Polynomial Approximation for Infinite-Dimensional Optimization Problems in Lebesgue Spaces

> O.Devolder (F.R.S.-FNRS Research Fellow) F.Glineur Y.Nesterov

CORE, INMA, Université catholique de Louvain

BFG, Leuven, 15/09/2009

$$\inf c^{T} x \qquad \inf \int_{\alpha}^{\beta} \gamma(t) f(t) dt$$

$$a_{i}^{T} x = b_{i} \quad \forall i = 1..., m \qquad \int_{\alpha}^{\beta} a_{i}(t) f(t) dt = b_{i} \quad \forall i = 1, ..., m$$

$$x_{j} \ge 0 \quad \forall j = 1, ..., n \qquad f(t) \ge 0 \quad \forall t \in [\alpha, \beta]$$

$$x \in \mathbb{R}^{n} \qquad f \in X$$

・ロ・・値・・前・・ 間・ うらの

$$\inf c^{T} x \qquad \inf \int_{\alpha}^{\beta} \gamma(t) f(t) dt$$

$$a_{i}^{T} x = b_{i} \quad \forall i = 1..., m \qquad \int_{\alpha}^{\beta} a_{i}(t) f(t) dt = b_{i} \quad \forall i = 1, ..., m$$

$$x_{j} \ge 0 \quad \forall j = 1, ..., n \qquad f(t) \ge 0 \quad \forall t \in [\alpha, \beta]$$

$$x \in \mathbb{R}^{n} \qquad f \in X$$

・ロト・西・・田・・田・ 田・ ろんの

2

$$\inf c^{T} x \qquad \qquad \inf \int_{\alpha}^{\beta} \gamma(t) f(t) dt$$
$$a_{i}^{T} x = b_{i} \quad \forall i = 1..., m \qquad \qquad \int_{\alpha}^{\beta} a_{i}(t) f(t) dt = b_{i} \quad \forall i = 1, ..., m$$
$$x_{j} \ge 0 \quad \forall j = 1, ..., n \qquad \qquad f(t) \ge 0 \quad \forall t \in [\alpha, \beta]$$
$$x \in \mathbb{R}^{n} \qquad \qquad f \in X$$

2

$$\inf c^{T} x \qquad \qquad \inf \int_{\alpha}^{\beta} \gamma(t) f(t) dt$$
$$a_{i}^{T} x = b_{i} \quad \forall i = 1..., m \qquad \qquad \int_{\alpha}^{\beta} a_{i}(t) f(t) dt = b_{i} \quad \forall i = 1, ..., m$$
$$x_{j} \ge 0 \quad \forall j = 1, ..., n \qquad \qquad f(t) \ge 0 \quad \forall t \in [\alpha, \beta]$$
$$x \in \mathbb{R}^{n} \qquad \qquad f \in X$$

(日本・御を・御を・御を、聞、 ろんの)

$$\inf c^{T} x \qquad \qquad \inf \int_{\alpha}^{\beta} \gamma(t) f(t) dt$$

$$a_{i}^{T} x = b_{i} \quad \forall i = 1..., m \qquad \qquad \int_{\alpha}^{\beta} a_{i}(t) f(t) dt = b_{i} \quad \forall i = 1, ..., m$$

$$x_{j} \ge 0 \quad \forall j = 1, ..., n \qquad \qquad f(t) \ge 0 \quad \forall t \in [\alpha, \beta]$$

$$x \in \mathbb{R}^{n} \qquad \qquad f \in X$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

2

$$\inf c^{T} x \qquad \qquad \inf \int_{\alpha}^{\beta} \gamma(t) f(t) dt$$
$$a_{i}^{T} x = b_{i} \quad \forall i = 1..., m \qquad \qquad \int_{\alpha}^{\beta} a_{i}(t) f(t) dt = b_{i} \quad \forall i = 1, ..., m$$
$$x_{j} \ge 0 \quad \forall j = 1, ..., n \qquad \qquad f(t) \ge 0 \quad \forall t \in [\alpha, \beta]$$
$$x \in \mathbb{R}^{n} \qquad \qquad f \in X$$

Motivations

- Translation of the discrete case into the continuous case
- Continuous approximation of large-scale problems
- Optimal Control, Shape Optimization, PDE-constrained
 Optimization...

