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@ Studied problem class with application in optimal control.



Linear optimal control problem with scalar control

Differential system:

X' (t) = A(t)x(t) + B(t)u(t)
with x(t) = (x1(t), ..., xm(t)) ", A(t) € R™™ and B(t) € R™*1,
Initial and final conditions for the state

X(to) = Xpo X(tf) = Xf.

Control constraints

0<u(t) <1 Vteto, t]

Performance Measure

min /tf < e(t),x(t) > + < d(£),X(£) > +e(t)u(t)dt.

to



State equation of the linear system

The state generated by the linear system for a control u(t) is given
by:

t
x(t) = X(t, to)x(to) + X(t, to) (/ XY, to)B(T)u(T)dT)
to
where X(t, tp) is the state transition matrix of the system i.e the

unique solution of the matricial Cauchy problem:

Xt 10) = AWX(t, )

X(t‘o, to) =1



Consequence: We can express all only in terms of the

control

o Replacing x(t) by this expression, we have a performance
measure of the form:

te
/ f(t)u(t)dt.
to
e Final conditions is satisfied by the state iff
tf
| X wB@utr)dr = Xt tohxs o
to

Using the explicit expression for X(t, tp) and B(t), we have m
linear equality constraints:



New formulation

Our initial optimal control problem can be expressed as an
infinite-dimensional linear programming problem:

inf / " F ) u(t)de

to

tr
/ a(u(t)dt = by Wi=1,..m

to
0<u(t) <1 Vte [to,tf]



Studied problem class: Linear Programming in L*°([a, 3]).

Pt = inf /Bf(t)x(t)dt

xeLeo([a,f])

B
/ a(Ox(t)dt = b Vi=1,...m

M < x(t) < My ae. in[a,p]
where
e be R™
o fela,B])
e 2, € Y[a, A]) forall i =1..m.
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@® Dual Approach.



Primal Problem

P* = inf /Bf(t)x(t)dt

xeLl>([a,f]) Jao

B
/ a(Ox(B)dt = b Yi=1,...m
M; < x(t) < My ae. in o, f].

If we dualize the linear equality constraints, we obtain the
equivalent formulation:

p*— inf sup/ F(t)x(t dt+Zy,(/a ai(t ()dt—b)

x€X yeRm

where X = {x € L®([o, A]) : M1 < x(t) < My a.e. in [, B8]}
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Dual Problem

D* — sup inf/ F(E)x( t)dt—l—Zy, (/ﬁa, ()x(t )dt—b;)

yeRmM xeX

where
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Why a Dual Approach ?

Advantages of the dual problem:
e The dual is an unconstrained optimization problem in
finite-dimension (y € R™).

e The infinite-dimensional problem defining
A(y) = suPm, <x(t)<m, Jo, (—F(t) = 220y yiai(t)) x(t)dt

is easy:
My, when f(t) + > 1", yiai(t) > 0,
Xy(t) = Mo, when f(t) + 27;1 y,-a,-(t) <0
MAM - when f(t) + 37, yiai(t) =0

is an optimal solution.

e There is Strong Duality i.e : P* = D* when the dual is
solvable.
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But € can be non-differentiable...

If we rewrite the dual problem as a minimization problem:

—D* = min 6(y) = min b"
min 0(y) = min b7y +é(y)

where ¢(y) = sup, ox [ (—f(t) = 7, yiai(t)) x(t)dt,

6 can be non-differentiable:

0(y) = {b A% = (bl - /j an(%(£)dt, .., b — /j am(t);(t)dt>

for any optimal solution X of the problem defining ¢(y)}

T

and the optimization problem defining ¢(y) can have multiple
optimal solutions.
Conclusion:

We have to solve a non-smooth convex optimization problem.
13



How to solve a non-smooth convex problem 7

e The classical approach: subgradient-type scheme.
Advantage : Can be applied directly on the dual objective
function without any regularization
Disadvantage: Slow Convergence

0(yi) = 0% in O (é) .

e The smoothing approach.
We modify the dual objective function in order to be able to
apply more efficient scheme of smooth convex optimization.
Advantage : Faster convergence, we will obtain a scheme such

that
0(y) = 0" in O <% In (%)) .

Disadvantage : We have to modify the dual objective function

with two regularizations.
14
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© Double Regularization.
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Double Regularization of the dual objective function

In order to
e be able to solve efficiently the dual problem
e to be able to obtain a nearly optimal and feasible primal
solution from a nearly optimal dual solution

we will modify the dual objective function with two regularizations:

@ A first regularization on the infinite-dimensional side of the
problem

® A second regularization on the finite-dimensional side of the
problem.

16



First regularization

Why?
In order to obtain a smooth objective function for the dual problem
with gradient Lipschitz-continuous i.e.:

IVe(y) = Vel < Lly =yl Vy,y with L < +o0

and therefore be able to apply efficient schemes of smooth convex
optimization.

