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Linear optimal control problem with scalar control

Differential system:

x′(t) = A(t)x(t) + B(t)u(t)

with x(t) = (x1(t), ..., xm(t))T , A(t) ∈ Rm×m and B(t) ∈ Rm×1.

Initial and final conditions for the state

x(t0) = x0 x(tf ) = xf .

Control constraints

0 ≤ u(t) ≤ 1 ∀t ∈ [t0, tf ].

Performance Measure

min

∫ tf

t0

< c(t), x(t) > + < d(t), x′(t) > +e(t)u(t)dt.
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State equation of the linear system

The state generated by the linear system for a control u(t) is given
by:

x(t) = X (t, t0)x(t0) + X (t, t0)

(∫ t

t0

X−1(τ, t0)B(τ)u(τ)dτ

)
where X (t, t0) is the state transition matrix of the system i.e the
unique solution of the matricial Cauchy problem:

d

dt
X (t, t0) = A(t)X (t, t0)

X (t0, t0) = I .
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Consequence: We can express all only in terms of the
control

• Replacing x(t) by this expression, we have a performance
measure of the form: ∫ tf

t0

f (t)u(t)dt.

• Final conditions is satisfied by the state iff∫ tf

t0

X−1(τ, t0)B(τ)u(τ)dτ = X−1(tf , t0)xf − x0.

Using the explicit expression for X (t, t0) and B(t), we have m
linear equality constraints:∫ tf

t0

ai (t)u(t)dt = bi i = 1, ...,m.
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New formulation

Our initial optimal control problem can be expressed as an
infinite-dimensional linear programming problem:

inf
u

∫ tf

t0

f (t)u(t)dt

∫ tf

t0

ai (t)u(t)dt = bi ∀i = 1, ...,m

0 ≤ u(t) ≤ 1 ∀t ∈ [t0, tf ].
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Studied problem class: Linear Programming in L∞([α, β]).

P∗ = inf
x∈L∞([α,β])

∫ β

α
f (t)x(t)dt

∫ β

α
ai (t)x(t)dt = bi ∀i = 1, ...,m

M1 ≤ x(t) ≤ M2 a.e. in [α, β]

where

• b ∈ Rm

• f ∈ L1([α, β])

• ai ∈ L1([α, β]) for all i = 1...m.
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Primal Problem

P∗ = inf
x∈L∞([α,β])

∫ β

α
f (t)x(t)dt

∫ β

α
ai (t)x(t)dt = bi ∀i = 1, ...,m

M1 ≤ x(t) ≤ M2 a.e. in [α, β].

If we dualize the linear equality constraints, we obtain the
equivalent formulation:

P∗ = inf
x∈X

sup
y∈Rm

∫ β

α
f (t)x(t)dt +

m∑
i=1

yi

(∫ β

α
ai (t)x(t)dt − bi

)

where X = {x ∈ L∞([α, β]) : M1 ≤ x(t) ≤ M2 a.e. in [α, β]}.
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Dual Problem

D∗ = sup
y∈Rm

inf
x∈X

∫ β

α
f (t)x(t)dt +

m∑
i=1

yi

(∫ β

α
ai (t)x(t)dt − bi

)

= sup
y∈Rm

−
m∑
i=1

yibi − φ(y)

where

φ(y) = sup
x∈X

∫ β

α

(
−f (t)−

m∑
i=1

yiai (t)

)
x(t)dt.
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Why a Dual Approach ?

Advantages of the dual problem:

• The dual is an unconstrained optimization problem in
finite-dimension (y ∈ Rm).

• The infinite-dimensional problem defining
φ(y) = supM1≤x(t)≤M2

∫ β
α (−f (t)−

∑m
i=1 yiai (t)) x(t)dt

is easy:

xy (t) =


M1, when f (t) +

∑m
i=1 yiai (t) > 0,

M2, when f (t) +
∑m

i=1 yiai (t) < 0
M1+M2

2 , when f (t) +
∑m

i=1 yiai (t) = 0

is an optimal solution.

• There is Strong Duality i.e : P∗ = D∗ when the dual is
solvable.
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But θ can be non-differentiable...

If we rewrite the dual problem as a minimization problem:

−D∗ = min
y∈Rm

θ(y) = min
y∈Rm

bT y + φ(y)

where φ(y) = supx∈X
∫ β
α (−f (t)−

∑m
i=1 yiai (t)) x(t)dt,

θ can be non-differentiable:

∂θ(y) =

{
b − Ax̃ =

(
b1 −

∫ β

α
a1(t)x̃(t)dt, ..., bm −

∫ β

α
am(t)x̃(t)dt

)T

:

for any optimal solution x̃ of the problem defining φ(y)}

and the optimization problem defining φ(y) can have multiple
optimal solutions.
Conclusion:
We have to solve a non-smooth convex optimization problem.

