
Noname manuscript No.
(will be inserted by the editor)

Reducing Risks Through Simplicity
(High Side-channel Security for Lazy Engineers)

Olivier Bronchain1 � · Tobias Schneider2 · François-Xavier Standaert1

the date of receipt and acceptance should be inserted later

Abstract Countermeasures against side-channel attacks

are in general expensive, and a lot of research has been

devoted to the optimization of their security vs. per-

formance trade-off. Besides, a wide literature has also

shown that implementing such countermeasures is an

error-prone task and requires to deal with various en-

gineering challenges (e.g., physical defaults, composi-

tional errors, . . .). This work aims to contribute on this

second item, by evaluating the extent to which (almost)

key-homomorphic primitives, and in particular a recent

PRF instance based on the Learning With Rounding

(LWR) problem, can lead to easy-to-implement and

easier-to-evaluate side-channel secure designs. We con-

firm these properties by describing an FPGA implemen-

tation that does not require complex (compositional)

reasoning in its analysis, can be masked securely un-

der simple design conditions, and for which the eval-

uation directly scales to arbitrary number of shares.

We provide a comprehensive performance and (worst-

case) security analysis of our design, and compare the

obtained results with those of an AES implementation

protected with the Domain Oriented Masking (DOM)

scheme. Results show that simplicity has a cost, which

becomes less prohibitive as security requirements in-

crease

Keywords Side-Channel Analysis · Masking · Worst-

Case Evaluations · Key-Homomorphic PRFs · Learning

With Rounding · FPGA implementations

1 ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Bel-
gium ·
2 NXP Semiconductors Austria, Gratkorn, Austria (The ma-
jority of the author’s contribution was performed while he
was with 1) ·
� olivier.bronchain@uclouvain.be

1 Introduction

Side-Channel Attacks are important threats to the se-

curity of embedded systems. They exploit physical in-

formation leaked from implementations through, for ex-

ample, their power consumption [41] or electromagnetic

radiations [31] in order to recover secret information

such as encryption keys. A standard approach to cir-

cumvent this threat is the masking countermeasure [17].

Its underlying principle is to split the sensitive data of

an implementation into shares, and to perform the com-

putations on those shares only. Theoretically, masking

is expected to increase the security of the implementa-

tion exponentially in the number of shares [52,26,27],

with quadratic (area/time and randomness) overheads

(see [36,34] for recent examples in hardware and soft-
ware, respectively).

Despite these theoretical promises (and besides their

important performance overheads), the deployment of

secure masked implementations is usually slowed down

(or sometimes even annihilated) by two types of engi-

neering challenges.

On the one hand, masking leads to an exponential

security increase only under strong independence and

noise conditions that are non-trivial to ensure.

As far as the independence condition is concerned,

three physical defaults are currently mentioned in the

open literature. The first one is glitches (i.e. transient

computations) that can recombine the shares manip-

ulated by a combinatorial circuit (and typically hap-

pen in hardware) [44,45]. The second one is transitions

in memories, registers or other (hardware or software)

components, possibly leading to shares recombinations

as well [23,1]. The third one is couplings, which directly

re-combine the shares’ leakages due to physical prox-

imity [20,21,42]. These physical defaults lead to con-

trasted consequences. Glitches and transitions can be

captured by abstract models such as Ishai, Sahai and

Wagner (ISW)’s probing model [39]. For example, im-

posing a non-completeness property to the shared func-

tions’ executions prevents shares’ recombinations due

to glitches [50], which can in turn be analyzed formally

thanks to a variation of the ISW model with extended

probes [9,30]. Similar techniques apply to transition-

based leakages. So such defaults can be theoretically

mitigated, yet in both cases with additional constraints

that usually imply additional performance overheads –

the limitation of which has been a very active research

line over the last years (see, e.g. [49,22,35]). By con-

trast, couplings are hard to analyze with mathematical

abstractions. So the anticipation (by designers) of the

security reductions they imply remains prospective for

now, typically leading to an undesirable risk factor to

be taken into account in security assessments.

As far as the noise condition is concerned, the main

issue is the evaluation of advanced (multivariate, hor-

izontal) attacks taking advantage of multiple manipu-

lations of the shares [5,37]. In this case as well, strong

theoretical guarantees (i.e. logarithmic or even constant

noise rates) can be obtained, but again at the cost of

significant performance overheads [16].

On the other hand, assessing the security of a masked

implementation is a time-consuming and technically-

challenging process, as witnessed by the multi-model

approach introduced in [40]. In its most complete form,

such an evaluation typically holds in three stages. One

first evaluates the abstract (probing) security of an im-

plementation. But directly testing probing security of
full circuits scales badly with the number of shares [2]

and usually requires to rely on non-trivial compositional

reasoning [3]. Next, quantitative security evaluations

must bound the “security order” of the implementa-

tions, which corresponds to the smallest key-dependent

statistical moment of the leakage distributions (and is

needed to validate the independence condition) [54].

But validating this condition rapidly becomes expen-

sive as the number of shares increases [56]. Eventually,

the noise level of the implementations must be esti-

mated with metrics such as the Signal-to-Noise Ratio

(SNR) or the Mutual Information (MI) [27], and the

noise reductions due to the aforementioned advanced

(multivariate, horizontal) attacks where multiple time

samples are exploited must be taken into account.

Based on this state-of-the-art, our goal in this pa-

per is to improve masked implementations, not in the

usual sense of improving the security vs. performance

tradeoff, but in the sense of making them significantly

easier to implement securely and to evaluate. For this

purpose, we investigate the gains that can be obtained

in this direction by using a (almost) key-homomorphic

re-keying scheme. These are easy-to-mask since they

(almost) satisfy the property that
⊕

i f(ki, ·) is equal

to f(
⊕

i ki, ·). Operations on the key can therefore be

performed by applying the function to each share inde-

pendently and then summing the outputs. This brings

several advantages to masked implementations that we

next denote as simplicity and that we detail as:

1. Key-homomorphic primitives are trivial to analyze

from the probing security viewpoint, and they can

leverage simple and cheap refreshing schemes (with

linear overheads), discussed in [4] (Section 8.2).

2. Key homomorphic primitives mitigate the risks of

physical defaults leading to shares re-combination.

They manipulate shares independently to prevent

glitches and transitions. We additionally limit the

risks of couplings by parallelizing the computations

for each share but not over different shares.

3. Our selected (almost) key-homomorphic re-keying

scheme provides inherently a good security against

horizontal attacks (e.g. compared to a masked AES

implementations) since it manipulates each key bit

minimally.

4. The evaluation of the resulting implementations is

scalable. Increasing the number of shares for a block

cipher implementation usually benefits from order-

specific optimizations (e.g. for the randomness) and

implies some re-design (i.e. the internal components

must be re-synthesized). For our key-homomorphic

architecture, increasing the number of shares boils

down to re-using exactly the same component (avoid-

ing the repetition of time-consuming and technically-

challenging evaluations).

Concretely, we focus on a proposal of re-keying scheme

based on Learning With Rounding (LWR) assumption,

proposed at Crypto 2016 [29]. It is based on an inner

product with vectors having elements in Z2q (we con-

sider the case q = 32), which leads to very efficient

computations and is argued to provide a pseudo ran-

dom function (PRF) for random public inputs and so

makes it a weak PRF (wPRF). We strengthen it by

hashing its public input in order to obtain a PRF (in

the random oracle model), as suggested in [10]. This

selection of a cryptographically robust re-keying func-

tion is motivated by the observation that simpler pro-

posals of re-keying schemes such as [47,25] may impose

additional constraints on the noise level in order to pre-

vent attacks targeting directly the (leakage of the) fresh

keys [8,7,38].

As a result, the main potential drawback of such a

masked computation is its performance overheads (e.g.

2

due to a large key size of 128×32 bits). In this respect,

our main contribution is to provide a comprehensive

performance and security assessment of a LWR-based

re-keying scheme on a recent field-programmable gate

array (FPGA) platform. The latter allows us to weight

the cost of simplicity and the aforementioned gains it

provides, both in terms of risks reduction and in terms

of design/evaluation efforts. Precisely, we first compare

the cost of this re-keying with the open-source Domain-

Oriented Masking (DOM) architecture proposed for the

AES in [36]1, which allows us to exhibit very different

tradeoffs: the DOM overheads are mostly in circuit size

for a constant time, while the ones of our LWR-based

re-keying are mostly in cycles. We then analyze their

respective security in a quantitative manner (previous

works were limited to the assessment of the security

order), taking multivariate & horizontal attacks into

account and leveraging recent tools to bound physical

information leakages [12]. Considering the global per-

formance vs. security tradeoff, we conclude that the cost

of simplicity is affordable, and the performances it pro-

vides can compete with state-of-the-art block ciphers

when high security is required (with pros and cons that

may lead to some preferences in specific contexts).