Where?
On the infinite-dimensional side of the problem.

17



First regularization: How 7

How?
Modify the dual objective function:

0y) = b'y+o(y)

— b7y + sup /B <—f(t) - Zy,-a;(t)) x(t)dt

xeX i=1

0,(y) = bTy+duly)

B
~ bTyq sup/ <—f(t) - Zy,-a;(t)) x(t) L ()t

xeX
with g > 0.
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First regularization: 0, is differentiable

With the addition of the strongly concave function —5 ff x?(t)dt,
the optimization problem defining ¢,(y) has only one optimal
solution given by:

My, if £(t) + 3070 yiai(t) = —pMy,
Xy u(t) = Mo, if £(t) + 321 yiai(t) < —puM;
_Vl(f(t) + >, viai(t)), else.

The function 6, is therefore differentiable.

10



First regularization: Further properties of 0,

6, is gradient Lipschitz-continuous with constant

L
S
where
B B T
(/ ai(t)x(t)d ,/ 3m(t)X(t)dt>
and
Al = sup {< Ax,y > Ixll, =1, |lyll, = 1}.

x€l?([a,B]),yeR™

20



First regularization: Further properties of 0,

6, is a good approximation of ¢ with absolute accuracy bound
depending on u:

0.(y) <0(y) <Ou(y) +uD Vy eR"

where D, = 3(8 — o) max{| M|, |Ma|}2.

Ou(y) + nDa
\/g(y)
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Second regularization

Why?
We want not only

e to solve the dual problem
but also

e to reconstruct from the obtained nearly optimal dual solution,
a nearly optimal and feasible primal solution.

29



Reconstruction of a primal solution

For a given dual iterate yy, if we consider the function

Xk (t) = Xy, (1),

the unique optimal solution of the problem defining ¢, (yx), we
have:

B
/ F(E)xi(t)dt — P*| < Cste|8(yi) — 0| + Cste |V, (yi)|
(6%

[ Axi = bl[ = [V, (yi)ll -

The quality of this primal solution depends not only on the
convergence rate of (yx) to 6* but also on the convergence rate
of (V8| to 0.

23



Convexity and Gradient Lipschitz-continuity are not enough

If the dual objective function is convex, gradient
Lipschitz-continuous and if we apply the optimal scheme for

FoHR™):
glyx) > g"in O (%)

but the convergence of the gradient is slower:

IVe(yi)ll = 0in O (1) .
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Convexity and Gradient Lipschitz-continuity are not enough

In our case, if we apply this scheme to our function 6,, € FLl;l(R’")
with a good choice for i, we have

O(yi) — 0" = 0in O (1)

€

but )
196,01 > 0in 0 ().

Therefore if the dual objective function is only convex and gradient
Lipschitz-continuous, we have a convergence rate in O (elz) for the
primal sequence.

This is not better than with the subgradient scheme!
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Is the smoothing approach useless 7

No!!!

If the dual objective function is also strongly convex, we can apply
the optimal scheme for 5 (R’”) for wich we have the same rate
of convergence for g(yk) —g* and ||[Vg(yk)|l in

o(ow(1/7))

Conclusion: We want a strongly convex objective function on the
dual.
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Second Regularization

Where?

On the finite-dimensional side of the problem.
How?

Let 0 > 0 and yp € R™, adding to the function 6, the strongly
convex function % ||y — yo||?, we obtain the function:

ag
Ono(y) = () + 5 Iy = ol

wich is strongly convex with parameter o .

27



Modified Dual Objective Function

ag
Ono(y) = b7y +6u(y) + 5 lly = yol®

where
o 0uly) = supcx [ (—F(8) = Sy yiai(£) x(2) — &x2(t)dt
e yp is any element in R™
e g>0
e 1 >0.
This function is:
e Strongly convex with parameter o

e still Gradient Lipschitz-continuous now with constant L, + 0.

28
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O Solving the dual problem.
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Optimal Scheme for S;i(R’”)

Let g: R” — R be
e strongly convex with parameter o > 0
e gradient Lipschitz-continuous with constant L > 0.
Algorithm
@ |Initialization
Choose wy = yp € R™.

@® lteration (k > 0)
Set

1
Y41 = Wi — ng(Wk)

Wkt1 = Vi1 + —=————=Vk+1 — Yk)-

Vi- o
Vi+ o

20



Optimal Scheme for S;i(R’”): Convergence Results

® Convergence of the objective values:

* * g * (o2
B0~ & < (gl & + 5 o =1 exp (17 )
® Convergence of the gradient:
o k |o
Vel < VEL fg0) — g+ 3 lbo - oo (5,7

©® Convergence of the iterates:

2 o 5 k |o
—v¥ < - - - % o — .
lye = "Il < \/;\/g(yo) g+ lvo -yl e><p< 2\/2)

21



Solving the dual problem using the optimal scheme for

st (R™)

o,L,+o

If we apply the optimal scheme for S;’LJFU(]R’") to our modified
dual function, we have:

g k.
O(yx) — 0" < Do + 5 Iy = yol)?

