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IMAGE COMPRESSION

USING SELF-ORGANIZING MAPS
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The self-organizing Kohonen map is a reliable and efficient way to achieve vector quantization. Typical appli-
cation of such algorithm is image compression. Moreover, Kohonen networks realize a mapping between an
input and an output space that preserves topology. This feature can be used to build new compression schemes
which allow to obtain better compression rate than with classical method as JPEG without reducing the image
quality. Compared to JPEG, our lossy compression scheme shows better performances (in terms of PSNR) for
compression rates higher than 30 [C. Amerijckx, M. Verleysen, P. Thissen and J.-D. Legat (1998). Image
compression by self-organized Kohonen map. IEEE Transactions on Neural Networks, 9(3), 503–507.]. For
lossless compression, this rate is about 2.7 for standard images.
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1. INTRODUCTION

In the context of image processing, compression schemes are aimed to reduce the trans-
mission rate for still (or fixed images), while maintaining a good level of visual quality.

Several compression techniques have been developed, such as DPCM (Differential
Pulse Code Modulation), DCT (Discrete Cosine Transform) [2,3] and DFT (Discrete
Fourier Transform), together with numerous vector quantization methods [4,5].
Vector quantization is based on the creation of a codebook, constituted by M elements
(codewords). Each codeword is supported by a vector of the same size as the size of the
input vectors. Each input vector will be approximated by a codeword in such a way that
the global distortion will be minimized. In other words, the goal of the vector quantizer
is to project the input space on a discrete one of the same dimension, constituted by M
elements, while minimizing a distortion error function. On a reduced bandwidth trans-
mission line, only the indexes of the successive codewords that approximate the best
of the input vector will be transmitted, instead of the whole vector itself. A vector
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quantizer is thus characterized by the following relation:

Q : RN ! Y jX ! X̂Xi, X̂Xi 2 Y , 1 � i � M, ð1Þ

where X 2 RN is an input vector, Y is the codebook, X̂Xi are the codewords (1� i�M),
and N is the dimension of the space. Each vector X will be projected on the nearest
codeword, for a defined distance measure (here the Euclidean distance):

dðX , X̂XiÞ ¼ minðdðX , X̂XjÞÞ, 1 � j � M: ð2Þ

The best quantizer Q is the one which minimizes the distortion error

Err ¼ EðdðX, X̂XiÞÞ ð3Þ

over the whole input space.
For a few years, research has focused on artificial neural network methods for vector

quantization; Kohonen’s algorithm, or Kohonen’s topological self-organizing map
[6,7], is one of these methods that can be used for vector quantization. One function
of this algorithm is to realize the quantization of a continuous input space of stimuli
into a discrete output space, the codebook. Besides this vector quantization feature,
the Kohonen algorithm has another essential property: self-organization. In fact, this
algorithm is based on the observation of the brain that realizes self-organization of
cartographies during the first stages of its development, starting with tactile, visual,
or acoustic sensory inputs. Considering the example of sounds, the consequence
of self-organization is that two sounds with neighboring frequencies excite two
neighboring neurons of the brain. In terms of neural computation, this relation
becomes: ‘‘two neighboring input vectors will excite two neighboring output vectors
(codewords),’’ in the sense of a given distance function.

Other authors have already used Kohonen’s neural network in image compression
for its vector quantization property, in the same way as other vector quantizers, such
as the LBG (Linde–Buzo–Gray algorithm) [8]. It was proved that both give similar
results when considering the quality of the compressed image [9]; their compression
rate is only dependent on the codebook size. Kohonen’s network also accelerates the
convergence of the quantization process [10]. In [11], the topology-preserving property
is used for progressive transmission of the image. In [12], it is used for further differen-
tial coding, as in this chapter, but on images without DCT, and with a less-performant
zeroth-order predictor (instead of first-order in our compression scheme).

We propose in this article to use the second property of Kohonen’s neural network,
self-organization, in order to achieve higher compression rates without any further
decrease in the image quality. First, we describe each step of the compression scheme,
and in particular the differential coding, which is a coding technique that allows to
make the ordering (self-organization) property very efficient. Then, results of simula-
tions are shown for image compression with this new method, including comparison
with other compression schemes. Both lossy and lossless compression are considered.