The field of side-channel resistant PRFs has already

been investigated as an example with Lapin [32] or

Spring [11]. However, they do not enjoy as much sim-

plicity as LWR. Spring is not (almost) key-homomorphic

making composition non-trivial. Its most promising FPGA

implementation [11] is only partially masked. Lapin is

not deterministic since it requires addition with Bernoulli

noise. In order to mask the complete circuit, the lat-

ter needs to be protected as well which appears to be

costly. The difficulty of this noise generation motivates

the choice of LWR for masked designs since it is deter-

ministic.

2 Background

In this section, we first highlight the notations used in

the rest of the paper. Second, the LWR-based re-keying

scheme is recalled. Third, tools used for security evalu-

ations are explained (i.e. leakage detection and certifi-

cation).

1 While other masking friendly block ciphers could have
been investigated, this open-source AES implementation is
representative of the state-of-the-art protected designs. This
allows us to draw qualitative tradeoffs between the LWR-
rekeying scheme and a standard substitution permutation
network.

2.1 Notations

The set Z2q corresponds to the set of integers modulo

2q. Vectors of size m of such elements are denoted as

Zm
2q . The scalar product between two vectors x and

y is written as < x,y >. The rounding operation is

expressed as bxc2p and is the result of the division of x

by 2p. In binary representation and for an x ∈ Z2q , this

is implemented by keeping its q−p most significant bits.

Similarly, the modulo operation denoted as x mod 2p

is the rest of the division. In binary representation and

for an x ∈ Z2q , it corresponds to keeping the p least

significant bits of x. The notation x← Z2q denotes that

x is uniformly sampled for the set Z2q . The d shares of

a variable (or vector) x are individually denoted as xi.

The collection (x)d is for the d shares of x in a masking

scheme. The notation xi:j denotes the elements of the

vector x from index i to j − 1.

2.2 Offset Learning with Rounding re-keying

In the following, we explain the LWR-based re-keying

scheme from [29]. It generates ephemeral session keys

sk based on a secret master key msk and a public

random vector R. In this setting, the master key is

represented with d additive shares (msk)d. The secure

re-keying scheme is then based on the three different

steps described below:

– Gen(1λ): initializes the master key msk and its shares.

First, msk is sampled such that msk← Zm
2q . Then,

the d shares (msk)d are sampled uniformly from

all the possibilities that fulfill the equation msk =∑d
i=1 mski. More precisely, d− 1 shares are picked

up from a uniform distribution while the last one is

computed as mskd = msk −
∑d−1
i=1 mski.

– GenSk((msk)d,R): generates a session key sk of p′

bits from a uniformly distributed vector R ← Zm
2q .

First, for each shares of the master key mski, a

share of session key is obtained with a scalar product

and a rounding

ski = b<mski,R >c2p . (1)

Second, the session key sk and correction factor v

are obtained by summing the (sk)i such that

sk :=

⌊
d∑
i=1

ski

⌋
2p′

(2)

and

v :=

d∑
i=1

ski mod 2p−p
′
. (3)

3

The session key sk corresponds to the p′ upper bits

of the sum while v corresponds to its p − p′ lower

bits. Finally, the key shares must be refreshed such

that (msk)′d ← Refresh((msk)d) and we use the

optimal (linear) refreshing from [4] for this purpose

(i.e. we add a share of zero).

– corrSk(msk,R, v): allows to retrieve the session key

sk with the knowledge of the msk, the public R and

the correction factor v by correcting the errors due

to the rounding operation. First, the scalar product

is computed with y := b< msk,R >c2p , then the

session key is retrieved thanks to

sk := y + (v − y mod 2p−p
′
) mod 2p. (4)

The above parameters must fulfill the condition q > p >

p′, 2p−p
′
> d to allow to correct the errors in corrSk(·).

In order to turn such a wPRF into a PRF, the uni-

formly distributed vector R ← Zm
q is generated from

a call to a random oracle O, which we instantiate with

a hash function such that R ← H(y), where y can be

chosen by the adversary [10].

We next focus on the GenSk(·) algorithm since it has

to be executed online, potentially on an exposed embed-

ded system, and therefore has to be securely masked.

By contrast, Gen(·) is run only once in a personalization

phase.2

2.3 Security evaluation tools

The goal of our analysis is to approach the worst-case

security level of our target implementations. Such an

analysis attempts to give a lower-bound on the data

complexity of any side-channel attack [55]. This covers

any differential power analysis (DPA) such as (higher-

order) correlation power analysis, template attacks, deep-

learning attacks as well as horizontal attacks. For this

purpose, we follow the approach outlined in the in-

troduction which is based on masking proofs and in-

formation theoretic arguments instead of attack based

evaluations. We first leverage the fact that masked key-

homomorphic primitives do not suffer from composabil-

ity issues. We then assess the independence condition

thanks to leakage detection tests, and we finally bound

the security level (i.e. the attack complexity) thanks to

an information theoretic analysis. Precisely, in [27], it

is shown that the worst-case complexity of any side-

channel attack against a masked implementation can

be bounded thanks to the MI between the leakage L

2 Securing corrSk(·) which is executed by the decryption
party can be done with similar means, by increasing the
amount of correction information by one bit.

and the secret K, which can itself be bounded by the

product of the MI on each share:

MI(K;L) ≤
d∏
i=1

MI(Ki;L). (5)

As a result, and given that the independence condition

is fulfilled, we can exploit this shortcut and bound the

security by computing the (much easier-to-estimate) MI

per share. The bound then highlights the noise ampli-

fication mechanism that masking ideally provides. We

additionally exploit recent results in leakage certifica-

tion to make sure that our bounds are independent of

model errors that could bias our conclusions [12].

Independence Assessment. The Test Vector Leak-

age Assessment (TVLA) [6,33] is a popular tool in se-

curity evaluation labs, which is generally used as the

first step in validating the resistance of a device to side-

channel attacks. This methodology is based on Welch’s

t-test [57] which is a standard statistical test to de-

tect difference in means between two populations. The

leakage assessment is performed in two steps which can

be efficiently implemented [54]. First, the device is fed

with two different sets of inputs I1 and I2 and the cor-

responding leakages L1 and L2 are collected. 3. Second,

a test statistic t is computed as

t =
µ̂1 − µ̂2√
σ̂2
1

N1
+

σ̂2
2

N2

, (6)

where µ̂i and σ̂2
i respectively represent the estimated

mean and variance from Ni samples. If |t| exceeds a

given threshold, the test showed difference in means and

the chip is considered as insecure. The selection of the

threshold depends on the statistical confidence required

and the trace length [24,13] but is commonly assumed

to be 4.5. The proposal in [54] additionally describes

how to extend this methodology to multivariate and

higher-order detections.

Finally, the link between (higher-order) detections

and the independence assumption is for example ex-

plained in [56]: in a masked implementation with claimed

security of order d, all the statistical moments smaller

than d of the L1 and L2 sets should be equal [4].

Noise estimation. The second step of our evaluations

is to estimate the MI between a single share and the cor-

responding leakages. To do so, we use the recent tools

from [12] and also proceed in two steps.

3 Typically, the first set correspond to fixed input. The sec-
ond set can be either chosen to correspond to random inputs
or to another fixed input [28]. We detail our selection of inputs
for LWR in subsection 5.2

4

First, we exploit the generic upper bound that this

paper provides, and which allows bounding the (un-

known) MI metric independent of the leakage model

used by the adversary. Since this bound converges slowly

for larger number of dimensions, we only compute it for

univariate attacks (i.e. for all the samples of our traces

independently) and then compare it to a similar bound

corresponding to a Gaussian adversary. Given that we

observe no significant discrepancies between the non-

parametric and Gaussian bounds, we then generalize

the Gaussian analysis to a (close to worst-case) highly

multivariate adversary for which [12] provides an effi-

cient bound. It exploits the differential entropy H(X)

of a multivariate Gaussian distribution X defined as

gH(X) ≤ log(det(2πeΣ))

log(2)
, (7)

with Σ the covariance matrix and det(·) the matrix

determinant. Then, it uses the standard expression for

mutual information

MI(Ki, L) = gH(L̂(Ki)) + gH(L)− gH(L̂(Ki);L), (8)

with L̂(Ki) the noise-free part of the leakage model (i.e.

the multivariate Gaussian templates [18]) estimated by

the adversary/evaluator. In other words, this model cor-

responds to the mean of L when a given value is ma-

nipulated. It can either be computed by performing di-

rect averaging on L, or by performing a linear regres-

sion [53], which is more efficient for target keys with

large bitsizes. Evaluating Equation (8) can be done by

computing its terms independently, and by re-using the

same traces as used to build the model. This (overfit-

ting) method is proven to provide an upper bound on

the MI, denoted as the Hypothetical Information (HI),

here specialized under the Gaussian assumption and de-

noted as gHI. The tightness of the bound depends on

the number of measurements available (the more mea-

surements, the tighter the bound).