* B g
+2(0(y0) — 0" + Do) exp < k| L+ 0)

2 k o

2 I

V o L Dy\/0(y0) — 0% + uD —=

+ 20\/||y yoll* + ==D2/0(yo) = 0" + 2eXP< : LMH)

where y** is an optimal solution of the original dual problem
minycrm 0(y) and 6* = —P* is the optimal value of this problem.
If we want an accuracy 0(yx) — 0* < ¢, we can choose i, 0 and k
such that each of the four terms are < ¢/4.

29



Choice of i1 and o

e |f we want

€
uD2 < 2

we choose

1
p(e) = EE = Cie.

e |f we want

g 2
) ly™ = yll” <

we choose .

pm— —2 =
2]ly** = yoll

a(e)

213



Number of iterations needed

o If we want 2(0(yp) — 0" + p(e)Ds) exp (—k IMOE0)
we have to choose

K0 =m0 =0 (1 (1)),
e |f we want

V25 ly** = yol? + 245 D2\ /(y0) — 6 + () D

k ale €
exp (—5 —Lu(e)(+)a(e)) <z
we have to choose

Moz m=0(;n(1)).

24



Convergence of the gradient

In order to reconstruct from the nearly optimal dual solution, a
nearly feasible and optimal primal solution with a given accuracy,
we need the rate of convergence of ||V, (yx)|-

We have:

19800l < o1y~ — ol + 22,

k o
+ ( 2(L“+a)+\/20> VO(yo) — 0% + Do exp <—2 oo
m

)

25K



Convergence of the gradient: Number of iterations

With = Gie and 0 = Cye, we have:

2 2C
U\/HY** —yol® + ;MDz = (Cz\/Hy** —yol* + T;D2> € = Cze.

Furthermore, if we want

(VAL #2) +V27) Iu) = F F iDsewp (4[5 ) <

we have to take
1 1
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Complexity

Let € > 0 and choose p(€) = Cie, o(€) = Ce, after

k(e) = max{gi(e), &2(¢), g3(€)} = O (% In <1>)

€

iterations, we have:

O(yue)) — 0" < e

V0, (yk(e))|| < (G + 1)e.

7
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@ Reconstruction of a primal solution.
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A nearly feasible and optimal primal solution

Using the dual iterate y;(.), we can obtain a primal solution with
the same order of accuracy.
Consider

Xk(e) ( t) = ka(e) 7/"/(6) ( t)

the unique optimal solution of the problem defining ¢,,(¢)(V«(e))
that we can compute analytically.

20



A nearly feasible and optimal primal solution (2)

This function x () is:
e In X by construction.

e Nearly optimal for the primal problem:

< ((C3+1)C4+C1 D2+max{1, G Dg})e.

t)xk(e)(t)dt — P*

where G4 = \/Hy** yvol|? + 2C1 D> + [yoll -

e Nearly feasible for the linear equahty constraints:

IV 0. (i)l = [|Axi(ey — bl| < (G + 1)e.

40
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@ Conclusion and Further Research.
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Double Smoothing Algorithm: Conclusion

After k(e) = max{gi(e), &(c), g3(€)} = O (2In (1))
iterations, we have:

e A nearly optimal dual solution:
O(yk(e)) — 0" <€

e A nearly optimal and feasible primal solution:

B
/ F(t)xe( (1)t — P*| < ((Ca-+1)Cat-CyDatmax{1, C1Dy})e

HAXk(e) — bH < (G + 1)e.

Vil



Come back to the Optimal Control Problem

Applying the double smoothing algorithm to the optimal control
problem, we generate after k(e) = O (XIn (1)) iterations, a
control o (t):

e Nearly optimal for the performance measure:

/tf <c(t),x(t) > + < d(t),x'(t) > +e(t)u)(t)dt — P*

to

< ((C3 + 1)C4 + G Dy + max{l, C1D2})€
e Satisfying nearly the initial and final conditions for the states:
X(to) = Xp X(tf) =xr+ A

where [|A[| < [[X(tf, to)[| (1 + C3)e
e Satisfying the control constraints:

0L uk(e)(t) <1 Vté€ [t,tr].

A3



Further Research

Introduction of integral inequality constraints

B
[ atoxo <y,

Generalization to vector-valued function x(t) in order to
consider optimal control problem with multiple controls

u(t) = (u1(t), ..., un(t)) "

Consider more general pointwise constraints:

x(t) € Q(t) Vte€ [a, ]

where Q(t) is a bounded convex set for all t € [a, ]

AA



Thanks for your attention !
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