13



How to solve a non-smooth convex problem ?

• The classical approach: subgradient-type scheme.
Advantage : Can be applied directly on the dual objective
function without any regularization
Disadvantage: Slow Convergence

θ(yk)→ θ∗ in O

(
1

ε2

)
.

• The smoothing approach.
We modify the dual objective function in order to be able to
apply more efficient scheme of smooth convex optimization.
Advantage : Faster convergence, we will obtain a scheme such
that

θ(yk)→ θ∗ in O

(
1

ε
ln

(
1

ε

))
.

Disadvantage : We have to modify the dual objective function
with two regularizations.
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Double Regularization of the dual objective function

In order to

• be able to solve efficiently the dual problem

• to be able to obtain a nearly optimal and feasible primal
solution from a nearly optimal dual solution

we will modify the dual objective function with two regularizations:

1 A first regularization on the infinite-dimensional side of the
problem

2 A second regularization on the finite-dimensional side of the
problem.
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First regularization

Why?
In order to obtain a smooth objective function for the dual problem
with gradient Lipschitz-continuous i.e.:

‖∇g(y)−∇g(y)‖ ≤ L ‖y − y‖ ∀y , y with L < +∞

and therefore be able to apply efficient schemes of smooth convex
optimization.

Where?
On the infinite-dimensional side of the problem.

17



First regularization: How ?

How?
Modify the dual objective function:

θ(y) = bT y + φ(y)

= bT y + sup
x∈X

∫ β

α

(
−f (t)−

m∑
i=1

yiai (t)

)
x(t)dt

in

θµ(y) = bT y + φµ(y)

= bT y + sup
x∈X

∫ β

α

(
−f (t)−

m∑
i=1

yiai (t)

)
x(t)− µ

2
x2(t)dt

with µ > 0.
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First regularization: θµ is differentiable

With the addition of the strongly concave function −µ
2

∫ β
α x2(t)dt,

the optimization problem defining φµ(y) has only one optimal
solution given by:

xy ,µ(t) =


M1, if f (t) +

∑m
i=1 yiai (t) ≥ −µM1,

M2, if f (t) +
∑m

i=1 yiai (t) ≤ −µM2
−1
µ (f (t) +

∑m
i=1 yiai (t)), else.

The function θµ is therefore differentiable.
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First regularization: Further properties of θµ

θµ is gradient Lipschitz-continuous with constant

Lµ =
‖A‖2

µ

where

Ax =

(∫ β

α
a1(t)x(t)dt, ...,

∫ β

α
am(t)x(t)dt

)T

and

‖A‖ = sup
x∈L2([α,β]),y∈Rm

{< Ax , y >: ‖x‖2 = 1, ‖y‖2 = 1}.
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First regularization: Further properties of θµ

θµ is a good approximation of θ with absolute accuracy bound
depending on µ:

θµ(y) ≤ θ(y) ≤ θµ(y) + µD2 ∀y ∈ Rm

where D2 = 1
2(β − α) max{|M1| , |M2|}2.
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Second regularization

Why?

We want not only

• to solve the dual problem

but also

• to reconstruct from the obtained nearly optimal dual solution,
a nearly optimal and feasible primal solution.
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Reconstruction of a primal solution

For a given dual iterate yk , if we consider the function

xk(t) = xyk ,µ(t),

the unique optimal solution of the problem defining φµ(yk), we
have:

• ∣∣∣∣∫ β

α
f (t)xk(t)dt − P∗

∣∣∣∣ ≤ Cste |θ(yk)− θ∗|+ Cste ‖∇θµ(yk)‖

•
‖Axk − b‖ = ‖∇θµ(yk)‖ .

The quality of this primal solution depends not only on the
convergence rate of θ(yk) to θ∗ but also on the convergence rate
of ‖∇θµ(yk)‖ to 0.
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Convexity and Gradient Lipschitz-continuity are not enough

If the dual objective function is convex, gradient
Lipschitz-continuous and if we apply the optimal scheme for
F 1,1
L (Rm):

g(yk)→ g∗ in O

(
1√
ε

)
but the convergence of the gradient is slower:

‖∇g(yk)‖ → 0 in O

(
1

ε

)
.
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Convexity and Gradient Lipschitz-continuity are not enough

In our case, if we apply this scheme to our function θµ ∈ F 1,1
Lµ

(Rm)
with a good choice for µ, we have

θ(yk)− θ∗ → 0 in O

(
1

ε

)
but

‖∇θµ(yk)‖ → 0 in O

(
1

ε2

)
.