Putting all together, once the security order of an

implementation is shown to be equal to d based on

the Welch’s t-test, the estimation of MI(Ki, L) can be

plugged in Equation (5), which leads to a simple lower

bound on the data complexity of the side-channel at-

tack of c
MI(K,L) , with c a small constant dependent on

the target success rate and target bitsize (e.g., c ≈
H(K) corresponds to a success rate of approximately

80% [19]).

3 Hardware (FPGA) architecture

In this section, we describe our hardware architecture

for an LWR-based re-keying implemented on a FPGA

platform. We first recall our design goals and provide

an overview of the functional blocks to be implemented,

and then present their design together with security

considerations.

3.1 Design goals and overview

In terms of implementation security, the critical block of

the investigated LWR-based re-keying is the GenSk(·)
algorithm. Since it manipulates the long-term master

key, it is a natural target for a DPA and therefore has

to be protected against such attacks. In the context of

masking, it means that our design has to be engineered

in order to reach two main goals: first, the architecture

has to ensure the independence of the shares’ leakages;

second, it has to limit the opportunities of multivari-

ate/horizontal attacks, and ideally to enable an easy es-

timation of the MI metric (per share). As mentioned in

introduction, these goals are quite directly achieved by

a natural implementation of a key homomorphic primi-

tive. The only constraint is that our architecture should

never process the shares in parallel, in order to lower

the risks of couplings [20,21,42]. Based on this simple

guideline, the same hardware can be recycled to deal

with all the shares, also making the MI metric estima-

tion equivalent for all of them.

The sequence of operations that are performed by

the re-keying core are contained in the pseudo-code

of Algorithm 1. It shows how the equations from sub-

section 2.2 are computed. More precisely, all the ses-

sion key shares ski are processed serially: they are ob-

tained by computing the scalar product between the

corresponding master key share mski and the random

vector R. Once an ski is computed, it is rounded to

2p and accumulated in x. The returned values are the

most significant bits of x that correspond to the session

key sk, and the correction factor v. In order to gain

Algorithm 1 Session key generation GenSk(·).
Input: (msk)d with msk =

∑d
i=1 mski and R← Zm

2q .
Output: Session key sk and correction factor v.

x = 0;
for i ∈ [1, . . . , d] do

ski = 0;
for j ∈ [0,m/P − 1] do

a = <msk
j∗P :(j+1)∗P
i ,Rj∗P :(j+1)∗P >; .

Addition Tree
ski = ski + a; . Scalar product

x = x+ bskic2p ; . Sum
return bxc2p′ , x mod 2p−p′ .

in efficiency, a level of parallelism is allowed in our im-

5

GenSk(·)

(msk)d

Refresh(·)RAME(·)

H(·) RAM

sk

v

P · q

P · q
P · q

p′

p− p′

x

y

This work

PRG

Hash Function

Fig. 1: Re-keying architecture.

plementations. As per our goals, we cannot parallelize

the processing of the shares, but we can parallelize the

multiplications of several elements within the vectors

mski and R. In the rest of the paper, P denotes a par-

allelism coefficient, which corresponds to the number

of q-bit elements processed per cycle. One may note

that a software implementation would directly apply

this algorithm with P = 1. Since additions and mul-

tiplications over Z2q are available in most of modern

processors [58], the software code is straightforward.

The previously exposed pseudo-code can be imple-

mented based on the block diagram of Figure 1 with

three main components. The first component is GenSk(·)
and corresponds to the circuit implementing the scalar

products and the accumulations. It takes as first input

the master key shares mski, which are stored in memo-

ries and connected to the Refresh(·) module. The latter

is responsible for refreshing the shares once they are

used by GenSk(·). In order to perform the refresh, the

randomness is sampled from a Pseudo-Random Gener-

ator (PRG). All these modules are manipulating secret

information and therefore need to be carefully imple-

mented to avoid side-channel attacks. In the following,

we will describe in details how they can be synthesized.

The second input of GenSk(·) is the random public

vector R. In order to turn the LWR-based wPRF of [29]

into a PRF (in the random oracle model), we simply

hash the input y. Since the hash function manipulates

public data, it does not require particular care from the

side-channel resistance viewpoint. We use the SHAKE-

256 hash function for this purpose, which outputs vec-

tors of arbitrary sizes. This module is based on the

publicly available code of Keccak (we selected the high-

speed core from https://keccak.team/hardware.html).

3.2 Scalar product computations

The GenSk(·) architecture that is in charge of comput-

ing the scalar products is depicted in Figure 2, where

each of the pipeline stages corresponds to a line in the

previous pseudo-code of Algorithm 1.

The leftmost one contains the addition tree which

performs the partial scalar product on (sub)vectors of

size P . It computes the element-wise multiplications be-

tween mski and R and stores the results in registers.

These elements are then added together within a binary

addition tree of depth log2(P).

In the next stage, the scalar product < mski,R >

is obtained by accumulating the m/P outputs of the

addition tree.

The last stage is used to sum over all the ski’s to

build the correction factor v and the session key sk

which are stored in a register.

msk2
i

R2

msk1
i

R1

q

q

pq

sk

v

p′

p− p′

Addition Tree Scalar product Sum

<msk1:P
i ,R1:P > <mski,R >

∑d
i=1 ski

Fig. 2: GenSk(·) with P = 2.

As illustrated on the figure, the parameter P al-

lows reducing the latency of this module. Computing P

multiplications in parallel divides the number of cycles

to compute a scalar product by a factor P . This re-

quires to access P elements of mski and R in parallel,

which increases the width of the memory used (see the

next subsection). Besides performance gains, comput-

ing P multiplications generates algorithmic noise within

the design which is beneficial from the security view-

point. More precisely, for an adversary mounting a b-bit
divide-and-conquer side-channel attack, the P−1 other

multiplications will act as an additive noise source. In

order to mitigate this noise increase, the adversary can

try to target larger parts of the secret (i.e. increase b).

But already for P = 1, targeting b = q = 32 bits at

once is computationally intensive [46].

3.3 Master key storage

In order to protect the secret key against side-channel

attacks, it is crucial to manipulate its shares carefully.

Precisely, the architecture must store the d shares mski ∈
Zm2q of the master key. Each of these are composed of

m words of q bits leading to a total memory of at least

m ·q ·d bits (i.e., 128 ·32 ·d bits for the parameters used

in the next sections). The designer then has to choose

how to allocate resources, which in our case has to be

driven by side-channel security. As depicted in Figure 2,

6

https://keccak.team/hardware.html

P words of mski must be accessed during a single cy-

cle in order to enable parallel computations. Therefore,

the memories used in the architecture are of width P ·q,
as shown in Figure 3. The key shares are accessed with

two inputs: they correspond to the indices i and j of Al-

gorithm 1, and give access to msk
j∗P :(j+1)∗P
i . Once

available, these shares are directly fed into the GenSk(·)
module.

msk1
1 msk2

1

· · · · · ·

mskm−1
1

mskm
1

· · ·

msk1
d msk2

d

· · · · · ·

mskm−1
d

mskm
d

j

i

msk
j∗P :(j+1)∗P
i

i = 1 i = d

Fig. 3: (msk)d storage for P = 2.

We add two constraints to facilitate the independence

condition:

First, we store the shares in distinct memory blocks.

By doing so, we avoid location proximity between them.

Since the designer does not always have full control on

the memory blocks (especially on FPGA platforms),

this ensures that no physical recombination of the shares

can happen due to physical defaults within a single

memory block.

Next, by processing the shares serially, we prevent

that they are recombined within a single pipeline stage.
However, since d different memory blocks are used to

feed the GenSk(·) block, the logic for selecting the cor-

rect memory output should be designed carefully. A

simple solution would be to set a multiplexer, but glitches

could occur within that logic. To avoid them, the inputs

of the multiplexer should not be related to key shares

excepted for the one that is accessed. For this purpose,

we insert registers at the output of each of the d mem-

ories that are reset if the memory i was not accessed

during the last cycle. Sequentially, the operations per-

formed are the following. On the first cycle, the mem-

ory is accessed to obtain the j-th row for the share i,

namely msk
j∗P :(j+1)∗P
i . On the second cycle, the ob-

tained data is stored in the corresponding register that

was containing either zeros either data from the (j-1)-

th row that is uncorrelated with the j-th row. On the

last cycle, the multiplexer fetches data from the regis-

ter corresponding to share i. Note that this approach

adds one cycle of latency on the memory block. Since

all the computation is sequential, this does not harm

the performances. A similar approach is used for the

write port of the memories.

