes ci. In the

deformation space, we have n2 prototypes �yj,
1 6 j 6 n2, associated to classes c0j.

A transition matrix can be constructed as a

vector generalisation of relation (4):

fij ¼
#fxtt�pþ1 2 ci and ytt�pþ1 2 c0jg

#fxtt�pþ1 2 cig
ð9Þ

with 1 6 i 6 n1, 1 6 j 6 n2.

The simulation forecasting procedure can also

be generalised:

• consider the vector input xtt�dþ1 for time t. The

corresponding regressor is xtt�pþ1;

• find the corresponding prototype �xk;
• choose a deformation prototype �yl among the �yj
according to the conditional distribution given

by elements fkj of row k;

• forecast x̂tþd
t�pþdþ1 as

x̂tþd
t�pþdþ1 ¼ xtt�pþ1 þ �yl; ð10Þ

• extract the vector

fx̂ðt þ 1Þ; x̂ðt þ 2Þ; . . . ; x̂ðt þ dÞg
from the d first columns of x̂tþd

t�pþdþ1;

• repeat until horizon h.

For this vector case too, a Monte-Carlo proce-
dure is used to repeat many times the whole



1800 G. Simon et al. / Pattern Recognition Letters 26 (2005) 1795–1808
longterm simulation procedure at horizon h. Then

the simulation distribution and its statistics can be

observed. This information gives trends for the

long term of the time series.

Note that using the SOM to quantize the vec-
tors xtt�pþ1 and ytt�pþ1, the method reaches the goal

of forecasting vectors with the same precision for

each of their components. Indeed each component

from regressors xtt�pþ1 and ytt�pþ1 has the same rel-

ative weight while the distance between the consid-

ered regressor and prototype is computed in the

SOM algorithm. None of the xtt�pþ1 or y
t
t�pþ1 com-

ponents have thus a greater importance in the
modification of the prototype weight during the

learning of the SOM.
3.4. Extensions

Two important comments must be done.

First, as illustrated in both examples below, it

is not mandatory (in Eqs. (1), (2), (6) and (7))
to consider all successive values in the regressor;

according to the knowledge of the series or to

some validation procedure, it might be interesting

to select regressors with adequate, but not neces-

sarily successive, scalar values or vectors in the

past.

Secondly, the vector case has been illustrated in

the previous section on temporal vectors (see Eq.
(6)). An immediate extension of the method would

be to consider spatial vectors, for example when

several series must be predicted simultaneously.

The equations in the previous section should be

modified, but the principle of the method remains

valid.
3.5. Method stability

The predictions obtained by the model de-

scribed in the previous subsections should ideally

be confined in the initial space defined by the

learning data set. In that case, the series of pre-

dicted values ytt�pþ1 is said to be stable. Otherwise,

if the series tends to infinity or otherwise diverges,

it is said to be unstable. The method has been pro-
ven to be stable according to this definition; a

proof is given in Appendix A.
4. Experimental results

This section is devoted to the application of the

method on two times series. The first one is the

well-known Santa Fe A benchmark presented in
(Weigend and Gershenfeld, 1994); it is a scalar

time series. The second time series is the Polish

electrical consumption from 1989 to 1996 (Cottrell

et al., 1998b). This real-world problem requires the

prediction of a vector of 24 hourly values.
4.1. Methodology

In the method description, the numbers n1 and

n2 of prototypes have not been fixed. Indeed, the

problem is that different values of n1(n2) result in

different segmentations in the original (deforma-

tion) space and in different conditional distribution

in the transition matrix. The model may thus

slightly vary.

Selecting the best values for n1 and n2 is
an important question too. Traditionally, such

hyperparameters are estimated by model selection

procedures such as AIC, BIC or computationally-

costly resampling techniques (Leave-One-Out, k-

fold cross validation, bootstrap). As it will be

shown further in this paper, exact values of n1
and n2 are not necessary, as the sensitivity of the

method around the optimums is low. A simple val-
idation is then used to choose adequate values for

n1 and n2. For that purpose the available data are

divided into three subsets: the learning, the valida-

tion and the test set. The learning set is used to fix

the values of the model parameters, such as the

weights of the prototypes in the SOM and the

transition matrix. The validation set is used to fix

meta-parameters, such as the numbers n1 and n2
of prototypes in the SOM maps. The validation

set is thus used for model selection. The test set

aims to see how the model behaves on unused data

that mimic real conditions.