Outline

1 Problem description

- 2 Resolving the polynomial approximation
- 3 Convergence of the optimal values

4 Conclusion

Functional Problem (F^q)

$$F^{q,*} = \inf_{f \in L^q([-1,1])} \int_{-1}^1 f(t)\gamma(t)dt$$
 (F^q)

$$\int_{-1}^{1} f(t)a_i(t)dt = b_i \quad \forall i = 1, ..., L$$

 $\|f\|_q \leq M$

5

Functional Problem (F^q)

$$F^{q,*} = \inf_{f \in L^q([-1,1])} \int_{-1}^1 f(t)\gamma(t)dt$$
 (F^q)

$$\int_{-1}^{1} f(t)a_i(t)dt = b_i \quad \forall i = 1, ..., L$$

$$\|f\|_q \leq M$$

Applications

- Supply problems in continuous time
- Large-scale portfolio allocation problems

Principle : Replace $f \in L^q([-1,1])$ by $f \in \pi^n([-1,1])$

where π^n is the space of the polynomials of degree at most *n*. Resulting problem = (P_n^q) with optimal value $P_n^{q,*}$.

Polynomial Approximation

Principle : Replace $f \in L^q([-1,1])$ by $f \in \pi^n([-1,1])$

where π^n is the space of the polynomials of degree at most n.

Resulting problem = (P_n^q) with optimal value $P_n^{q,*}$.

We know :

• {admissible sol. of (P_n^q) } \subset {admissible sol. of (F^q) } $\Rightarrow F^{q,*} \leq P_n^{q,*}$

•
$$P_{n+1}^{q,*} \le P_n^{q,*}$$

Principle : Replace $f \in L^q([-1,1])$ by $f \in \pi^n([-1,1])$

where π^n is the space of the polynomials of degree at most n.

Resulting problem = (P_n^q) with optimal value $P_n^{q,*}$.

We know :

• {admissible sol. of (P_n^q) } \subset {admissible sol. of (F^q) } $\Rightarrow F^{q,*} \leq P_n^{q,*}$

•
$$P_{n+1}^{q,*} \le P_n^{q,*}$$

We want :

- (P_n^q) soluble in practice (Part 2)
- Fast convergence of $P_n^{q,*}$ to $F^{q,*}$ when $n \to \infty$ (Part 3)

Outline

Problem description

2 Resolving the polynomial approximation

3 Convergence of the optimal values

4 Conclusion

ロト・ロト・ヨト・ヨークへの

Aim : Be able to solve easily the problem (P_n^q) using finite-dimensional optimization methods.

Aim : Be able to solve easily the problem (P_n^q) using finite-dimensional optimization methods.

How : Translate the objective and the constraints of the polynomial approximation in terms of the polynomial coefficients in a definite basis.

Aim : Be able to solve easily the problem (P_n^q) using finite-dimensional optimization methods.

How : Translate the objective and the constraints of the polynomial approximation in terms of the polynomial coefficients in a definite basis.

Results Obtained : Case q = 2 and $q = \infty \Rightarrow$: stuctured convex problems.

Translation of (P_n^q) in a basis

Let
$$\{X_0, ..., X_n\}$$
 be a basis of $\pi^n([-1, 1]) : p = \sum_{j=0}^n \mathbf{p}_j X_j$.

 $(P_n^q) \text{ becomes }:$ $\inf_{\mathbf{p}\in\mathbb{R}^{n+1}} < c^{(n)}, \mathbf{p} >$ $A^{(n)}\mathbf{p} = b$ $\mathbf{p} \in Q = \left\{ \mathbf{p}\in\mathbb{R}^{n+1}: \left\|\sum_{j=0}^n \mathbf{p}_j X_j\right\|_q \le M \right\}$

with

$$c_j^{(n)} = \int_{-1}^1 \gamma(t) X_j(t) dt$$
$$A_{i,j}^{(n)} = \int_{-1}^1 a_i(t) X_j(t) dt \quad \text{and} \quad \text$$