Therefore if the dual objective function is only convex and gradient
Lipschitz-continuous, we have a convergence rate in O

(
1
ε2

)
for the

primal sequence.
This is not better than with the subgradient scheme!
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Is the smoothing approach useless ?

No!!!
If the dual objective function is also strongly convex, we can apply
the optimal scheme for S1,1

σ,L(Rm) for wich we have the same rate
of convergence for g(yk)− g∗ and ‖∇g(yk)‖ in

O

(
exp(

(
−k
√
σ

L

))
.

Conclusion: We want a strongly convex objective function on the
dual.

26



Second Regularization

Where?
On the finite-dimensional side of the problem.
How?
Let σ > 0 and y0 ∈ Rm, adding to the function θµ, the strongly
convex function σ

2 ‖y − y0‖2, we obtain the function:

θµ,σ(y) = θµ(y) +
σ

2
‖y − y0‖2

wich is strongly convex with parameter σ .
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Modified Dual Objective Function

θµ,σ(y) = bT y + φµ(y) +
σ

2
‖y − y0‖2

where

• φµ(y) = supx∈X
∫ β
α (−f (t)−

∑m
i=1 yiai (t)) x(t)− µ

2 x
2(t)dt

• y0 is any element in Rm

• σ > 0

• µ > 0.

This function is:

• Strongly convex with parameter σ

• still Gradient Lipschitz-continuous now with constant Lµ + σ.

28



Outline

1 Studied problem class with application in optimal control.

2 Dual Approach.

3 Double Regularization.

4 Solving the dual problem.

5 Reconstruction of a primal solution.

6 Conclusion and Further Research.

29



Optimal Scheme for S1,1
σ,L(Rm)

Let g : Rm → R be

• strongly convex with parameter σ > 0

• gradient Lipschitz-continuous with constant L > 0.

Algorithm

1 Initialization
Choose w0 = y0 ∈ Rm.

2 Iteration (k ≥ 0)
Set

yk+1 = wk −
1

L
∇g(wk)

wk+1 = yk+1 +

√
L−
√
σ√

L +
√
σ

(yk+1 − yk).
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Optimal Scheme for S1,1
σ,L(Rm): Convergence Results

1 Convergence of the objective values:

g(yk)− g∗ ≤ (g(y0)− g∗ +
σ

2
‖y0 − y∗‖2) exp

(
−k
√
σ

L

)
2 Convergence of the gradient:

‖∇g(yk)‖ ≤
√

2L

√
g(y0)− g∗ +

σ

2
‖y0 − y∗‖2 exp

(
−k

2

√
σ

L

)
3 Convergence of the iterates:

‖yk − y∗‖ ≤
√

2

σ

√
g(y0)− g∗ +

σ

2
‖y0 − y∗‖2 exp

(
−k

2

√
σ

L

)
.
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Solving the dual problem using the optimal scheme for
S1,1
σ,Lµ+σ(Rm)

If we apply the optimal scheme for S1,1
σ,Lµ+σ

(Rm) to our modified
dual function, we have:

θ(yk)− θ∗ ≤ µD2 +
σ

2
‖y∗∗ − y0‖2

+2(θ(y0)− θ∗ + µD2) exp

(
−k
√

σ

Lµ + σ

)

+
√

2σ

√
‖y∗∗ − y0‖2 +

2µ

σ
D2

√
θ(y0)− θ∗ + µD2 exp

(
−k

2

√
σ

Lµ + σ

)
where y∗∗ is an optimal solution of the original dual problem

miny∈Rm θ(y) and θ∗ = −P∗ is the optimal value of this problem.
If we want an accuracy θ(yk)− θ∗ ≤ ε, we can choose µ, σ and k
such that each of the four terms are ≤ ε/4.
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Choice of µ and σ

• If we want
µD2 ≤

ε

4

we choose

µ(ε) =
1

4D2
ε = C1ε.

• If we want
σ

2
‖y∗∗ − y0‖2 ≤

ε

4

we choose
σ(ε) =

ε

2 ‖y∗∗ − y0‖2
= C2ε.
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Number of iterations needed

• If we want 2(θ(y0)− θ∗ + µ(ε)D2) exp
(
−k
√

σ(ε)
Lµ(ε)+σ(ε)

)
≤ ε

4

we have to choose

k(ε) ≥ g1(ε) = O

(
1

ε
ln

(
1

ε

))
.