The selection of n1 and n2 is done with regards

to an error criterion, in our case a sum of squared

error criterion, computed over the validation set

VS:

eSSE ¼
X

yðtþ1Þ2VS
ðyðt þ 1Þ � ŷðt þ 1ÞÞ2. ð11Þ



Fig. 1. Comparison between the mean of the 1000 simulations

(solid) and the true values (dashed), together with confidence

intervals at 95% level (dotted).

G. Simon et al. / Pattern Recognition Letters 26 (2005) 1795–1808 1801
Once n1 and n2 have been chosen, a new learn-

ing is done with a new learning set obtained from

the reassembled learning and validation sets. This

new learning is only performed once with optimal

values for n1 and n2.
Note that, hopefully, the sensitivity of the method

to specific values of n1 and n2 is not high. This has

been experimentally verified in all our simulations,

and will be illustrated on the first example (Santa

Fe A) in Section 4.2.

Another crucial question is the sensitivity of the

method to various runs of the SOM algorithm

(with the same n1 and n2 values). Indeed it is well
known that initial conditions largely influence the

exact final result of the SOM algorithm (by final

result it is meant the prototype locations, and their

neighborhood relations) (de Bodt et al., 2002).

Nevertheless, as mentioned above, the neighbor-

hood relations of the SOM are used for visualiza-

tion purposes only; they do not influence the

results of the forecast. Moreover, the location
of the centroids are used to quantize the space

(therefore allowing the estimation of the empirical

conditional frequencies of the clusters); small vari-

ations in the centroid location have thus a low

influence on each prediction generated by the

method, and an even lower one on the statistics

(mean, confidence intervals, etc.) estimated from

the predictions. This last result has been confirmed
experimentally in all our simulations, for which no

significant difference was observed after different

runs of the two SOM algorithms.

4.2. Scalar forecasting: Santa Fe A

The Santa Fe A time series (Weigend and

Gershenfeld, 1994) has been obtained from a far-
infrared-laser in a chaotic state. This time series

has become a well-known benchmark in time series

prediction since the Santa Fe competition in 1991.

The completed data set contains 10,000 data. This

set has been divided here as follows: the learning

set contains 6000 data, the validation set 2000

data, and test set 100 data. Note that the best neu-

ral network models described in (Weigend and
Gershenfeld, 1994) do not predict much more than

40 data, making a 100-data test set a very long-

term forecasting.
Here, the regressors xtt�pþ1 have been con-

structed according to

xtt�pþ1 ¼ fxðtÞ; xðt � 1Þ; xðt � 2Þ; xðt � 3Þ;
xðt � 5Þ; xðt � 6Þg. ð12Þ

This choice is made according to previous experi-

ence on this series (Weigend and Gershenfeld,

1994). In other words, d = 1, p = 6 (as value

x(t � 4) is omitted) and h = 100.
In this simulation, Kohonen strings of 1 up to

200 prototypes in each space have been used. All

the 40,000 possible models have been tested on

the validation set. The best model among them

has 179 prototypes in the regressor space and

161 prototypes in the deformation space. After

relearning this model on both the learning and val-

idation sets, 1000 simulations were performed on a
horizon of 100. Then the mean and confidence

interval at 95% level were computed, giving infor-

mation on the time series trends. Fig. 1 shows the

mean of the 1000 simulations compared to the true

values contained in the test set, together with the

confidence interval at 95% level. Fig. 2 shows a

zoom on the first 30 values. In Fig. 3, we can see

100 simulations for the same 30 values. Note the
stability obtained through the replications. For a

simpler model with n1 = 6 and n2 = 8 (used for

illustrations purposes), Fig. 4 shows the code vec-

tors and regressors (resp. deformations) in each



Fig. 2. Comparison for the first 30 values between the mean of

the 1000 simulations (solid) and the true values of the test set

(dashed), together with confidence intervals at 95% level

(dotted).