Translation of (P_n^q) in a basis

Let
$$\{X_0, ..., X_n\}$$
 be a basis of $\pi^n([-1, 1]) : p = \sum_{j=0}^n \mathbf{p}_j X_j$.
 (P_n^q) becomes :
 $\inf_{\mathbf{p} \in \mathbb{R}^{n+1}} < c^{(n)}, \mathbf{p} >$
 $A^{(n)}\mathbf{p} = b$
 $\mathbf{p} \in Q = \left\{ \mathbf{p} \in \mathbb{R}^{n+1} : \left\| \sum_{j=0}^n \mathbf{p}_j X_j \right\|_q \le M \right\}$

with

$$c_j^{(n)} = \int_{-1}^1 \gamma(t) X_j(t) dt$$
$$A_{i,j}^{(n)} = \int_{-1}^1 a_i(t) X_j(t) dt$$

• If q = 2: $Q = \{ \mathbf{p} \in \mathbb{R}^{n+1} : < B\mathbf{p}, \mathbf{p} > \le M^2 \}$ with $B_{ij} = \int_{-1}^1 X_i(t) X_j(t) dt \quad \forall i, j = 0, ..., n.$

 \rightarrow Convex quadratic problem

• If
$$q = \infty$$
: $\|p\|_{\infty} \le M$ iff $\begin{cases} p(t) + M \ge 0 & \forall t \in [-1, 1] \\ M - p(t) \ge 0 & \forall t \in [-1, 1] \end{cases}$

 \Rightarrow Finite representation of the cone of positive polynomials using the sum of squares approach.

 \rightarrow Semidefinite problem

• If q = 2: $Q = \{\mathbf{p} \in \mathbb{R}^{n+1} : < B\mathbf{p}, \mathbf{p} > \le M^2\}$ with $B_{ij} = \int_{-1}^1 X_i(t) X_j(t) dt \quad \forall i, j = 0, ..., n.$ \rightarrow Convex quadratic problem

• If
$$q = \infty$$
: $||p||_{\infty} \le M$ iff $\begin{cases} p(t) + M \ge 0 & \forall t \in [-1, 1] \\ M - p(t) \ge 0 & \forall t \in [-1, 1] \end{cases}$
 \Rightarrow Finite representation of the cone of positive polynomials

using the sum of squares approach.

 \rightarrow Semidefinite problem

• If q = 2: $Q = \{\mathbf{p} \in \mathbb{R}^{n+1} : < B\mathbf{p}, \mathbf{p} > \le M^2\}$ with $B_{ij} = \int_{-1}^1 X_i(t)X_j(t)dt \quad \forall i, j = 0, ..., n.$ \rightarrow Convex quadratic problem

• If
$$q = \infty$$
: $\|p\|_{\infty} \le M$ iff $\begin{cases} p(t) + M \ge 0 & \forall t \in [-1, 1] \\ M - p(t) \ge 0 & \forall t \in [-1, 1] \end{cases}$

 \Rightarrow Finite representation of the cone of positive polynomials using the sum of squares approach.

→ Semidefinite problem

• If q = 2: $Q = \{\mathbf{p} \in \mathbb{R}^{n+1} :< B\mathbf{p}, \mathbf{p} \ge M^2\}$ with $B_{ij} = \int_{-1}^1 X_i(t)X_j(t)dt \quad \forall i, j = 0, ..., n.$ \rightarrow Convex quadratic problem

• If
$$q = \infty$$
: $\|p\|_{\infty} \le M$ iff $\begin{cases} p(t) + M \ge 0 & \forall t \in [-1, 1] \\ M - p(t) \ge 0 & \forall t \in [-1, 1] \end{cases}$

 \Rightarrow Finite representation of the cone of positive polynomials using the sum of squares approach.

 \rightarrow Semidefinite problem

• If q = 2: $Q = \{\mathbf{p} \in \mathbb{R}^{n+1} :< B\mathbf{p}, \mathbf{p} \ge M^2\}$ with $B_{ij} = \int_{-1}^1 X_i(t)X_j(t)dt \quad \forall i, j = 0, ..., n.$ \rightarrow Convex quadratic problem

• If
$$q = \infty$$
: $\|p\|_{\infty} \leq M$ iff $\begin{cases} p(t) + M \geq 0 & \forall t \in [-1, 1] \\ M - p(t) \geq 0 & \forall t \in [-1, 1] \end{cases}$

 \Rightarrow Finite representation of the cone of positive polynomials using the sum of squares approach.