2. THE GLOBAL COMPRESSION SCHEME

The global compression scheme for lossy compression is described in Fig. 1. After
a vectorization (transformation of image blocks into vectors), a DCT [2] and a low-pass
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filter first reduce the quantity of information by keeping only the low-frequency coe-
fficients. Then, the vector quantization is performed, with another loss of information.
Finally, the indexes of the codewords found by the vector quantizer are transformed by
a differential coding, and the results are compressed by an entropic coder, Universal
Variable Length Coder (UVLC) [13,14]; these last two steps do not introduce any
loss in the information. The decompression scheme performs the same operations in
the opposite way.

The global compression scheme for lossless compression is illustrated in Fig. 2. It is
similar to the lossy scheme, except that the difference between the quantized image
(after the Kohonen vector quantizer) and the original one is computed, and transmitted
after being compressed by the entropic coder. In this way, the exact reconstruction of
the original image is made possible.

2.1. Image Preprocessing

In order to use vector quantization techniques, the image has to be coded into vectors.
Each of these vectors is then approximated and replaced by the index of one of the
elements of the codebook: the only useful information in this index, for each of the
blocks of the original image, reducing by this way the transmission bit rate.

The image is first decomposed into blocks (4� 4 or 8� 8 pixels as usual); the DCT
transform is applied on each block, in order to eliminate a part of the information
contained in the image, that is, high frequencies not visible to human eyes.

FIGURE 2 Global compression scheme for lossless compression.

FIGURE 1 Global compression scheme for lossy compression.
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The DCT transform of a k� k pixels block is again a k� k block. However, in the
transformed block, low-frequency coefficients are grouped in the upper-left corner,
while high-frequency ones are grouped in the lower-right corner. The low-pass filter
on the transformed block will thus keep only the l coefficients nearest from the
upper left corner, with l� k2; the remaining k2� l coefficients are discarded, supposing
that they do not contribute too much to the visual quality of the image. After vector
quantization, we will thus have the twofold properties:

. for a given size of the codebook, the low-pass transformation allows a better sub-
sequent quantization because it reduces the dimension of the space (l instead of k2);

. for a given visual image quality, it allows to have a better compression rate by
decreasing the codebook size.

2.2. Kohonen’s Self-organizing Maps

As mentioned in the introduction, the goal of Kohonen’s map is to create a correspond-
ence between the input space of stimuli and the output space of codebook elements, the
codewords or neurons. These have to approximate at best all vectors of the input space
after the learning phase [6].

All neurons, or codewords, are physically arranged on a square grid; it is thus pos-
sible to define k-neighborhoods on the grid, which include all neurons whose distance
(on the grid) from one (central) neuron is less than or equal to k.

Each of theM codewords is represented by its weight X̂Xj 2 RN . For each presentation
of an input vector X during a training phase, the index i of the codeword nearest from
X is determined, according to the Euclidean distance:

dðX , X̂XiÞ ¼ minðdðX , X̂XjÞÞ, 1 � j � M ð4Þ

The selected neuron i, and all neurons in a k-neighborhood of neuron i, are then
‘‘moved’’ in the direction of the input vector X according to:

X̂Xmðtþ 1Þ ¼ X̂XmðtÞ þ �ðtÞðX � X̂XmÞ, ð5Þ

where m represents the index of all neurons in the k-neighborhood of neuron i and �(t)
the learning factor. �(t) and k must decrease during the learning to ensure a good
convergence of the algorithm.

During the learning phase, the network organizes itself with respect to the density of
the presented vectors. After learning, two neurons physically neighbored on the grid,
will have similar weights, leading to the well-known ‘‘organization’’ property of
Kohonen networks.

This property is the key point of the compression scheme proposed in this chapter.
Two successive blocks in the image will be coded, after the DCT transform, by similar
vectors, since it is supposed that sharp variations in the image do not occur too often
[15,16]. The vector quantization with the Kohonen algorithm will thus lead to two
codewords located near together on the grid, because of the organization property
of the network. The differential coding will then use this property to not to code the
difference between the codewords themselves, but the difference between their indexes,
difference which will be small in average too.
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2.3. Differential Coding

Once the codebook has been constituted during the learning phase with the Kohonen
algorithm, the next step is to code the differences between the indexes of the
codewords. The differential coding makes it possible to use the topological ordering
property of codebook created with Kohonen’s algorithm.