Fig. 3. 100 simulations picked out at random from the 1000

simulations made for the Santa Fe A long-term forecasting.

Fig. 4. The code vectors and associated curves in the regressor

(top) and deformation (bottom) spaces (when n1 = 6 and

n2 = 8). The code vectors are represented in white as 6-

dimensional vectors (according to (12)). Regressors (resp.

deformations) belonging to each class are shown in black.

Table 1

Example of transition matrix, here with n1 = 6 and n2 = 8 as in

Fig. 4

0.12 0 0 0 0 0 0.23 0.65

0.67 0.30 0 0 0 0 0.02 0.01

0.05 0.55 0.40 0 0 0 0 0

0.03 0 0.30 0.54 0.13 0 0 0

0 0 0 0 0.50 0.48 0.02 0

0.06 0 0 0 0 0.34 0.56 0.04

Note that in each row, the frequency values sum to one.

1802 G. Simon et al. / Pattern Recognition Letters 26 (2005) 1795–1808
class; Table 1 shows the corresponding transition

matrix.

From Fig. 2, it should be noted that the method
gives roughly the first 25 values of the time series, a

result that is not so far from those obtained with

the best neural network models of the Santa Fe

competition (Weigend and Gershenfeld, 1994).

From Fig. 1, we can infer that the series mean

will neither increase nor decrease. In addition, the

confidence interval does contain the whole evolu-
tion of the time series for the considered 100 future

values. The trend for long term forecasting is thus

that the series, though chaotic, will show some kind

of stability in its evolution for the next 100 values.

As all the 40,000 models have been generated

and learned, the influence of varying the n1 and

n2 values can be observed. This influence is illus-

trated in Fig. 5. It is clear from this figure that there
is a large flat region around the optimal values; in

this region, all models generalize rather equiva-

lently. This justifies, a posteriori, the choice of a

simple resampling method to choose n1 and n2.

4.3. Vector forecasting: the polish electrical

consumption

As second example, we use the Polish electrical

load time series (Cottrell et al., 1998b). This series



Fig. 5. Impact of the variation of n1 and n2 on the model

generalization ability for the Santa Fe A time series.

G. Simon et al. / Pattern Recognition Letters 26 (2005) 1795–1808 1803
contains hourly values from 1989 to 1996. The

whole dataset contains about 72,000 hourly data

and is plotted in Fig. 6. Due to the daily periodic-

ity of the time series, we are interested in daily pre-

dictions. This is thus an illustration of the case

d > 1, since it seems natural to forecast the 24 next
values in one step (the next day), the time window

becoming daily instead of hourly.

Having now at our disposal 3000 xtt�pþ1 data of

dimension 24, we use 2000 of them for the learn-

ing, 800 for a simple validation and 200 for the

test. Since the optimal regressor is unknown, many
Fig. 6. The Polish electrical consumption time series, between

1989 and 1996.
different regressors were tried, using intuitive

understanding of the process. The final regressor

is:

xtt�pþ1 ¼ fxtt�24þ1; x
t�24
t�48þ1; x

t�48
t�72þ1; x

t�144
t�168þ1; x

t�168
t�192þ1g;

ð13Þ
that is the 24 hourly values of today, of yesterday,

of two, six and seven days ago. This regressor is

maybe not the optimal one, but it is the one that

makes the lowest error on the validation set in

comparison with other tested ones. Since the
regressor contains p = 5 data of dimension

d = 24, we work in a 120-dimensional space. We

then run the algorithm again on the learning set

with values for n1 and n2 each varying from 5 to

200 prototypes by steps of 5. The lowest error is

made by a model with n1 = 160 and n2 = 140

respectively.

Another model is then learned with 160 and 140
parameter vectors in each space with the new

learning set, now containing 2000 + 800 data.