 \rightarrow Semidefinite problem

Conclusion : (P_n^2) and (P_n^∞) are soluble in practice.

Outline

Problem description

2 Resolving the polynomial approximation

3 Convergence of the optimal values

4 Conclusion

Aim : Prove, under some hypothesis, the convergence of $P_n^{q,*}$ to $F^{q,*}$ when $n \to +\infty$ with, if possible, a guarantee over the convergence speed.

with

Aim : Prove, under some hypothesis, the convergence of $P_n^{q,*}$ to $F^{q,*}$ when $n \to +\infty$ with, if possible, a guarantee over the convergence speed.

How : Introduction of a perturbed polynomial problem :

$$P_{n,\epsilon}^{q,*} = \inf_{\substack{p \in \pi^n([-1,1]) \\ p \in \pi^n([-1,1]) \\ ||Ap - b||_2 \le \epsilon}} p(t) \gamma(t) dt \qquad (\mathsf{P}_{n,\epsilon}^q)$$
$$||Ap - b||_2 \le \epsilon$$
$$||p||_q \le M$$
$$\epsilon > 0 \text{ and } Ap = \left(\begin{array}{c} \int_{-1}^1 p(t) a_1(t) dt \\ \vdots \\ \int_{-1}^1 p(t) a_L(t) dt \end{array} \right).$$

Sketch of the proof

We know :

- $P_{n,\epsilon}^{q,*} \leq P_n^{q,*} \quad \forall \epsilon \geq 0$
- $F^{q,*} \leq P_n^{q,*}$

Sketch of the proof

We know :

- $P_{n,\epsilon}^{q,*} \leq P_n^{q,*} \quad \forall \epsilon \geq 0$
- $F^{q,*} \leq P_n^{q,*}$

We will show :

•
$$P_{n,\epsilon_q(n)}^{q,*} \leq F^{q,*} + \Delta_1^q(n)$$
 for a specific $\epsilon_q(n)(\text{STEP 1})$
• $P_n^{q,*} \leq P_{n,\epsilon}^{q,*} + \epsilon \Delta_2^q(n)$ for all $\epsilon \geq 0$ (STEP 2)

Sketch of the proof

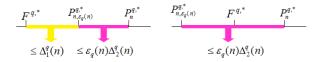
We know :

- $P_{n,\epsilon}^{q,*} \leq P_n^{q,*} \quad \forall \epsilon \geq 0$
- $F^{q,*} \leq P_n^{q,*}$

We will show :

• $P_{n,\epsilon_q(n)}^{q,*} \leq F^{q,*} + \Delta_1^q(n)$ for a specific $\epsilon_q(n)$ (STEP 1) • $P_n^{q,*} \leq P_{n,\epsilon}^{q,*} + \epsilon \Delta_2^q(n)$ for all $\epsilon \geq 0$ (STEP 2)

We will conclude :



In the worst case : $F^{q,*} \leq P_n^{q,*} \leq F^{q,*} + \Delta_1^q(n) + \epsilon_q(n) \Delta_2^q(n)$.

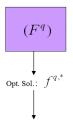
Outline

Problem description

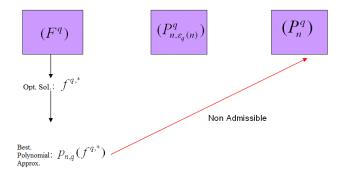
2 Resolving the polynomial approximation

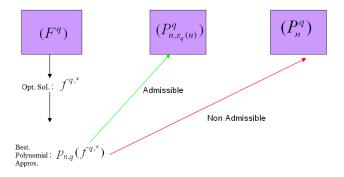
3 Convergence of the optimal values Step 1 : Obtaining of $\Delta_1^q(n)$ Step 2 : Obtaining of $\Delta_2^q(n)$ Convergence results

4 Conclusion



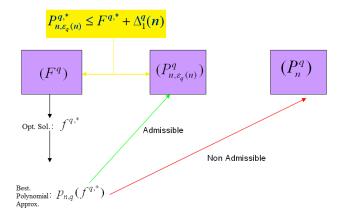
Best. Polynomial: $p_{n,q}(f^{q,*})$ Approx.