Without using the organization property of Kohonen maps, quantization means to
select the neuron nearest to the presented vector, and to send its index on the transmis-
sion line. So, the image is compressed if the number of bits necessary to send an index is
lower than the number of bits used to code each pixel in a block. The ordering property
of codebooks created with Kohonen’s map makes it possible to be more efficient. Due
to the fact that two neighboring blocks of the image are very often similar, because
it is supposed that any sharp variations in an image do not occur often, the vectors
corresponding to these two blocks are close to each other (when considering a given
distance function). So, because of the organization of the network, two neighboring
vectors in the input space will activate two neighboring neurons of the network. The
two correspondent indexes will be close too, and their difference will be low in average.
We will see in the next section that small values provided by the differential coder (small
differences of indexes) will be coded more efficiently by the UVLC entropic coder; the
goal here is thus to obtain differences between indexes as small as possible.

To compute differences between indexes, one has to determine which block will
be taken as the ‘‘previous’’ one, when a new block is encoded. Two possibilities are
presented in the following, the first one being very simple, the second one being
more efficient.

2.3.1. Using the Previous Encoded Block

This method is the simplest one, and necessitates minimum number of computations.
Since two consecutive blocks in an image are supposed to be very similar, the difference
between the corresponding indexes of the respective neurons will be small, and this
difference, without any further processing, will be transmitted to the UVLC entropic
coder. Figure 3 shows the succession of the differences computations used in this method.

2.3.2. Searching for the Best Minimum Gradient Direction in the Image

The second method is based on the following principle: we suppose that gradients in
the image are smooth, and thus that the direction in which the differences between
two successive blocks was minimum for already encoded blocks will be the same
as the direction in which the difference is minimum for the new block to encode.

FIGURE 3 Succession of blocks (each calculated difference is represented by an arrow).
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In other terms, and with the notations of Fig. 4, we suppose that the minimum differ-
ence between blocks i and b, i and d, i and f, and i and h, will be respectively in the same
direction (D1, D2, D3, or D4) as the minimum difference between already encoded
blocks b and a, d and c, f and e, and h and g. The advantage of this method is that
the selected difference to code (between the four possible differences) will be always
smaller (or equal) than the difference computed by the first method; the selected
direction does not have to be coded: since blocks a–h have already been transmitted
when coding block i, the direction of the minimal difference between them is known,
and does not have to be transmitted again.

The coding of a block is summarized in Fig. 5. The best direction is first computed
according to the above scheme, and block b, d, f, or h is selected. New block i is then
encoded by the Kohonen’s algorithm, and the difference between the two indexes is sent
to the entropic coder.

The decoding is illustrated in Fig. 6. The best direction is first computed with the
already decoded blocks; the sum of the selected index and of the transmitted difference

FIGURE 4 Determination of the best direction to calculate the difference between blocks.

FIGURE 6 Decoding the difference between indexes.

FIGURE 5 Coding of the difference between indexes.
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is then the index of the new block i which is decoded, and converted again into an image
block by the look-up table created with Kohonen’s algorithm.

It may be mentioned that the scheme proposed in Fig. 4 is only valid when the
first two lines have already been encoded. For the first two lines, the first proposed
differential scheme is used, as illustrated in Fig. 7.

2.4. Entropic Coder: UVLC

Now the differences between indexes are computed, they have to be transformed into the
smallest possible univoque binary sequence to be transmitted on the transmission line.

The UVLC is well appropriate to code small numbers. It is a universal entropic coder
based on a variable length coding [13,14]. It minimizes the necessary information to
code a series of small numbers by optimizing the length of the binary sequence used
to transmit the run-lengths, that is, series of consecutive 0s on a line.