The forecasting obtained from this model is re-

peated 1000 times. Fig. 7 presents the mean of

the 1000 simulations obtained with 24-dimensional

vectors and with horizon h limited to 40 days (a

single plot of the whole 24 · 200 predicted values

becomes unreadable). For convenience, Fig. 8
shows a zoom and a comparison between the mean

of those 1000 long-term predictions and the real
Fig. 7. Mean of the 1000 simulations at long term (h = 40).



Fig. 8. Comparison between the true values (dashed), the mean

of the predictions (solid) and the confidence interval at 95%

level (dotted).

Fig. 10. Impact of the variation of n1 and n2 on the model

generalization ability for the Polish electrical consumption

problem.

1804 G. Simon et al. / Pattern Recognition Letters 26 (2005) 1795–1808
values. A confidence interval at 95% level is also

provided.
From Fig. 8, it is clear that the mean of the pre-

diction at long term will show the same periodicity

as the true time series and that the values will be

contained in a rather narrow confidence interval.

This fact denotes a probable low variation of the

series at long term.

Fig. 9 shows 100 predictions obtained by the

Monte-Carlo procedure picked up at random be-
Fig. 9. Plot of 100 simulations chosen at random from the 1000

simulations.
fore taking the mean. See that different simulations

have about the same shape; this is a main argu-

ment for determining long-term trends.
Finally, as in the previous example, the influ-

ence of n1 and n2 can be observed. In Fig. 10, a

very large flat region is also present around the

best model. Sub-optimal selection of the n1 and

n2 values will thus not penalize too heavily the

model generalization abilities.
5. Conclusion

In this paper, we have presented a time series

forecasting method based on a double classifica-

tion of the regressors and of their deformations

using the SOM algorithm. The use of SOMs makes

it possible to apply the method both on scalar and

vector time series, as discussed in Section 3 and
illustrated in Section 4. A proof of the method sta-

bility is given in Appendix A.

The proposed method is not designed to obtain

an accurate forecast of the next values of a series,

but rather aims to determine long-term trends.

Indeed, its stochastic nature allows repeating simu-

lations by a Monte-Carlo procedure, allowing to

compute statistics (variance, confidence intervals,
etc.) on the predictions. Such a method could also

be used for example in the financial context, for

the estimation of volatilities.



G. Simon et al. / Pattern Recognition Letters 26 (2005) 1795–1808 1805
Acknowledgement

We would like to thank Professor Osowsky

from Warsaw Technical University for providing

us the Polish Electrical Consumption data used
in our example.
Appendix A. Method stability

Intuitively, the stability property of the method

is not surprising. Indeed, the model is designed

such that it will mostly produce predictions that
are in the range of the observed data. By construc-

tion, deformations are chosen randomly according

to an empirical probability law and the obtained

predictions should stay in the same range. If, for

some reason, the prediction is about to exceed this

range during one of the simulations, the next

deformations will then tend to drive it back inside

this range, at least with high probability. Further-
more, as simulations are repeated with the Monte-

Carlo procedure, the influence of such unexpected

cases will be reduced when the mean is taken to

obtain the final predictions. The following of this

section is intended to prove this intuitive result.

The proof consists in two steps: it is first shown

that the series generated by the model is a Markov

chain; secondly, it is demonstrated that this parti-
cular type of Markov chain is stable. In order to

improve the readability of the proof, lighter nota-

tions will be used. For a fixed d and a fixed p, nota-

tion Xt will represent the vector xtt�pþ1. The last

known regressor will be denoted X0. The proto-

type of a cluster C0
j of deformations will be noted

Yj. Finally, hats will be omitted for simplicity as

all regressors Xt are estimations, except for t = 0.
To prove that the series is a Markov chain, we

consider the starting vector of the simulation at

time 0. The corresponding initial regressor of the

series is denoted X0, and C0 is the corresponding

SOM cluster in the regressor space. The deforma-

tion that is applied to X0 at this stage is Y0. Then

the next values of the series are given by X1 =

X0 + Y0, X2 = X0 + Y0 + Y1, . . . , with Y0,Y1, . . .
drawn randomly from the transition matrix for

clusters C0,C1, . . ., respectively. The series Xt is

therefore a Markov chain, homogeneous in time
(the transition distribution are not time depen-

dant), irreducible and defined over a numerable

set (the initial Xt are in finite number, and so are

the deformations).