STEP 1 : Obtainment of $\Delta_1^q(n)$

Principle :



Obtained results

Notation :
$$E_n(f)_q = \inf_{p \in \pi^n([-1,1])} \|f - p\|_q$$

• If $1\leq q\leq +\infty$,

$$P_{n,\epsilon_q(n)}^{q,*} \leq F^{q,*} + \overbrace{2E_n(f^{q,*})_q \|\gamma\|_{q'}}^{\Delta_1^q(n)}$$

with $\epsilon_q(n) = 2E_n(f^{q,*})_q \sqrt{\sum_{i=1}^L \|a_i\|_{q'}^2}$

Obtained results

• If $1\leq q\leq +\infty$,

$$P_{n,\epsilon_q(n)}^{q,*} \leq F^{q,*} + \overbrace{2E_n(f^{q,*})_q \|\gamma\|_{q'}}^{\Delta_1^q(n)}$$

with $\epsilon_q(n) = 2E_n(f^{q,*})_q \sqrt{\sum_{i=1}^L \|a_i\|_{q'}^2}$

• Possible improvement if q = 2,

$$P_{n,\overline{\epsilon}(n)}^{2,*} \leq F^{2,*} + \overbrace{E_n(f^{2,*})_2 E_n(\gamma)_2}^{\Delta_1^2(n)}$$

with $\overline{\epsilon}(n) = E_n(f^{2,*})_2 \sqrt{\sum_{i=1}^L E_n(a_i)_2^2}$

Outline

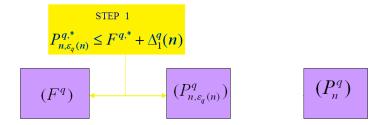
Problem description

2 Resolving the polynomial approximation

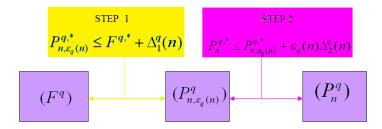
3 Convergence of the optimal values Step 1 : Obtaining of $\Delta_1^q(n)$ Step 2 : Obtaining of $\Delta_2^q(n)$ Convergence results

4 Conclusion

STEP 2 : Obtainment of $\Delta_2^q(n)$



STEP 2 : Obtainment of $\Delta_2^q(n)$



Tool : Regularity Theorem

Let

- X and Y be two normed vector spaces
- $A: X \to Y$ be a linear application
- *b* ∈ *Y*

Q ⊂ X be convex, closed, bounded with non empty interior
 Let's consider the optimization problems :

 $g^* = \inf \langle x, c \rangle$ Ax = b $x \in Q$ $g^*_{\epsilon} = \inf \langle x, c \rangle$ $\|Ax - b\|_Y \le \epsilon$ $x \in Q$

• H.1 : A : X → Y is non degenerate which means :

$$\|Ax - b\|_{Y} \ge \sigma d(x, \mathcal{L}) \quad \forall x \in X$$

with $\mathcal{L} = \{x \in X : Ax = b\}$ and $\sigma > 0$

• H.2 : there is $\hat{x} \in Q$ such that $A\hat{x} = b$ and

 $B(\hat{x},\rho) \subset Q \subset B(\hat{x},R)$

with $\rho > 0, R > 0$

$$g^* - rac{\epsilon \|c\|_{X'}}{\sigma} \left(1 + rac{R}{
ho}
ight) \le g^*_{\epsilon} \le g^*.$$