3.4 Refreshing of the shares

After each inner product computation, the master key

has to be refreshed. Such a refreshing scheme takes

as input the shares (msk)d of a secret and outputs

a new set of shares (msk′)d. The later is sampled uni-

formly among all the possibilities fulfilling the equation

msk =
∑d
i=1 msk′d. As pointed out in [4], for key-

homomorphic primitives, the secret can be refreshed

in a very simple manner. More precisely, in this con-

text a linear refresh is sufficient. The refreshing scheme

is shown in Algorithm 2. It takes as input the shares

(msk)d as well as a matrix r of size d × m sampled

from the uniform distribution. Each share mskji within

(msk)d is replaced by its sum with the two random val-

ues rji and −rji+1. In a vectorized form, this corresponds

to mskj + rj − rot(rj) where rot(·) denotes the rota-

tion on the vector elements. After the refresh, the share

msk′ji is a new random value with uniform distribution.

For correctness, this scheme also ensures that the sum

of the msk′i’s is equal to msk, since the elements of r

are simplified with their negative correspondent.

Algorithm 2 Linear refreshing Refresh(·).

Input: (msk)d with msk =
∑d

i=1 mski and r ← Z
m×d
2q .

Output: (msk′)d ← Refresh((msk)d) with msk =∑d
i=1 msk′i.

for i ∈ [1, . . . , d] do
for j ∈ [1, . . . ,m] do

msk′ji ← mskji + rji − r
j
i+1;

return (msk)d

This Refresh(·) operation has to be performed every

time a share is accessed. If not, an adversary could ob-

serve multiple times the leakage related to each share

of the master key. This would allow him to reduce the

noise on its observations of the shares and as a re-

sult, the security of the device. Concretely, every time

a share is read from the memory of Figure 3, it is di-

rectly refreshed and written back in memory. The par-

allel computation of these two operations is straightfor-

ward since the shares have to be accessed consecutively

in both GenSk(·) (i.e. Algorithm 1) and in Refresh(·)
(i.e. Algorithm 2).

7

x E(·)

E(·)

E(·)

E(·)

a

a′

a

a′

Fig. 4: Leakage-Resilient Pseudo-Random Generator.

3.5 Randomness generation

One of the inputs of the Refresh(·) block is a random

matrix. The exact requirements for this randomness are

unfortunately an under-studied problem in the masking

literature. In order to obtain a good overview of the

performances of our re-keying scheme, we considered

two solutions for this purpose.

The first (expensive and conservative) solution is

to generate the randomness with a Leakage-Resilient

Pseudo-Random Generator (LR-PRG) such as [51], il-

lustrated in Figure 4. Such a construction iterates a

block cipher E(·) in a forward-secure mode of opera-

tion. More precisely, the PRG takes as input a secret

seed x, which is used as an encryption key in E(·) to

encrypt a public constant a′. The result is then out-

putted by the PRG as a fresh random value. The seed

x is also used to encrypt a second public constant a,

producing a ciphertext used as a new ephemeral key

in the next PRG iteration. Doing so, each ephemeral

key is used only twice. Since this process is typically

expensive (and our masked implementations require a

lot of randomness), we will consider a setting where the

required randomness is computed on-the-fly when us-

ing such a conservative solution (therefore leading to

overheads in cycles).

Alternatively, a much cheaper (and much less con-

servative) solution is to use a simple LFSR of the ap-

propriate size. In this case, the randomness generation

is so fast that it can be produced on-the-fly, leading to

no cycles overheads, but an increasing area when the re-

quired randomness per cycle increases (which typically

happens when increasing d).

Overall, once the choice to avoid manipulating shares

in close time and space location has been made, the de-

sign space remains small since the LWR itself relies only

on scalar products. The main design choices left are the

selection of the hash function and the PRG. For the for-

mer, we selected SHAKE because it is well studied. It

is not lightweight which makes it a worst-case for our

cost metric as discussed in the next section. The impact

of the PRG is discussed in the next section.

4 Performance and cost

The side-channel protection provided by masking comes

with performance overheads. In the following, this addi-

tional cost is discussed in terms of time and area for two

fundamentally different architectures. On one hand, the

LWR-based re-keying uses constant computational re-

sources independently of the number of shares. How-

ever, its latency grows in O(d log2(d)) (where the log

factor comes from the need of more error correction

when d increases), which can be mitigated thanks to

the parallelism factor P . Its memory requirements are

linear with d. On the other hand, the AES implementa-

tion protected with Domain Oriented Masking (DOM)

proposed in [36] has a constant time for any d but its

area grows in O(d2). We next denote that implementa-

tion as AES-DOM.

We evaluated performances on an FPGA (Xilinx

Kintex-7) platform, and considered the generation of

128 bits of session key. In the case of the AES-DOM

architecture, this corresponds to a single encryption.

For the LWR-based re-keying, the selected parameters

are the same as the ones proposed at Crypto 2016: q =

32, p = 10 and m = 128 [29]. Our evaluations report

two metrics called cost and cycles.4 The cost metric is

the sum of the number of look-up-tables (LUTs) and

registers used by the implementation. This cost metric

does not include the Block RAM’s used to store the key

in the LWR-based scheme while these are not used by

AES-DOM. For fairness, the registers used to store the

key with in AES-DOM implementation are so not taken

into account.5 The utilization of Block RAM and DSP

of LWR are detailed in Figure 8b and subsection 4.2.

The cycles metric is simply the number of clock cycles

required to perform a given operation.

4.1 Randomness requirements & PRG impact

We start by evaluating the amount of randomness re-

quired by both architectures and consider the total amount

and the amount per cycle, which sets constraints on the

PRG. Based on these, the impact on the global architec-

ture of the two PRGs in subsection 3.5 can be assessed.

4 All the resource utilization results reported are obtained
with Xilinx ISE 14.7.
5 These have a limited impact on the metric for large d.

Indeed, they grow linearly with d while the rest of the circuit
is quadratic.

8

(a) Total number of rand. bits.

(b) Number of rand. bits per cycle.

Fig. 5: Randomness requirement depending on the

masking order d.

Randomness requirements. In the case of the LWR-

based re-keying, the total number of random bits needed

to generate a 128-bits session key is related to the num-

ber of calls to GenSk(·). Indeed for each session key sk

of p′-bits, the master key has to be refreshed thanks

to Refresh(·) which takes as input a total of m · q · d
fresh random bits. Additionally, an increased number

of shares reduces the size of the session keys because of

the condition 2p−p
′
> d imposed for the error correc-

tion corrSk(·). As a result, the number of random bits
is growing in O(d log2(d)) and is depicted in Figure 5a.

The steps in the curve correspond to additional calls

to GenSk(·). In our architecture, only q · P bits of the

master key are processed in parallel, which keeps the

number of random bits to produce per cycle at a con-

stant level (see Figure 5b). We only report the P = 1

case; the larger P ’s are obtained by direct multiplica-

tion.

The situation of the AES-DOM architecture is quite

different: in this case, both the total amount of random-

ness and its requirements per cycle grow in O(d2) (due

to a constant time architecture). For the total amount

of randomness, and even for d = 32 shares, this is not

enough to compensate the large constant overheads of

the LWR-based re-keying. Hence, the most striking dif-

ference between the two schemes is in the amount of

randomness needed per cycle, which is not due to the

algorithmic differences but to architectural choices.

PRG impact. As already mentioned, exact require-

ments for the quality of the randomness in masking are

currently unknown. So we study the impact of two ex-

treme choices. First, a LR-PRG which corresponds to

a conservative and expensive solution. Next a simpler

and cheaper LFSR of the appropriate size.

In case the LR-PRG is used, two block-cipher in-

stances are executed per 128 bits of randomness.6 The

number of cycles required to output a given number of

random bits with such a PRG is shown in Figure 6a.

For example, approximately 107 cycles are needed to

generate all the randomness required by a LWR-based

re-keying with 32 shares. This number can be reduced

by duplicating the number of LR-PRGs used (i.e. by

using P LR-PRGs in parallel). This linearly decreases

the latency and increases the number of random bits de-

livered per cycle with a proportionally increased cost.

Such a PRG can be used on-the-fly for both the AES-

DOM and the LWR-based re-keying, in which case it

typically dominates the latency overheads of the system

when d increases. In the case of our re-keying-based ar-

chitecture, one could also consider using the LR-PRG

in a constant-time manner, since the amount of random

bits per cycle is constant in d. By contrast, it is unre-

alistic in the AES-DOM case (as per the vertical lines

in Figure 6b, which show the randomness requirements

per cycle for d = 32).