To show the stability of this Markov chain and
thus the existence of a stationary distribution, Fos-

ter�s criterion (Fayolle et al., 1995) is applied. Note

that this criterion is a stronger result which proves

the ergodicity of the chain, which in turns implies

the stability. Foster�s criterion is the following.

A necessary and sufficient condition for an ir-

reducible chain to be ergodic is that there exists a

positive function g(Æ), a positive e and a finite set
A such that:

8x 2 X : EðgðX tþ1ÞjX t ¼ xÞ < 1;

8x 62 X : EðgðX tþ1ÞjX t ¼ xÞ � gðxÞ 6 �e.
ð14Þ

Since the Markov chain is homogenous, it is

sufficient to observe transition Y0 from X0 to X1.

The same development can be deduced for any

other transition.

The demonstration is done for two-dimensional
regressors but can be generalized easily to other

dimensions. Note that in the following, we use

g(Æ) = k Æ k2 in (14).

Before going in further details, let us remark

that for a SOM with at least 3 classes in general

position, class C0 covers less than a half plane.

Furthermore, we have to distinguish two cases

for each cluster. First, the cluster may be included
in a finite compact from R2. The second case is the

case of an infinite cluster i.e. of a cluster which

may does have any neighbour in some direction;

this happens to clusters on the border of the map.

The first case is easely proved. Since kX0k < R0,

where R0 can be any constant, then we have by tri-

angular inequality:

EðkX 1kÞ < R0 þ kY 0k 6 R0 þmax
j

ðkY jkÞ. ð15Þ

As the deformations Yj are in finite number, the

maximum of their norm is finite. This proves the

first inequality of (14) in an obvious way for
the first case (i.e. bounded cluster case).

The other case thus appends when kX0k ! +1.

This happens in unbounded clusters. The un-

bounded cluster case is much more technical to

prove.



Fig. 11. (a) A cluster within an acute angle. (b) A cluster within

an obtuse angle. Notations for the cone containing an

unbounded cluster of a SOM; see text for details.

Fig. 12. (a) Acute angle case. (b) Obtuse angle case. Third

geometrical property, see text for details.

1806 G. Simon et al. / Pattern Recognition Letters 26 (2005) 1795–1808
Looking at Fig. 11, we see that each unbounded

cluster is included in a cone with vertex A and

delimited by the normalized vectors a1 and a2.

There are two possibilities: either a1 and a2 form
an acute angle, either an obtuse one, as shown in

Fig. 11(a) and (b) respectively.

Before going on and applying Foster�s criterion,
note that the three following geometrical proper-

ties can be proven.

Property 1. Denoting

lim
kxk!1

x
kxk � ai ¼ di; ð16Þ

we have d1 and d2 both positive in the acute angle

case, while either d1 or d2 is positive for an obtuse

angle. Indeed, using the origin O, we define:

Ox
�! ¼ OA

�!þ Ax
�!

. ð17Þ
We thus have:

x
kxk � ai ¼

OA
�! � ai
kxk þ Ax

�!
k Ax�!k

k Ax�!k
kxk � ai ð18Þ

which can be bounded by a strictly positive constant

as OA
�!

�ai
kxk ! 0 and k Ax

�!
k

kxk ! 1 for kxk ! +1.

Property 2. We define b1 such that the angle

(a1,b1) is þ p
2
. Similarly b2 is defined such that the

angle (b2,a2) is also þ p
2
. Then, for both the acute

and obtuse angle cases, we have:

inf
x2C

Ax
�!
kxk � bi ¼ ri > 0; ð19Þ
where C is the considered cone which has border vec-

tors a1 and a2.

Rewrite the first term of (19) as:

inf
x2C

Ax
�!
kxk � bi ¼ inf

x2C

Ax
�!

k Ax�!k
k Ax�!k
kxk � bi; ð20Þ

the result is obtained easily since
k Ax�!k
kxk ! 1 when

kxk ! +1.