▲口▶▲御▶▲臣▶▲臣▶ 臣 めへの

• H.1 : A : X → Y is non degenerate which means :

$$\|Ax - b\|_{Y} \ge \sigma d(x, \mathcal{L}) \quad \forall x \in X$$

with $\mathcal{L} = \{x \in X : Ax = b\}$ and $\sigma > 0$

• H.2 : there is $\hat{x} \in Q$ such that $A\hat{x} = b$ and

$$B(\hat{x}, \rho) \subset Q \subset B(\hat{x}, R)$$

with $\rho > 0, R > 0$

$$g^* - rac{\epsilon \|c\|_{X'}}{\sigma} \left(1 + rac{R}{
ho}
ight) \le g_{\epsilon}^* \le g^*.$$

20

• H.1 : A : X → Y is non degenerate which means :

$$\|Ax - b\|_{Y} \ge \sigma d(x, \mathcal{L}) \quad \forall x \in X$$

with $\mathcal{L} = \{x \in X : Ax = b\}$ and $\sigma > 0$

• H.2 : there is $\hat{x} \in Q$ such that $A\hat{x} = b$ and

$$B(\hat{x},\rho) \subset Q \subset B(\hat{x},R)$$

with $\rho > 0, R > 0$

 \Rightarrow

$$g^* - rac{\epsilon \|c\|_{X'}}{\sigma} \left(1 + rac{R}{
ho}
ight) \leq g^*_{\epsilon} \leq g^*.$$

• H.1 : A : X → Y is non degenerate which means :

$$\|Ax - b\|_{Y} \ge \sigma d(x, \mathcal{L}) \quad \forall x \in X$$

with $\mathcal{L} = \{x \in X : Ax = b\}$ and $\sigma > 0$

• H.2 : there is $\hat{x} \in Q$ such that $A\hat{x} = b$ and

$$B(\hat{x},\rho) \subset Q \subset B(\hat{x},R)$$

with $\rho > 0, R > 0$

 \Rightarrow

$$\| g^* - rac{\epsilon \, \| c \|_{X'}}{\sigma} \left(1 + rac{R}{
ho}
ight) \leq g^*_\epsilon \leq g^*$$

Purpose : Use to link $P_n^{q,*}$ and $P_{n,\epsilon}^{q,*}$.

Case q=2 : Link between $P_n^{2,*}$ and $P_{n,\epsilon}^{2,*}$

Satisfaction of the hypothesis :

- If the functions a_i are linearly independent \Rightarrow H.1 OK with $\sigma = \sigma_n = \sqrt{\lambda_{\min}(A_n A_n^T)} > 0 \quad \forall n \ge N_1$ where $A_n = A|_{\pi^n([-1,1])}$.
- If there are N_2 and $\hat{p} \in \pi^{N_2}([-1, 1])$ such that $A\hat{p} = b$ and $\|\hat{p}\|_2 < M \Rightarrow H.2$ OK with $\frac{R}{\rho} = \frac{2M}{M \mathcal{R}_n^2}$ and $\mathcal{R}_n^2 = \min_{p \in \pi^n([-1,1]), Ap = b} \|p\|_2$.

Case q=2 : Link between $P_n^{2,*}$ and $P_{n,\epsilon}^{2,*}$

Satisfaction of the hypothesis :

- If the functions a_i are linearly independent \Rightarrow H.1 OK with $\sigma = \sigma_n = \sqrt{\lambda_{\min}(A_n A_n^T)} > 0 \quad \forall n \ge N_1$ where $A_n = A|_{\pi^n([-1,1])}$.
- If there are N_2 and $\hat{p} \in \pi^{N_2}([-1,1])$ such that $A\hat{p} = b$ and $\|\hat{p}\|_2 < M \Rightarrow H.2 \text{ OK}$ with $\frac{R}{\rho} = \frac{2M}{M - \mathcal{R}_n^2}$ and $\mathcal{R}_n^2 = \min_{p \in \pi^n([-1,1]), Ap=b} \|p\|_2$. Regularity Theorem :

$$P_n^{2,*} \leq P_{n,\epsilon}^{2,*} + \epsilon \underbrace{\frac{\|\gamma\|_2}{\sigma_n} \left(1 + \frac{2M}{M - \mathcal{R}_n^2}\right)}_{\sigma_n} \forall n \geq N = \max\{N_1, N_2\}$$

21

Case $q \neq 2$: Link between $P_n^{q,*}$ and $P_{n,\epsilon}^{q,*}$

Satisfaction of the hypothesis :