In case the LFSR-based PRG is used, the random-

ness generation is in general much faster (see Figure 6a),

and for a fixed number of random bits per cycle, it is

also much cheaper in terms of our cost metric, as de-

picted in Figure 6b. In the (natural) setting where this

randomness is generated on-the-fly, it causes zero cycles

of overheads and only cost increases. Such costs are

quadratic in d for the AES-DOM architecture (again

due to the constant time feature) and constant in d for

the LWR-based re-keying.

Note that the impact of the PRGs used for the

shares generation on the security of a masking scheme

depends on their security against side-channel attacks

with unknown plaintexts / ciphertexts. Attacking a hard-

ware LR-PRG is probably very challenging in this set-

ting, while attacking an LFSR is an easier target due to

the simpler algebraic structure. We refer to [14] for an

example of such an attack, and insist that we give the

LFSR-based evaluations as a non-conservative compar-

ison point (which is used in other papers on masking).

4.2 Resources utilization

In the following, the area and the latency of the re-

keying scheme are studied, excluding the randomness

6 In the following evaluations, it is implemented with two
unprotected AES cores delivering 128 bits of randomness ev-
ery 55 cycles.

9

(a) Cycles for a given # of rand. bits.

(b) Cost for given # rand. bits per cycle.

Fig. 6: Comparison between two PRGs. Blue vertical

lines correspond to the AES-DOM; orange ones to LWR

(P=1), both protected with d = 32 in Figure 5).

generation for which the additional costs have just been

discussed, and comparing it with the AES-DOM archi-

tecture. The influence of the main parameters P and d

are investigated in a systematic manner.

Parallelism. We start with an analysis of the parame-

ter P which is specific to the LWR-based re-keying ar-

chitecture, based on our two main metrics. First, in Fig-

ure 7a, the number of cycles needed to generate a fresh

session key is reported. It shows that the latency de-

creases thanks to the P parallel multiplications per-

formed for a single scalar product. Second, the (larger)

resources required to perform these parallel multipli-

cations are illustrated in Figure 7b. This increase is

caused by the width of the memories (of Figure 3) which

increases to q · P , meaning that larger registers have

to be inserted at their output. Besides, on the FPGA

platform we consider, the multiplications can be im-

plemented within optimized cells for arithmetic opera-

tions called DSPs. A single 32-bit multiplication uses

four of those. Because of the linearly increasing num-

ber of independent multiplication with P , the number

of DSPs increases accordingly. Eventually, due to the

longer depth of the addition stage in Figure 2, the max-

imum clock frequency is reduced from 122[MHz] (for

P = 1) to 92[MHz] (for P = 8).

Number of shares. As previously mentioned, the num-

ber of shares d increases the number of clock cycles of

the LWR-based re-keying in O(d log2(d)). It is shown

in Figure 7a. The number of shares also has an influ-

(a) Cycles for a given number of shares d.

(b) Logic utilization for given P .

Fig. 7: Impact of the parameter P on the LWR-based

re-keying performances.

ence on the memory and logic elements’ utilization. As

far as the memory is concerned, all the shares have

to be stored, leading to a linear increase of the to-

tal memory requirements. Practically, the shares are

stored in Block RAMs that are fixed-size memory units

(of 18[Kb]) available in the FPGA. In order to avoid

physical proximity for the shares, we systematically use

d memory cells even if they are individually not full

(see Figure 8b). So single memory units are used to

store sets of 128 · 32 bits, which corresponds to approx-

imately 4.3% of their total capacity. The parameter d
also slightly increases the cost metric of the implemen-

tation, as illustrated in Figure 8a, mostly due to regis-

ters at the output of the memories.

Globally, the impact of d highlights the different

implementation choices of the AES-DOM and LWR-

based re-keying architectures. The first one has a con-

stant time in d, which comes at the cost of a circuit

size increasing in O(d2). The second has limited cost

overheads (in d) but much higher cycle counts.

4.3 Trade-offs

We further highlight the trade-offs provided by the two

types of masked implementations by reporting their

cost×cycles metric in Figure 9. We observe that the

factor P improves this metric for the LWR-based re-

keying if GenSk(·) is the bottleneck operation, because

the marginal additional cost it implies is balanced by

a more significantly reduced time complexity. If not

10

(a) Cost.

(b) Block RAM utilization.

Fig. 8: Influence of the number of share on the cost of

the implementation.

(e.g. with an LR-PRG), then it marginally increases

the cost×cycles metric due to its slight area overhead

(see Figure 7b). More generally, the figure illustrates

the impact of the (type of) PRG in the respective cost

of these architectures.

If a LFSR generating on-the-fly randomness is used

(as in Figure 9a), the LWR re-keying scheme performs

worse, independently of the parameter P and security

order. In this case, the difference in latency between

the AES-DOM and the LWR-based implementation is

not compensated by the smaller area of the LWR-based

implementation for large d’s.

By contrast, if the LR-PRG is used the random-

ness generation becomes the bottleneck for both imple-

mentations. LWR-based re-keying and AES-DOM re-

quire (more) similar total amounts of random bits (as

shown in Figure 5a). In such a case, for a small num-

ber of shares (i.e. d < 20), the cost and cycles met-

rics are smaller in AES-DOM compared to the LWR-

based re-keying. By contrast, for large number of shares

(d > 20), the need in randomness remains smaller for

AES-DOM but is compensated by its quadratic cost

overheads. Therefore in Figure 9b, the curve for AES-

DOM is below the one for LWR at d = 2 and above at

d = 32.

Eventually, adding parallelism for AES-DOM will

imply running multiple Sboxes (n) in parallel instead

of a single one. This will increase by a factor n the cost

of the circuit since it duplicates Sboxes which have a

quadratic cost. This will also divide by a factor n the

number of clock cycles (in case of an LFSR used as a

(a) LFSR.

(b) LR-PRG.

Fig. 9: Cost×cycles metric for both LWR and AES-

DOM.

PRG). Overall, this will lead to a similar cost ×cycles
metric. Performing a quantitative cost analysis of par-

allelism would require to modify the open-source AES-

DOM architecture and is out of scope of this work.

In summary, one can expect that the LWR-based

re-keying architecture may become a useful alternative

to a standard block cipher implementation when high

security levels are required. The next section will show

that this conclusion is amplified when security is taken

into account.

5 Security evaluation

We now provide a worst-case side-channel security eval-

uation of our design, based on the bound of [27] and the

methodology detailed in subsection 2.3. First, a descrip-

tion of the measurement setup is given together with

the design parameters of the evaluated implementation.

Second, the independence of the leakage associated to

each share is assessed thanks to Welch’s t-test [33,54].

Third, the information about a single share available to

a multivariate adversary is bounded [12]. Finally, the

required number of shares to achieve a targeted attack

complexity is extrapolated. These results are compared

with the open-source AES-DOM core running under

the same conditions.

5.1 Measurement setup and adversarial settings

The next security evaluation assumes an adversary tar-

geting a transition at the output of the multiplier in Fig-

11

Fig. 10: LWR-based re-keying: mean trace.

ure 2.7 It corresponds to a non-linear operation mixing

the secret shares mskji with a public input R, and is

therefore a sweet spot for DPA. We considered such a

standard divide-and-conquer adversary, with an adver-

sary able to guess the 32 output bits of the multiplier

at once.

The studied design is synthesized with a level of

parallelism P = 1 which is the easiest possible target

(larger P values would increase the amount of algo-

rithmic noise). All the inputs required by GenSk(·) and

Refresh(·) are precomputed. By doing so, the hash func-

tion H(·) and the block cipher E(·) in the LR-PRG are

idle during the scalar product and all the circuit activity

is directly related to the targeted secret information.

The previously described design was synthesized for

a Xilinx Kintex-7, running on a dedicated board for

side-channel evaluations.8 Its clock frequency was set

to 4[MHz]. The synthesis was performed with the keep

hierarchy flag avoiding the tool to trim out useful regis-

ters (e.g. the ones at the output of the memories in Fig-

ure 3). The power signal was measured on a 1[Ohm]

resistor placed between the target FPGA and the 1[V]

supply voltage. This signal was sampled with a Picoscope

5244d at a rate of 500[MSamples/s], with 12-bit resolu-

tion. As a result, a leakage trace contains 125 samples

per clock cycle.

An averaged trace is shown in Figure 10 for d = 2

shares. The left part of the power measurement corre-

sponds to the 128 cycles used to compute sk1 while the

right part is dedicated to sk2.

5.2 Independence condition

The first step in our worst-case security evaluation is

to assess the independence of the leakage of each share.