Property 3. Assume that:

El0ðY 0Þ � a1 < 0 and El0ðY 0Þ � a2 < 0 ð21Þ

where l0 is the empirical distribution corresponding

to class C0 in the transition matrix. Denoting

El0ðY 0Þ � ai ¼ �ci < 0 ð22Þ

with ci > 0, then we have:

El0ðY 0Þ � bi < 0 ð23Þ

for either i = 1 or i = 2 in case of an acute angle

(Fig. 12(a)) or for both of i = 1 and i = 2 for the ob-
tuse case (Fig. 12(b)).

Note that the initial assumption can easily be

proved numerically.

Those three properties will be used as lemmas in

the following. Now we can apply Foster�s criterion
for the unbounded cluster case.

Foster�s criterion. Considering an unbounded class

C0 and the corresponding transition distribution,

with g(x) = kxk2, we have

EðgðX 1ÞjX 0 ¼ xÞ � gðxÞ
¼ EðgðX 0 þ Y 0jX 0 ¼ xÞ � gðxÞ
¼ EðkX 0 þ Y 0k2jX 0 ¼ xÞ � kxk2

¼ 2kxk x � El0ðY 0Þ
kxk þ El0ðkY 0k2Þ

2kxk

" #
. ð24Þ



G. Simon et al. / Pattern Recognition Letters 26 (2005) 1795–1808 1807
The second term between the brackets can be

bounded by a strictly positive constant a0. Indeed,
as kY0k2 is finite, El0ðkY 0k2Þ < M0 is also finite.

Therefore, for a0 > 0 and kxk > M0

a0
, we have

1

kxkEl0ðkY 0k2Þ < a0. ð25Þ

For the first term, we chose either i = 1 or i = 2

such that:

lim
kxk!þ1

x
kxk � ai ¼ di > 0;

El0ðY 0Þ � bi < 0.

8<
: ð26Þ

In case of an unbounded cluster, those two con-

ditions are fulfilled using Properties 1 and 3.

By hypothesis, suppose that i = 2 satisfies those

two conditions (26). The term El0ðY 0Þ can be

decomposed in the (b2,a2) basis. Then, for kxk suf-

ficiently large, as:

• El0ðY 0Þ � a2 ¼ �c2 by Property 3;

•
x

kxk � a2 >
d2
2

by Property 1;

• El0ðY 0Þ � b2 < 0 by Property 3;

•
x

kxk � b2 P
r2
2

as Ox
�! ¼ OA

�!þ Ax
�!

and by Prop-

erty 2,

we have

x
kxkEl0ðY 0Þ 6 ðEl0ðY 0Þ � a2Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼�c2

x
kxk � a2
� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

>
d2
2

þ ðEl0ðY 0Þ � b2Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
<0

x
kxk � b2
� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

P
r2
2

< �c2
d2
2
;

when kxk is large enough, denoted here kxk > L0.

The same development can be achieved using

i = 1 to satisfy the two initial conditions (26). We

obtain

x
kxkEl0ðY 0Þ < �c1

d1
2
; ð27Þ

when kxk > L0
0.
Eq. (24) can now be simplified in

EðgðX 1ÞjX 0 ¼ xÞ � gðxÞ

¼ 2kxk x � El0ðY 0Þ
kxk þ El0ðkY 0k2Þ

2kxk

" #

< 2kxk �a0 þ
1

2
a0

� �
¼ �2kxk a0

2
; ð28Þ

where kxk > K0 ¼ maxðL0; L0
0Þ and a0 in (25) is

chosen such that a0 ¼ min c1d1
2
; c2d2

2

� �
.

This development has been done for cluster C0.

All values a0, M0, L0, K0 depends on this cluster

C0. Now considering all unbounded clusters Ci

and taking a ¼ infCiai and K ¼ supCi
Ki, we have:

8kxk P K:
xEl0ðY 0Þ

kxk þ El0ðkY 0k2Þ
2kxk < � a

2
< 0.

ð29Þ
Finally, we obtain, using (29) in (28):

EðgðX 1ÞjX 0 ¼ xÞ � gðxÞ < �akxk; ð30Þ
where the right member tends to �1 for kxk !
+1.