• If the functions a_i are linearly independent in $L^2([-1,1]) \Rightarrow$ H.1 OK

with
$$\sigma = \frac{\lambda_{\min}(A_n A_n')}{\sqrt{\sum_{i=1}^L \left\|\sum_{j=0}^n < a_i, L_j > L_j\right\|_q^2}} > 0 \quad \forall n \ge N_1.$$

• If there are N_2 and $\hat{p} \in \pi^{N_2}([-1, 1])$ such that $A\hat{p} = b$ and $\|\hat{p}\|_q < M \Rightarrow H.2$ OK with $\frac{R}{\rho} = \frac{2M}{M - \mathcal{R}_n^q}$ and $\mathcal{R}_n^q = \min_{p \in \pi^n([-1,1]), Ap = b} \|p\|_2$.

Case $q \neq 2$: Link between $P_n^{q,*}$ and $P_{n,\epsilon}^{q,*}$

Satisfaction of the hypothesis :

• If the functions a_i are linearly independent in $L^2([-1,1]) \Rightarrow$ H.1 OK with $\sigma = \frac{\lambda_{\min}(A_n A_n^T)}{\sqrt{\sum_{i=1}^{L} \left\|\sum_{j=0}^{n} < a_i, L_j > L_j\right\|_q^2}} > 0 \quad \forall n \ge N_1.$ • If there are N_2 and $\hat{p} \in \pi^{N_2}([-1,1])$ such that $A\hat{p} = b$ and $\|\hat{p}\|_q < M \Rightarrow$ H.2 OK

with
$$\frac{R}{\rho} = \frac{2M}{M - \mathcal{R}_n^q}$$
 and $\mathcal{R}_n^q = \min_{p \in \pi^n([-1,1]), Ap=b} \|p\|_2$.

Regularity Theorem :

$$P_n^{q,*} \leq P_{n,\epsilon}^{q,*} + \epsilon \frac{\left\|\gamma\right\|_q^{\prime} \sqrt{\sum_{i=1}^L \left\|\sum_{j=0}^n < a_i, L_j > L_j\right\|_q^2}}{\sigma_n^2} \left(1 + \frac{2M}{M - \mathcal{R}_n^q}\right)_{22}$$

Outline

Problem description

2 Resolving the polynomial approximation

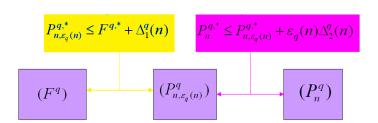
3 Convergence of the optimal values

Step 1 : Obtaining of $\Delta_1^q(n)$ Step 2 : Obtaining of $\Delta_2^q(n)$

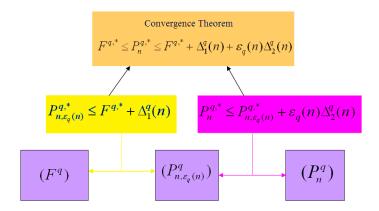
Convergence results

4 Conclusion

Final convergence results



Final convergence results



- * ロ * * 御 * * 注 * * 注 * うへで

24

Case q = 2: Convergence of $P_n^{2,*}$ to $F^{2,*}$

Our results :

lf

- the functions a_i are linearly independant
- the polynomial problems (P_n^2) are strictly admissible from a definite threshold

then for all $n \ge N = \max\{N_1, N_2\}$:

$$\left| F^{2,*} - P_n^{2,*} \right| \leq \Delta_1^2(n) + \epsilon_2(n) \Delta_2^2(n) = \\ E_n(f^{2,*})_2 \left(E_n(\gamma)_2 + \frac{\sqrt{\sum_{i=1}^L E_n(a_i)_2^2}}{\sigma_n} \|\gamma\|_2 \left(1 + \frac{2M}{M - \mathcal{R}_n^2} \right) \right)$$

Case q = 2: Convergence of $P_n^{2,*}$ to $F^{2,*}$ (2)

Convergence

We know : $E_n(f)_2 \to 0$ for all $f \in L^2([-1,1])$ We conclude : $P_n^{2,*} \to F^{2,*}$.