To do so, the TVLA method was used to observe the

7 The case of an adversary targeting directly the value and
not a transition has also been studied. In that case, the infor-
mation available is much lower. Since we aim at worst-case
evaluations, only the results of transition-based attacks are
reported.
8 http://satoh.cs.uec.ac.jp/SAKURA/hardware/

SAKURA-X.html

(a) First order, PRG off, 5 · 103 traces.

(b) First order, PRG on, 1.5 · 107 traces.

(c) Second order, PRG on, 1 · 106 traces.

Fig. 11: t-test results. The red horizontal line is the 4.5

threshold. The blue horizontal line is the threshold set

based on [24].

practical security order of the implementation, which

should be equal to the number of shares. For example,

in a d = 2 case, the mean of the traces should not

depend on manipulated data while the variance should.

To run the TVLA, two sets of inputs were selected,

each of them leading to different intermediate values.

The first set is selected with a random key (changing

at every encryption) and the second to a fixed key (so

we used a “fixed versus random” detection). In both

cases, the input of the random oracle is identical and

constant.

Our TVLA experiments are presented in Figure 11.

These graphs represent the t statistic of Welch’s t-test

(recalled in Equation (6)) on each of the samples within

the traces. Figure 11a shows the results when the PRG

is disabled (meaning that the secret key msk is never

refreshed). Under these conditions, first-order leakages

are detected with 5 · 103 measurements. The PRG is

turned on in Figure 11b (meaning that the target is

running under nominal conditions). No first-order leak-

ages were found with 1.5 · 107 measurements in this

case. By contrast, the second-order leakage detection

presented in Figure 11c is successful after 106 traces

(i.e. differences in the variances are found). We note

that the pre-processing required to run second-order

detection is greatly simplified thanks to the knowledge

of the design (as discussed in [13]). In our case, the

12

http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html

accesses to two shares of msk are always distant by

a constant m = 128 cycles. This makes the non-linear

combination of the shares trivial.

Note also that as in general with leakage detection,

these results do not necessarily imply that there are no

first-order leakages, but only that the second-order leak-

ages are anyway leading to the most efficient attack [27].

Note that we did not repeat this security order evalu-

ation for the DOM architecture since it was shown to

satisfy the independence condition to a sufficient extent

for low number of shares in [36]. The investigation of

larger number of shares and security orders is an in-

teresting scope for further research (in particular the

investigation whether the higher time and space sep-

aration of the shares in a LWR-based re-keying may

lead to better security guarantees). Finally, the inde-

pendence assumption for LWR should scale at any or-

der by design since there is no change in the internal

design just more repetitions. This is very different with

block ciphers where internal cipher computations have

to be modified (which may impact independence).

5.3 Bounding mutual information

The second step in our security evaluation is to bound

the MI between a single share and the leakage traces.

To do so, we compute the HI, which is proven to be

an upper bound of the MI in [12], making it suitable

for worst-case evaluations. More precisely, we first com-

puted the univariate bounds for individual leakage sam-

ples and verified that Gaussian templates lead to similar

amounts of extracted information as (non-parametric)

histograms. We then considered the multivariate ex-

tension for the Gaussian case only, next denoted as

gHI, which is computed based on a leakage model L̂
with Equation (8). We performed this analysis for the

LWR-based re-keying and the AES-DOM architecture,

with a total of 107 measurements in both cases.

Leakage model estimation. In order to compute the

gHI, the designer has to build a leakage model L̂(x, t).

For this purpose, we first determined the attack surface

by estimating a SNR [44]. In short, this simple metric

highlights the dependency of the leakage traces to a

given value (i.e. a share). It can be efficiently computed

for 8-bits values and, under a Gaussian assumption, is

directly related to the univariate MI [43]. The (8-bit)

SNR of a single share at every time sample is given

in Figure 12. The peaks in the plots indicate the time

samples depending on the targeted share. The SNR of a

share of the LWR-based re-keying (resp. AES-DOM ar-

chitecture) is depicted in Figure 12a (resp. Figure 12b),

leading to two main observations.

(a) LWR: multiplication output.

(b) AES-DOM: Sbox output.

Fig. 12: Signal-to-Noise Ratio (SNR).

First, there are less peaks of SNR exploitable by

the adversary in the LWR-based re-keying than in the

AES-DOM architecture. Roughly, sensitive information

is manipulated during 4 cycles in the first case and dur-

ing 22 cycles in the second one. As a result, we can ex-

pect that multivariate attacks will lead to higher gains

in the AES-DOM case.

Second, the best SNR for the LWR-based re-keying

is one order of magnitude lower than the one of the

AES-DOM. The tentative explanation for this differ-

ence is FPGA-specific and relates to the types of FPGA

resources that are used in both designs. For the AES-

DOM architecture, the Sbox is implemented within reg-

isters and LUTs. In the case of the LWR-based re-

keying, the multiplication is performed in DSPs which

are optimized (hard-coded) cells leading to a smaller

power consumption. So the interpretation of this dif-

ference is contrasted. On the one hand, it may not be

observed for all devices. On the other hand, it is made

possible by the simple/standard operations that the

LWR-based re-keying exploits (and in particular, the

fact that it does not require communications between

the shares’ computations at the gate level).

Based on these findings, a multivariate leakage model

L̂(x, t) was estimated for a single share. This model cor-

responds to the mean of the leakage at time t when the

share x is manipulated. In the case of an 8-bit adversary

(e.g. against the AES-DOM architecture), the 28 means

corresponding to all the possible x’s can directly be esti-

mated. In the case of a 32-bit adversary (e.g. against the

LWR-based re-keying), such a direct approach is com-

putationally intensive. As a result, we rather estimated

the leakage model thanks to linear regression [53]. Pre-

13

cisely, the leakage is then approximated as

L̂(x, t) = α0(t) +

n∑
i=1

αi(t) · bi, (9)

where bis denote the ith-bit of x and αi(t)s the bits’

weights at time t. We computed such a leakage model

for the 4 cycles showing a significant SNR in the LWR-

based re-keying traces. The αi’s as a function of the

time are given in Appendix A, Figure 16 for complete-

ness.

Security bounds. The upper MI bounds computed

with the previously obtained models are shown in Fig-

ure 13a for multivariate adversaries. On that plot, the

X-axis denotes the number of dimensions n exploited

by the adversary. The Y -axis is the gHI. It again leads

to two main observations.

First, already for n = 1 the information extracted

by the adversary is one order of magnitude larger for the

AES-DOM architecture than for LWR-based re-keying,

which confirms the intuition of the best SNR in Fig-

ure 12.

Second, the figure confirms the significant adversar-

ial gains obtained when moving from univariate attacks

to multivariate ones, and that these gains are more

important in the AES-DOM case (due to the larger

amount of leaking samples), as illustrated in Figure 13b.

For completeness, we also report the results for an 8-

bit adversary against the LWR-based re-keying (which

as expected, leads to less information extracted). Over-

all, these results confirm the good implementation fea-

tures of the LWR-based re-keying. Namely, its opportu-

nities to exploit optimized (hard-coded) FPGA blocks

reduce the univariate leakages, and its minimum ma-

nipulation of each share reduces the risks of horizontal

attacks.

Data complexity extrapolations. With the previ-

ous MI bounds and assuming that the shares’ indepen-

dence is verified at all orders, worst-case attack com-

plexities can be easily lower bounded, as finally given

in Figure 14 for univariate and multivariate attacks.

The figure reports the evolution of the number of mea-

surements necessary to mount an attack according to

the number of shares in the masking schemes and leads

to the following observations.

Considering that only univariate attacks are possi-

ble (which is undesirable), 6 shares are sufficient for

the LWR-based re-keying to require a worst-case at-

tack data complexity larger than 264. In the case of the

AES-DOM, 11 shares are required to reach this security

level, which is due to a higher MI per share. Consider-

ing multivariate adversaries, similar data complexities

are obtained by using 9 and 38 shares for the LWR-

based re-keying and the AES-DOM, respectively. The

(a) Multivariate bound.

(b) Gain of multivariate adversary over a univariate one.

Fig. 13: Upper bound to MI obtained from 107 traces.

(a) Univariate adversary.

(b) Multivariate adversary.

Fig. 14: Lower bound to attack complexity. Dashed lines

are multiple de 32− bit security.

additional security gain of the LWR-based re-keying is

then due to its more limited vulnerability to horizontal

attacks.

6 Conclusions

Putting security and performance evaluations together, Fig-

ure 15 highlights the good implementation features of a

LWR-based re-keying and the different tradeoffs it pro-

vides compared to the DOM masking scheme applied

to the AES.

