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What is infinite-dimensional optimization ?
Optimization problems where the decision variable belongs to a infinite-
dimensional space i.e:

inf
x∈X

f(x)

x ∈ C

where X is a normed vector space of infinite dimension.

Furthermore, our interest is in convex optimization problems i.e.
f : X → R and C ⊂ X must be convex.

Why infinite-dimensional optimization problems ?
• Domain of interest since the 17th century with the classical calculus

of variations

• Natural generalization of many classical optimization problems
to the continuous setting, for example network problems, supply
problems, transportation problems, etc.

• Natural framework for Optimal Control problems using theory of
PDE-constrained optimization

• Natural framework for Shape or Topology optimization problems

Studied problems class
Let X be a normed vector space and X

′
its topological dual.

We consider the following class of infinite-dim. problems:

P ∗ = inf
x∈X

< f, x > (P)

< ai, x >= bi ∀i = 1, ..., L

< ct, x >≤ dt ∀t ∈ T

‖x‖X ≤M

where f, ai, ct ∈ X ′, L is finite and T is a (possibly infinite) set.

All solvable convex optimization problems with closed feasible set
can be included in this class (a closed convex set in a normed space is
equal to the intersection of all closed half-spaces that contain it).

How to solve infinite-dimensional opt. prob.?
• Using infinite-dimensional algorithms whose implementation has

been discretized

• Using a discretization of the functions in the original problem

• Our approach is different: using polynomial approximation
by discretizing the description of elements of space X

Polynomial Approximation
Let {p1, p2, ..., pn, ...} be an infinite family of linearly independent ele-
ments of X , e.g. a basis of polynomials and Xn = span{p1, p2, ..., pn}.
We consider the sequence of finite-dimensional optimization problems

P ∗n = inf
x∈Xn

< f, x > s.t. < ai, x >= bi, < ct, x >≤ dt, ‖x‖X ≤M (Pn)

which are restrictions of problem (P ) to the finite-dimensional subspaces
Xn (e.g. spaces of polynomials of degree at most n− 1).

Why consider Polynomial Approximation ?
Polynomial approximation is useful if we can prove the following two
properties:

1. The problem (Pn) can be solved in practice using existing (finite-
dimensional) optimization methods.

2. The sequence of optimal values P ∗n converges to the optimal value
of the original problem P ∗ when n→∞.

Resolution of the Polynomial Approximation
• When X is an Hilbert space: Pn is a convex quadratic problem.

• When X = L∞([a, b]) or X = W k,∞([a, b]) with
Xn = span{1, t, .., tn−1}: Pn is a semidefinite problem.

• X = Lq([a, b]) or X = W k,q([a, b]) with q even and Xn =
span{1, t, .., tn−1}: Pn is a structured convex problem.

Conclusion: for these cases, we are able to solve (Pn) in polynomial time
using interior-point methods.

Convergence of the Polynomial Approximation
Let A : X → RL defined by (Ax)i =< ai, x >. If

1. ∪Xn is dense in X

2. there exists N1 and x ∈ XN1 such that Ax = b, ‖x‖X < M and

inft∈T

(
dt−<ct,x>
‖ct‖X′

)
> 0

3. there exist N2 and σN2 > 0 such that
‖Ax− b‖ ≥ σN2 inf x̃∈XN2 ,Ax̃=b ‖x− x̃‖X ∀x ∈ XN2

Then P ∗n converges to P ∗ when n → ∞, with a rate of convergence that
we can characterize quantitatively (i.e. give an upper bound).
In particular, if there are no inequality constraints, P ∗n → P ∗ in
O(En(xopt)) where xopt is an optimal solution of (P ) and En(xopt) is its
best polynomial approximation error in Xn.

Example of Numerical results
We take X = L2([−1, 1]) and no inequality constraints, define the (rela-
tive) approximation error as en = P∗n−P∗

P∗ and illustrate two cases:

Problem data s.t. xopt ∈ C∞
Convergence of the opt. values:

n en

3 4,2119
5 0.0020408
7 4.5711 ×10−5

9 2.27 ×10−7

Convergence of the opt. sol.:

Problem data s.t. xopt ∈ C\C1
Convergence of the opt. values:

n en

5 0.50585
10 0.05980
20 0.0089009

100 8.4327×10−5

Convergence of the opt. sol.:
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