The principle is to concentrate the maximum number of 0s in order to optimize the
length of the code generated by the UVLC. To achieve this, all vectors (corresponding
to the differences of indexes generated as described above) are placed as columns
in a matrix; since many of these vectors are small, the upper part of the matrix will
contain many 0s, and the UVLC will then code this matrix line by line. For each line
i, the following operations are performed (a run-length is defined as the number of
consecutive 0s):

. the number and the length of all run-lengths are determined, as well as an optimal
number mi, that minimizes the length of the binary code needed to transmit all the
run-lengths of this line (see [14] for more details);

. this number mi is coded over a predefined number of bits;

. the line itself is coded in the following way:

� the length RL of each run-length is determined;
� while RL � 2mi , send a 0 and RL ¼ RL� 2mi ;
� when RL < 2mi , send a 1 and RL coded over mi bits;
� the next bit of the line (after a run-length) is necessarily a 1; the whole column of

the matrix below this 1 is then transmitted uncoded, and a flag is memorized for
this column, indicating that it does not have to be regarded in subsequent lines;

. all sign bits of all columns are transmitted uncoded.

FIGURE 7 Complete differences scheme. Large arrows indicate the difference of blocks to transmit to the
UVLC, and thin arrows indicate how to choose the best direction to use for coding, beginning at the third line.
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An example of UVLC coding is illustrated in Fig. 8. In the first line, a first run-length
of four bits is coded (see above). Then, the whole fifth column is transmitted uncoded.
The first line is then continued, in coding the next run-length, . . .. Column 5 is
discarded for line 2 and the subsequent ones. In the fourth line for example, the first
run-length of 2 bits is coded, then the remaining of the third column is sent uncoded,
and the fourth line, beginning at the fourth column, is coded according to the same
principle (the fifth column is no more considered). The process is continued while the
code for a line is smaller than the number of bits of the line itself. The UVLC has
the advantage (over conventional Hufmann’s code for example) that it does not require
any predefined table, and adapts itself to the input distribution.

3. SIMULATIONS AND RESULTS

3.1. Lossy Compression

For the simulation of the whole compression process (lossy scheme, see Fig. 1), we used
4� 4 points image blocks (as a compromise between the compression rate and the
correlation between successive blocks. The Kohonen algorithm was trained with an
exponentially decreasing function �(t). While the simulations have been carried out
on different images with similar results, the standard Lena image is used in this article
for illustration purposes.

First, we have to show the consequences of the low-pass filtering: by removing a part
of the high frequencies, we delete a part of the information contained in the image. An
immediate consequence of this is a reduction of the peak signal to noise ratio (PSNR),
even though the image visual quality remains more or less unchanged. In other words,
before beginning the compression, the image quality will be degraded by the filtering.
We can see in Table I the evolution of the PSNR on the Lena image, when the
number of DCT coefficients kept after the low-pass filtering varies from 2 to 8.

FIGURE 8 Example of UVLC coding on 10 vectors in 8 dimensions.
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To keep an acceptable subjective quality of the image, 6 and 8 DCT coefficients will
be kept in the next simulations (PSNR of around 30 dB before vector quantization).

The tests made with our compression scheme consist of a variation of the codebook
size for two given cut frequencies (6 and 8 DCT coefficients). The compression rate
obtained in function of the codebook size (differential coding) is shown in Fig. 9
while their associated PSNR is given in Fig. 10. As a comparison, the compression
rate without differential coding is equal to CR¼ (16� 8)/Nbr, where each bit of the
image is coded on 8 bits, and Nbr is the number of bits necessary to code all codewords
(7 for 128¼ 27 codewords, 8 for 256, and 9 for 512). Both simulations were made with
the second proposed differential coding scheme (the selection of the best direction to
code the differences).

FIGURE 10 Peak signal-to-noise ratio evolution with the number of codewords.

FIGURE 9 Compression rate evolution with the number of codewords.

TABLE I PSNR (in dB) after the low-pass filtering

DCT2 DCT3 DCT4 DCT5 DCT6 DCT7 DCT8

Lena 25.09 26.54 26.83 27.87 29.35 30.07 31.15
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Two remarks can be made:

. the compression rate does not vary too much with the cut frequency (Fig. 9):
the difference is about 5% between DCT6 and DCT8;

. the signal to noise ratio (PSNR) does not vary too much with the cut frequency
(Fig. 10). The difference between DCT6 and DCT8 is about 1%.

The fact that we obtain a better PSNR for the DCT6 can be explained by the fact
that the space quantized with DCT6 has a lower dimension (dimension six); by this
way, with a codebook of given size, the space can be better quantized than with the
DCT8 one (dimension equal to eight), with a codebook of fixed given size.
Nevertheless, the image quality of the DCT6 image, before the compression step, is
lower (1.8 dB for Lena in Table I) than the DCT8 one.