Case q = 2: Convergence of $P_n^{2,*}$ to $F^{2,*}$ (2)

Convergence

We know :
$$E_n(f)_2 \to 0$$
 for all $f \in L^2([-1,1])$
We conclude : $P_n^{2,*} \to F^{2,*}$.

Convergence speed

We know :

• if
$$f \in C^{r-1,r-1}([-1,1]) : E_n(f)_2 = O(\frac{1}{n^r})$$
 where
 $C^{k,r}([-1,1]) = \{f \in C^k([-1,1]) | f^{(r)} \text{ is Lipschitz-continuous}\}.$

 f^{2,*} is unique and expresses itself as a linear combination of the a_i and γ

We conclude :

If the
$$a_i$$
 and $\gamma \in \mathcal{C}^{r-1,r-1}$ then $P_n^{2,*} \to F^{2,*}$ in $O(\frac{1}{n^{2r}})$

Case $q \neq 2$: Convergence of $P_n^{q,*}$ to $F^{q,*}$

Our results :

lf

- the functions a_i are linearly independant, in $L^2([-1,1])$ such that $\sup_n \max_i \left\| \sum_{j=0}^n \langle a_i, L_j \rangle L_j \right\|_a < \infty$
- the polynomial problems (P_n^q) are strictly admissible from a definite threshold

then for all $n \ge N = \max\{N_1, N_2\}$:

$$\begin{aligned} \left| F^{q,*} - P_n^{q,*} \right| &\leq \Delta_1^q(n) + \epsilon_q(n) \Delta_2^q(n) = \\ 2E_n(f^{q,*})_q \left\| \gamma \right\|_{q'} \left(1 + \frac{\sqrt{\sum_{i=1}^L \|a_i\|_{q'}^2} \sqrt{\sum_{i=1}^L \|\sum_{j=0}^n < a_i, L_j > L_j\|_q^2}}{\sigma_n^2} \left(1 + \frac{2M}{M - \mathcal{R}_n^q} \right) \right) \end{aligned}$$

Case $q \neq 2$: Convergence of $P_n^{q,*}$ to $F^{q,*}$ (2)

Convergence

- If $q < +\infty$ We know : $E_n(f)_q \rightarrow 0$ for all $f \in L^q([-1,1])$ We conclude : $P_n^{q,*} \rightarrow F^{q,*}$
- If $q = +\infty$

We know : $E_n(f)_{\infty} \to 0$ iff $f \in \mathcal{C}([-1, 1])$ We conclude : the convergence is not guaranteed.

Case $q \neq 2$: Convergence of $P_n^{q,*}$ of $F^{q,*}$ (3)

Convergence speed

We know : If
$$f \in \mathcal{C}^{r-1,r-1}([-1,1])$$
 : $E_n(f)_q = O(\frac{1}{n^r})$
We conclude :

If
$$f^{q,*} \in \mathcal{C}^{r-1,r-1}$$
 then $P_n^{q,*} \to F^{q,*}$ in $O(\frac{1}{n^r})$.

Outline

Problem description

- 2 Resolving the polynomial approximation
- 3 Convergence of the optimal values

4 Conclusion

New approach of resolution for the (F^q) class : Polynomial approximations scheme.

New approach of resolution for the (F^q) class : Polynomial approximations scheme.

Otained results

- Polynomial problems = structured convex problems in finite dimension (for q = 2 and q = ∞)
- Convergence of $P_n^{q,*}$ to $F^{q,*}$ under some hypothesis

New approach of resolution for the (F^q) class : Polynomial approximations scheme.

Otained results

- Polynomial problems = structured convex problems in finite dimension (for q = 2 and q = ∞)
- Convergence of $P_n^{q,*}$ to $F^{q,*}$ under some hypothesis
- \Rightarrow Obtention of an effective resolution method for the problems (F^q) .

- Improve, if possible, the convergence bound obtained in the case $q=\infty$
- Obtain a translation of the problems (P_n^q) for $q \neq 2$ and $q \neq \infty$ in a convex structured problem
- Generalize the polynomial approximation scheme for other classes of infinite problems (derivatives, punctual constraints,...)

Thanks for your attention !