• If we want√
2σ(ε)

√
‖y∗∗ − y0‖2 + 2µ(ε)

σ(ε) D2

√
θ(y0)− θ∗ + µ(ε)D2

exp
(
−k

2

√
σ(ε)

Lµ(ε)+σ(ε)

)
≤ ε

4

we have to choose

k(ε) ≥ g2(ε) = O

(
1

ε
ln

(
1

ε

))
.
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Convergence of the gradient

In order to reconstruct from the nearly optimal dual solution, a
nearly feasible and optimal primal solution with a given accuracy,
we need the rate of convergence of ‖∇θµ(yk)‖.

We have:

‖∇θµ(yk)‖ ≤ σ
√
‖y∗∗ − y0‖2 +

2µ

σ
D2

+

(√
2(Lµ + σ) +

√
2σ

)√
θ(y0)− θ∗ + µD2 exp

(
−k

2

√
σ

Lµ + σ

)
.
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Convergence of the gradient: Number of iterations

With µ = C1ε and σ = C2ε, we have:

σ

√
‖y∗∗ − y0‖2 +

2µ

σ
D2 =

(
C2

√
‖y∗∗ − y0‖2 +

2C1

C2
D2

)
ε = C3ε.

Furthermore, if we want(√
2(Lµ + σ) +

√
2σ
)√

θ(y0)− θ∗ + µD2 exp

(
−k

2

√
σ

Lµ+σ

)
≤ ε

we have to take

k(ε) ≥ g3(ε) = O

(
1

ε
ln

(
1

ε

))
.
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Complexity

Let ε > 0 and choose µ(ε) = C1ε, σ(ε) = C2ε, after

k(ε) = max{g1(ε), g2(ε), g3(ε)} = O

(
1

ε
ln

(
1

ε

))
iterations, we have:

•
θ(yk(ε))− θ∗ ≤ ε

• ∥∥∇θµ(yk(ε))
∥∥ ≤ (C3 + 1)ε.
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A nearly feasible and optimal primal solution

Using the dual iterate yk(ε), we can obtain a primal solution with
the same order of accuracy.
Consider

xk(ε)(t) = xyk(ε),µ(ε)(t)

the unique optimal solution of the problem defining φµ(ε)(yk(ε))
that we can compute analytically.
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A nearly feasible and optimal primal solution (2)

This function xk(ε) is:

• In X by construction.

• Nearly optimal for the primal problem:∣∣∣∣∫ β

α
f (t)xk(ε)(t)dt − P∗

∣∣∣∣ ≤ ((C3+1)C4+C1D2+max{1,C1D2})ε.

where C4 =
√
‖y∗∗ − y0‖2 + 2C1

C2
D2 + ‖y0‖ .

• Nearly feasible for the linear equality constraints:

‖∇θµ(yk(ε))‖ =
∥∥Axk(ε) − b

∥∥ ≤ (C3 + 1)ε.
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Double Smoothing Algorithm: Conclusion

After k(ε) = max{g1(ε), g2(ε), g3(ε)} = O
(
1
ε ln
(
1
ε

))
iterations, we have:

• A nearly optimal dual solution:

θ(yk(ε))− θ∗ ≤ ε

• A nearly optimal and feasible primal solution:∣∣∣∣∫ β

α
f (t)xk(ε)(t)dt − P∗

∣∣∣∣ ≤ ((C3+1)C4+C1D2+max{1,C1D2})ε

∥∥Axk(ε) − b
∥∥ ≤ (C3 + 1)ε.

42



Come back to the Optimal Control Problem

Applying the double smoothing algorithm to the optimal control
problem, we generate after k(ε) = O

(
1
ε ln
(
1
ε

))
iterations, a

control uk(ε)(t):

• Nearly optimal for the performance measure:∣∣∣∣∫ tf

t0

< c(t), x(t) > + < d(t), x′(t) > +e(t)uk(ε)(t)dt − P∗
∣∣∣∣

≤ ((C3 + 1)C4 + C1D2 + max{1,C1D2})ε
• Satisfying nearly the initial and final conditions for the states:

x(t0) = x0 x(tf ) = xf + ∆

where ‖∆‖ ≤ ‖X (tf , t0)‖ (1 + C3)ε

• Satisfying the control constraints:

0 ≤ uk(ε)(t) ≤ 1 ∀t ∈ [t0, tf ].
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Further Research

• Introduction of integral inequality constraints∫ β

α
aj(t)x(t) ≤ bj

• Generalization to vector-valued function x(t) in order to
consider optimal control problem with multiple controls

u(t) = (u1(t), ..., un(t))T

• Consider more general pointwise constraints:

x(t) ∈ Q(t) ∀t ∈ [α, β]

where Q(t) is a bounded convex set for all t ∈ [α, β]

• ...
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Thanks for your attention !
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