Differences between DCT6 and DCT8 in Fig. 9 are not significant, but the higher
compression rate for DCT8 could be explained by a better ‘‘organization’’ of the
Kohonen map, because the input vectors (in dimension 8 instead of 6) better represent
the ‘‘correlated’’ image vectors.

Figure 11 illustrates the compression rate (DCT 8) for both differential schemes, the
first one using the previous block to compute the differences (Diffpred), the second one
choosing the optimal direction to select the ‘‘previous’’ block (Dirmin).

Figures 12 and 13 respectively show the compressed Lena image and the difference
image (with regards to the original one) without and with DCT (DCT8); the visual
quality remains similar while the PSNR is slightly decreased with the DCT (difference
of 0.84 dB), but the compression rate is much increased: 14.22–25.22. Due to the use of
Kohonen’s self-organization property, the compression rate is increased to about 80%.
It is an important result showing the effectiveness of our proposed compression scheme.

3.2. Lossless Compression

In these simulations, we used 8� 8 blocks to benefit from a possible higher
compression rate.

In Fig. 14, we can see that the DCT increases the compression rate of about 110%. In
fact, if we analyze the simulations, we can see that the number of 0s transmitted to the
entropy coder is more than six times higher in the case of the DCT. The UVLC takes
full benefit from this and effectively increases the compression rate, which is now
around 2.7 without any loss.

FIGURE 11 Comparison of the two proposed differential schemes.
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FIGURE 12 Lena image compressed without DCT, compression rate¼ 14.22, PSNR¼ 25.6 dB.

FIGURE 14 Compression rate with and without DCT for lossless compression.

 
 

FIGURE 13 Lena image compressed with DCT, compression rate¼ 25.22, PSNR¼ 24.76 dB.
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3.3. Comparison with JPEG

To give an idea of the performances of the proposed coder–decoder using Kohonen
maps, we compare our results with those obtained with the JPEG standard [17].

The JPEG’s quantization matrix which was used is defined by:

Pðu, vÞ ¼ int Qðu, vÞ
50

quality
þ 0:5

� �
ð6Þ

where quality is a user-specified coefficient which allows to vary the compression rate.
The Q(u,v) matrix is defined by:

Qðu,vÞ ¼

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð7Þ

Figure 15 compares the compression rates obtained by our proposed compression
scheme (Kohonen on the figure) and by the JPEG standard. We can see that our
approach gives a higher PSNR as soon as the compression rate is higher than
about 25. This simulation was carried out on the Lena image. From a visual point-
of-view, we can compare the Lena image (and the difference image) compressed by
our method and by the JPEG algorithm, respectively in Figs. 16 and 17, for a
compression rate of about 25. The PSNR is slightly higher for JPEG, but the visual
quality of the image is slightly better for our compression scheme. Figures 18 and 19
respectively show the Lena image compression with our method and with JPEG, for
a compression rate of about 38. In this case, we can see that the PSNR is higher for
our method, and claim with no doubt that the visual quality is much increased.

FIGURE 15 Comparison of PSNR for the proposed lossy compression scheme and the JPEG algorithm.
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FIGURE 16 Lena image compressed by the proposed method, compression rate¼ 25.22, PSNR¼ 24.7 dB.

 

FIGURE 18 Lena image compressed by the proposed method, compression rate¼ 38, PSNR¼ 24 dB.

 
 

FIGURE 17 Lena image compressed by the JPEG algorithm, compression rate¼ 25.04, PSNR¼ 25.3 dB.
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4. CONCLUSION

We proposed a new compression scheme based on the use of the organization property
of Kohonen maps. It is based on the fact that consecutive blocks in an image are often
similar, and thus coded by similar codewords with a vector quantization algorithm. The
Kohonen map organization property makes the indexes of the coded vectors similar
too, and, using an entropy coder, this property can be used to increase in a significant
way the compression ratio, for a given image quality (in a lossy compression scheme).
The same method can also be used in a lossless compression scheme. Comparisons with
JPEG also show that the quality of a compressed image is better with our proposed
scheme, for compression ratios greater than about 25.
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