To conclude, we define the set X used in

Foster�s criterion according to

X ¼
[
i2I

Ci

 ![
X 0jkX 0k < Kf g; ð31Þ

where I denotes the set of bounded cluster indexes

as discussed in the introduction to the proof. With

this definition, the above developments prove

Foster�s criterion (14). Thus the Markov chain
defined by the Xi for i > 0 is ergodic, and admits

a unique stationary distribution.
References

Cottrell, M., de Bodt, E., Grégoire, Ph., 1996. Simulating

interest rate structure evolution on a long term horizon:

A Kohonen map application. In: Proceedings of Neural

Networks in the Capital Markets, Californian Institute of

Technology. World Scientific Ed., Pasadena.

Cottrell, M., de Bodt, E., Verleysen, M., 1997. Kohonen maps

versus vector quantization for data analysis, European

Symp. on Artificial Neural Networks, April 1997, Bruges

(Belgium), D-Facto pub. (Brussels), pp. 187–193.



1808 G. Simon et al. / Pattern Recognition Letters 26 (2005) 1795–1808
Cottrell, M., Fort, J.-C., Pagès, G., 1998a. Theoretical aspects

of the SOM algorithm. Neurocomputing 21, 119–138.

Cottrell, M., Girard, B., Rousset, P., 1998b. Forecasting of

curves using a Kohonen classification. Journal of Forecast-

ing 17, 429–439.

de Bodt, E., Cottrell, M., Verleysen, M., 2002. Statistical tools

to assess the reliability of selforganizing maps. Neural

Networks 15 (8–9), 967–978.

de Bodt, E., Cottrell, M., Letremy, P., Verleysen, M., 2004. On

the use of Self-Organizing Maps to accelerate vector

quantization. Neurocomputing 56, 187–203.

Fayolle, G., Malyshev, V.A., Menshikov, M.V., 1995. Topics in

Constructive Theory of Countable Markov Chains. Cam-

bridge University Press.

Kohonen, T., 1995. In: Self-organising Maps, Springer Series in

Information Sciences, vol. 30. Springer, Berlin.

Koskela, T., Varsta, M., Heikkonen, J., Kaski, K., 1998.

Recurrent SOM with Local Linear Models in Time Series

Prediction, European Symp. on Artificial Neural Networks,

April 11 1998, Bruges (Belgium), D-Facto pub. (Brussels),

pp. 167–172.
Lendasse, A., Verleysen, M., de Bodt, E., Cottrell, M.,

Grégoire, Ph., 1998. Forecasting Time-Series by Kohonen

Classification, European Symp. on Artificial Neural Net-

works, April 1998, Bruges (Belgium), D-Facto pub. (Brus-

sels), pp. 221–226.

Verleysen, M., de Bodt, E., Lendasse, A., 1999. Forecasting

financial time series through intrinsic dimension estimation

and non-linear data projection, In: Proceedings of Interna-

tional Workconference on Artificial and Natural Neural

networks (IWANN�99), Springer-Verlag Lecture Notes in

Computer Science, n 1607, pp. II596–II605.

Vesanto, J., 1997. Using the som and local models in time-

series prediction. In: Proceedings of Workshop on

Self-Organizing Maps (WSOM�97), Espoo, Finland,

pp. 209–214.

Walter, J., Ritter, H., Schulten, K., 1990. Non-linear prediction

with self-organising maps, In: Proceedings of IJCNN, San

Diego, CA, pp. 589–594.

Weigend, A.S., Gershenfeld, N.A., 1994. Times Series Predic-

tion: Forecasting the Future and Understanding the Past.

Addison-Wesley Publishing Company.


	Time series forecasting: Obtaining long term trends with self-organizing maps
	Introduction
	The Kohonen self-organizing maps
	The double quantization method
	Method description: characterization
	Method description: forecasting
	Generalisation: vector forecasting
	Extensions
	Method stability

	Experimental results
	Methodology
	Scalar forecasting: Santa Fe A
	Vector forecasting: the polish electrical consumption

	Conclusion
	Acknowledgement
	Method stability
	References