On the one hand and as expected, direct compar-

isons are not directly favorable and performance gains

(in our evaluation setting) can only materialize for high

14

number of shares and assuming high-quality random

numbers.9

On the other hand, such direct comparisons ignore

various other advantages of the LWR-based re-keying.

First, the simplicity of the design makes it an appealing

choice for developers having limited experience in the

implementation of masking schemes, or having limited

time for advanced optimizations and evaluations. Sec-

ond, it carries significantly lower risks of different types:

(i) compositional flaws are prevented by a simple re-

freshing strategy, while such flaws have been identified

in various masked block cipher implementations [48];

(ii) risks of couplings in LWR-based re-keying architec-

tures are strongly mitigated thanks to a strong physical

separation between the shares, which is not possible in

the case of masked block ciphers where the secure exe-

cution of small parts of circuit (e.g. gates) require inter-

action (so proximity in time and space); (iii) multivari-

ate/horizontal attacks are made difficult by the mini-

mum manipulation of each share, while the amount of

shares’ manipulations increases with d in masked block

ciphers (typically requiring larger amounts of noise as

d increases, or more expensive gadgets that are secure

against horizontal attacks [5,16]).

Admittedly, compositional flaws can be prevented

by a sound refreshing strategy (which is not signifi-

cantly more expensive than DOM [15]) and the im-

pact of physical couplings for high security orders is

still to be investigated. But those remain potential risks

of security reductions. More importantly, the better re-

sistance against horizontal attacks is a significant ad-

vantage, since it allows leveraging the same amount of

noise for any security level. In this respect, we finally

want to emphasize that our lower security bound is pes-

simistic for the LWR-based re-keying, since it is based

on a setup with P = 1 (i.e. no algorithmic noise). In

this respect, considering larger P ’s should roughly di-

vide the MI per share by P and therefore increase the

attacks’ data complexity by a factor P d. We illustrate

this claim with Figure 18 in Appendix C which extrap-

olates our results by a assuming a linear impact of P

on the SNR. As expected, it shows that as the secu-

rity order increases, such an additive noise is increas-

ingly beneficial (as similar trend holds for any masking

scheme).

So overall, despite our evaluations show clear per-

formance overheads for the LWR-based re-keying com-

pared to a standard block cipher protected with DOM,

these overheads remain limited, and come with signif-

9 Which (again) calls for a better understanding of the
exact requirements for the randomness used in masking
schemes.

(a) LFSR PRG.

(b) LR-PRG.

Fig. 15: cost×cycles metric versus data complexity for a

multivariate adversary (univariate in Appendix B, Fig-

ure 17). Numbers correspond to the number of shares

within the implementation.

icant advantages in terms of simplicity of design and

evaluation, and in terms of risks.

Acknowledgement: François-Xavier Standaert is

a Senior Research Associate of the Belgian Fund for

Scientific Research (FNRS-F.R.S.). This work has been

funded in parts by the European Union (EU) through

the ERC project 724725 (acronym SWORD).

References

1. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Stan-
daert, F.: On the cost of lazy engineering for masked soft-
ware implementations. In: CARDIS, LNCS, vol. 8968,
pp. 64–81. Springer (2014)

2. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.,
Grégoire, B., Strub, P.: Verified proofs of higher-order
masking. In: EUROCRYPT (1), LNCS, vol. 9056, pp.
457–485. Springer (2015)

3. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.,
Grégoire, B., Strub, P., Zucchini, R.: Strong non-
interference and type-directed higher-order masking. In:
ACM Conference on Computer and Communications Se-
curity, pp. 116–129. ACM (2016)

4. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Stan-
daert, F., Strub, P.: Parallel implementations of masking
schemes and the bounded moment leakage model. In: EU-
ROCRYPT (1), LNCS, vol. 10210, pp. 535–566 (2017)

5. Battistello, A., Coron, J., Prouff, E., Zeitoun, R.: Hori-
zontal side-channel attacks and countermeasures on the
ISW masking scheme. In: CHES, LNCS, vol. 9813, pp.
23–39. Springer (2016)

6. Becker, G., Cooper, J., DeMulder, E., Goodwill, G., Jaffe,
J., Kenworthy, G., Kouzminov, T., Leiserson, A., Marson,

15

M., Rohatgi, P., et al.: Test vector leakage assessment
(TVLA) methodology in practice

7. Beläıd, S., Coron, J., Fouque, P., Gérard, B., Kammerer,
J., Prouff, E.: Improved side-channel analysis of finite-
field multiplication. In: CHES, LNCS, vol. 9293, pp. 395–
415. Springer (2015)

8. Beläıd, S., Fouque, P., Gérard, B.: Side-channel analy-
sis of multiplications in GF (2128) - application to AES-
GCM. In: ASIACRYPT (2), LNCS, vol. 8874, pp. 306–
325. Springer (2014)

9. Bloem, R., Groß, H., Iusupov, R., Könighofer, B., Man-
gard, S., Winter, J.: Formal verification of masked hard-
ware implementations in the presence of glitches. In: EU-
ROCRYPT (2), LNCS, vol. 10821, pp. 321–353. Springer
(2018)

10. Bogdanov, A., Rosen, A.: Pseudorandom functions:
Three decades later. In: Tutorials on the Foundations of
Cryptography, pp. 79–158. Springer International Pub-
lishing (2017)

11. Brenner, H., Gaspar, L., Leurent, G., Rosen, A., Stan-
daert, F.: FPGA implementations of SPRING - and their
countermeasures against side-channel attacks. In: CHES,
Lecture Notes in Computer Science, vol. 8731, pp. 414–
432. Springer (2014)

12. Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky,
A., Standaert, F.: Leakage certification revisited: Bound-
ing model errors in side-channel security evaluations. In:
CRYPTO (1), Lecture Notes in Computer Science, vol.
11692, pp. 713–737. Springer (2019)

13. Bronchain, O., Schneider, T., Standaert, F.: Multi-tuple
leakage detection and the dependent signal issue. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 318–345
(2019)

14. Burman, S., Mukhopadhyay, D., Veezhinathan, K.: LFSR
based stream ciphers are vulnerable to power attacks. In:
INDOCRYPT, Lecture Notes in Computer Science, vol.
4859, pp. 384–392. Springer (2007)

15. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.: Hard-
ware private circuits: From trivial composition to full ver-
ification. IACR Cryptol. ePrint Arch. 2020, 185 (2020)

16. Cassiers, G., Standaert, F.: Towards globally optimized
masking: From low randomness to low noise rate or
probe isolating multiplications with reduced random-
ness and security against horizontal attacks. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 162–
198 (2019). DOI 10.13154/tches.v2019.i2.162-198. URL
https://doi.org/10.13154/tches.v2019.i2.162-198

17. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards
sound approaches to counteract power-analysis attacks.
In: CRYPTO, LNCS, vol. 1666, pp. 398–412. Springer
(1999)

18. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In:
CHES, LNCS, vol. 2523, pp. 13–28. Springer (2002)

19. de Chérisey, E., Guilley, S., Rioul, O., Piantanida, P.:
Best information is most successful mutual information
and success rate in side-channel analysis. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019(2), 49–79 (2019).
DOI 10.13154/tches.v2019.i2.49-79. URL https://doi.

org/10.13154/tches.v2019.i2.49-79

20. Cnudde, T.D., Bilgin, B., Gierlichs, B., Nikov, V., Nikova,
S., Rijmen, V.: Does coupling affect the security of
masked implementations? In: COSADE, LNCS, vol.
10348, pp. 1–18. Springer (2017)

21. Cnudde, T.D., Ender, M., Moradi, A.: Hardware mask-
ing, revisited. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018(2), 123–148 (2018). DOI 10.13154/tches.

v2018.i2.123-148. URL https://doi.org/10.13154/

tches.v2018.i2.123-148

22. Cnudde, T.D., Reparaz, O., Bilgin, B., Nikova, S., Nikov,
V., Rijmen, V.: Masking AES with d+1 shares in hard-
ware. In: CHES, LNCS, vol. 9813, pp. 194–212. Springer
(2016)

23. Coron, J., Giraud, C., Prouff, E., Renner, S., Rivain, M.,
Vadnala, P.K.: Conversion of security proofs from one
leakage model to another: A new issue. In: COSADE,
LNCS, vol. 7275, pp. 69–81. Springer (2012)

24. Ding, A.A., Zhang, L., Durvaux, F., Standaert, F., Fei,
Y.: Towards sound and optimal leakage detection pro-
cedure. In: CARDIS, LNCS, vol. 10728, pp. 105–122.
Springer (2017)

25. Dobraunig, C., Koeune, F., Mangard, S., Mendel, F.,
Standaert, F.: Towards fresh and hybrid re-keying
schemes with beyond birthday security. In: CARDIS,
LNCS, vol. 9514, pp. 225–241. Springer (2015)

26. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage
models: From probing attacks to noisy leakage. In:
EUROCRYPT, LNCS, vol. 8441, pp. 423–440. Springer
(2014)

27. Duc, A., Faust, S., Standaert, F.: Making masking secu-
rity proofs concrete - or how to evaluate the security of
any leaking device. In: EUROCRYPT (1), LNCS, vol.
9056, pp. 401–429. Springer (2015)

28. Durvaux, F., Standaert, F.: From improved leakage de-
tection to the detection of points of interests in leakage
traces. In: EUROCRYPT (1), LNCS, vol. 9665, pp. 240–
262. Springer (2016)

29. Dziembowski, S., Faust, S., Herold, G., Journault, A.,
Masny, D., Standaert, F.: Towards sound fresh re-keying
with hard (physical) learning problems. In: CRYPTO
(2), LNCS, vol. 9815, pp. 272–301. Springer (2016)

30. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C.,
Standaert, F.: Composable masking schemes in the
presence of physical defaults & the robust probing
model. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(3), 89–120 (2018). DOI 10.13154/tches.v2018.i3.
89-120. URL https://doi.org/10.13154/tches.v2018.

i3.89-120

31. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic
analysis: Concrete results. In: CHES, LNCS, vol. 2162,
pp. 251–261. Springer (2001)

32. Gaspar, L., Leurent, G., Standaert, F.: Hardware imple-
mentation and side-channel analysis of lapin. In: CT-
RSA, Lecture Notes in Computer Science, vol. 8366, pp.
206–226. Springer (2014)

33. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A
testing methodology for side-channel resistance valida-
tion

34. Goudarzi, D., Rivain, M.: How fast can higher-order
masking be in software? In: EUROCRYPT (1), LNCS,
vol. 10210, pp. 567–597 (2017)

35. Groß, H., Mangard, S.: A unified masking approach. J.
Cryptographic Engineering 8(2), 109–124 (2018). DOI
10.1007/s13389-018-0184-y. URL https://doi.org/10.

1007/s13389-018-0184-y

36. Groß, H., Mangard, S., Korak, T.: An efficient side-
channel protected AES implementation with arbitrary
protection order. In: CT-RSA, LNCS, vol. 10159, pp.
95–112. Springer (2017)

37. Grosso, V., Standaert, F.: Masking proofs are tight and
how to exploit it in security evaluations. In: EURO-
CRYPT (2), LNCS, vol. 10821, pp. 385–412. Springer
(2018)

16

https://doi.org/10.13154/tches.v2019.i2.162-198
https://doi.org/10.13154/tches.v2019.i2.49-79
https://doi.org/10.13154/tches.v2019.i2.49-79
https://doi.org/10.13154/tches.v2018.i2.123-148
https://doi.org/10.13154/tches.v2018.i2.123-148
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.1007/s13389-018-0184-y
https://doi.org/10.1007/s13389-018-0184-y

38. Guo, Q., Johansson, T.: A new birthday-type algorithm
for attacking the fresh re-keying countermeasure. Inf.
Process. Lett. 146, 30–34 (2019). DOI 10.1016/j.ipl.2019.
02.005. URL https://doi.org/10.1016/j.ipl.2019.

02.005
39. Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Se-

curing hardware against probing attacks. In: CRYPTO,
LNCS, vol. 2729, pp. 463–481. Springer (2003)

40. Journault, A., Standaert, F.: Very high order masking:
Efficient implementation and security evaluation. In:
CHES, LNCS, vol. 10529, pp. 623–643. Springer (2017)

41. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analy-
sis. In: CRYPTO, LNCS, vol. 1666, pp. 388–397. Springer
(1999)

42. Levi, I., Bellizia, D., Standaert, F.: Reducing a masked
implementation’s effective security order with setup ma-
nipulations and an explanation based on externally-
amplified couplings. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2019(2), 293–317 (2019)

43. Mangard, S., Oswald, E., Standaert, F.: One for all -
all for one: unifying standard differential power analysis
attacks. IET Information Security 5(2), 100–110 (2011).
DOI 10.1049/iet-ifs.2010.0096. URL https://doi.org/

10.1049/iet-ifs.2010.0096
44. Mangard, S., Popp, T., Gammel, B.M.: Side-channel

leakage of masked CMOS gates. In: CT-RSA, LNCS,
vol. 3376, pp. 351–365. Springer (2005)

45. Mangard, S., Pramstaller, N., Oswald, E.: Successfully
attacking masked AES hardware implementations. In:
CHES, LNCS, vol. 3659, pp. 157–171. Springer (2005)

46. Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA
attacks: Pushing DPA beyond the limits of a desktop
computer. In: ASIACRYPT (1), LNCS, vol. 8873, pp.
243–261. Springer (2014)

47. Medwed, M., Standaert, F., Großschädl, J., Regazzoni,
F.: Fresh re-keying: Security against side-channel and
fault attacks for low-cost devices. In: AFRICACRYPT,
LNCS, vol. 6055, pp. 279–296. Springer (2010)

48. Moos, T., Moradi, A., Schneider, T., Standaert, F.:
Glitch-resistant masking revisited or why proofs in the
robust probing model are needed. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2019(2), 256–292 (2019).
DOI 10.13154/tches.v2019.i2.256-292. URL https://

doi.org/10.13154/tches.v2019.i2.256-292
49. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang,

H.: Pushing the limits: A very compact and a threshold
implementation of AES. In: EUROCRYPT, LNCS, vol.
6632, pp. 69–88. Springer (2011)

50. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware
implementation of nonlinear functions in the presence of
glitches. J. Cryptology 24(2), 292–321 (2011). DOI
10.1007/s00145-010-9085-7. URL https://doi.org/10.

1007/s00145-010-9085-7
51. Pereira, O., Standaert, F., Vivek, S.: Leakage-resilient

authentication and encryption from symmetric crypto-
graphic primitives. In: ACM Conference on Computer
and Communications Security, pp. 96–108. ACM (2015)

52. Prouff, E., Rivain, M.: Masking against side-channel at-
tacks: A formal security proof. In: EUROCRYPT, LNCS,
vol. 7881, pp. 142–159. Springer (2013)

53. Schindler, W., Lemke, K., Paar, C.: A stochastic model
for differential side channel cryptanalysis. In: CHES,
LNCS, vol. 3659, pp. 30–46. Springer (2005)

54. Schneider, T., Moradi, A.: Leakage assessment method-
ology - extended version. J. Cryptographic Engineer-
ing 6(2), 85–99 (2016). DOI 10.1007/s13389-016-0120-y.
URL https://doi.org/10.1007/s13389-016-0120-y

55. Standaert, F., Malkin, T., Yung, M.: A unified framework
for the analysis of side-channel key recovery attacks. In:
EUROCRYPT, Lecture Notes in Computer Science, vol.
5479, pp. 443–461. Springer (2009)

56. Standaert, F.X.: How (not) to use welch’s t-test in side-
channel security evaluations. In: CARDIS, pp. 65–79.
Springer (2018)

57. Welch, B.L.: The generalization ofstudent’s’ problem
when several different population variances are involved.
Biometrika 34(1/2), 28–35 (1947)

58. Yiu, J.: The Definitive Guide to ARM® Cortex®-M3
and Cortex®-M4 Processors. Newnes (2013)

A Leakage model

Linear basis used as a leakage model. Each of the curves cor-
responds to a single αi showing the activity of each of the
bits across time.

Fig. 16: Linear basis for LWR leakage model.

B Cost of security

C Parallelism parameter

17

https://doi.org/10.1016/j.ipl.2019.02.005
https://doi.org/10.1016/j.ipl.2019.02.005
https://doi.org/10.1049/iet-ifs.2010.0096
https://doi.org/10.1049/iet-ifs.2010.0096
https://doi.org/10.13154/tches.v2019.i2.256-292
https://doi.org/10.13154/tches.v2019.i2.256-292
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/s13389-016-0120-y

(a) LFSR PRG.

(b) Leakage resilient PRG.

Fig. 17: cost×cycles metric versus data complexity for a

univariate adversary. Numbers correspond to the num-

ber of shares within the implementation.

(a) LFSR PRG. Multivariate

(b) Leakage resilient PRG. Multivariate

Fig. 18: cost×cycles metric versus data complexity for

a univariate and multivariate adversaries with a linear

extrapolation on the noise with P.

18

	Introduction
	Background
	Hardware (FPGA) architecture
	Performance and cost
	Security evaluation
	Conclusions
	Leakage model
	Cost of security
	Parallelism parameter

