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A class of Optimal Control problems.

P∗ = inf
u∈L2([0,T ],Rm)

∫ T

0
G (t, u(t)) + 〈a(t), x(t)〉dt

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0

x(ti ) ∈ Qi i = 1, ...,N

u(t) ∈ P(t) a.e. in [0,T ]

where

• Qi ⊂ Rn are convex, closed and bounded

• P(t) ⊂ Rm are convex, closed for all t such that
P = ∪t∈[0,T ]P(t) is bounded

• G : [0,T ]× P → R is convex in u, bounded and continuously
differentiable in (t, u)

• A(t) ∈ C([0,T ],Rn×n),B(t) ∈ C([0,T ],Rn×m).
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State equation of the linear system

State generated by the linear system for a control u(t) is linear in
u:

x(t) = Φ(t, 0)x(0) +

∫ t

0
Φ(t, τ)B(τ)u(τ)dτ, t ∈ [0,T ]

where Φ(t, τ) is the state transition matrix of the system i.e the
unique solution of the matricial Cauchy problem:

d

dt
Φ(t, τ) = A(t)Φ(t, τ)

Φ(τ, τ) = I .
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We can express all only in terms of the control

• Replacing x(t) by this expression, we have a performance
measure of the form: ∫ T

0
F (t, u(t))dt.

• State constraint x(ti ) ∈ Qi becomes

Liu :=

∫ ti

0
Φ(ti , τ)B(τ)u(τ)dτ ∈ Ci := Qi − Φ(ti , 0)x0

where Φ(ti , 0)x0 is the value at time ti of the unique solution
of the Cauchy problem:

ẋ(t) = A(t)x(t), x(0) = x0.
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We can express all only in terms of the control

If we define Ai : [0,T ]→ Rn×m by:

Ai (τ) =

{
Φ(ti , τ)B(τ), when τ ∈ [0, ti ],

0, when τ ∈]ti ,T ].

the optimal control problem becomes:

inf
u∈L2([0,T ],Rm)

∫ T

0
F (t, u(t))dt

Li (u) =

∫ T

0
Ai (t)u(t)dt ∈ Ci ∀i = 1, ...N

u(t) ∈ P(t) a.e ∈ [0,T ].

6



Our problem is easy without the coupling constraint

P∗ = inf
u∈L2([0,T ],Rm)

∫ T

0
F (t, u(t))dt

u(t) ∈ P(t) a.e. in [0,T ].

We can minimize in a pointwise way i.e. solve for each t ∈ [0,T ]:

minu∈P(t)F (t, u).

Basis idea: dualize the finite number of coupling constraints∫ T

0
Ai (t)u(t)dt ∈ Ci .

7



Outline

1 Studied problem class.

2 Dual Approach.

3 Double Regularization.

4 Solving the dual problem.

5 Reconstruction of a primal solution.

6 Conclusion and Further Research.

8



Primal Problem

As Ci is convex, we have:

Liu ∈ Ci ⇔ 〈Liu, z i 〉 ≤ σCi
(z i ) ∀z i ∈ Rn

where σCi
(z i ) = supy∈Ci

〈y , z i 〉.
Dualizing the coupling constraints, we obtain the formulation:

P∗ = inf
u∈U

[∫ T

0
F (t, u(t))dt + sup

z∈RN×n

N∑
i=1

(〈Liu, z i 〉 − σCi
(z i ))

]

where z = (z1, ..., zN) ∈ RN×n and
U = {u ∈ L2([0,T ],Rm) : u(t) ∈ P(t) a.e. in [0,T ]}.
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Dual Problem

D∗ = sup
z∈RN×n

−
N∑
i=1

σCi
(z i ) + inf

u∈U

(∫ T

0
F (t, u(t))dt +

N∑
i=1

〈Liu, z i 〉

)

= sup
z∈RN×n

−
N∑
i=1

σCi
(z i )− φ(z)

where
φ(z) = supu∈U

(∫ T
0 −F (t, u(t))−

∑N
i=1〈u(t),Ai (t)T z i 〉dt

)
.

Advantages of the dual problem:

• Strong Duality holds i.e : P∗ = D∗ when the dual is solvable

• The dual is an unconstrained optimization problem in
finite-dimension (z ∈ RN×n).
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More advantages ?

• The infinite-dimensional problem defining

φ(z) = supu∈U

(∫ T
0 −F (t, u(t))−

∑N
i=1〈u(t),Ai (t)T z i 〉dt

)
.

can be solved pointwisely.
The function u∗ defined at each t ∈ [0,T ] by:

u∗(t) = arg max
v∈P(t)

{
−F (t, v)−

N∑
i=1

〈v ,Ai (t)T z i 〉

}
is an optimal solution of this problem.

Remark:
Ai (t) depends directly on the state transition matrix which is often
not known but we can compute AT

i (t)z i as B(t)v(t) where:

v̇(t) = −A(t)T v(t), v(ti ) = z i , t ∈ [0, ti ],

extended by zero for t ∈ [ti ,T ].
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But the dual objective function can be non-differentiable...

If we rewrite the dual problem as a minimization problem:

−D∗ = θ∗ = min
z∈RN×n

θ(z) = min
z∈RN×n

N∑
i=1

σCi
(z i ) + φ(z)

σCi
and φ can be non-differentiable:

• ∂σCi
(z i ) =

{
ỹ ∈ Ci : 〈ỹ , z i 〉 = σCi

(z i )
}

• ∂φ(z) =
{−Aũ for any optimal solution ũ of the problem defining φ(z)} .

Conclusion: We have to solve a non-smooth convex problem.
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How to solve a non-smooth convex problem ?

• The classical approach: subgradient-type scheme.
Advantage : Can be applied directly on the dual objective
function without any regularization
Disadvantage: Slow Convergence

θ(zk)→ θ∗ in O

(
1

ε2

)
.

• The smoothing approach.
We modify the dual objective function in order to be able to
apply more efficient scheme of smooth convex optimization.
Advantage : Faster convergence, we will obtain a scheme such
that

θ(zk)→ θ∗ in O

(
1

ε
ln

(
1

ε

))
.

Disadvantage : We have to modify the dual objective function
with some regularizations.
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Double Regularization of the dual objective function

In order to

• be able to solve efficiently the dual problem

• to be able to obtain a nearly optimal and feasible primal
solution from a nearly optimal dual solution

we will modify the dual objective function with two regularizations:

1 A first regularization that make the gradient of the dual
objective function Lispchitz-continuous

2 A second regularization that make the dual objective function
strongly convex.
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Why a double smoothing ?

Method Dual function Dual conv. Primal conv.

Subgradient Convex O
(

1
ε2

)
O
(

1
ε2

)
but Non-Smooth

Simple Smoothing Convex O
(

1
ε

)
O
(

1
ε2

)
∇ Lipschitz-cont

Double Smoothing Strongly convex O
(

1
ε ln
(

1
ε

))
O
(

1
ε ln
(

1
ε

))
∇ Lipschitz-cont.
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Modified Dual Objective Function

θρ,µ,κ(z) =
N∑
i=1

σρ,Ci
(z i ) + φµ(z) +

κ

2
‖z‖2

2

where

• σρ,Ci
(z i ) = supy∈Ci

{〈y , z i 〉 − ρ
2 ‖y‖

2
2}

• φµ(z) =

supu∈U
∫ T

0

(
−F (t, u(t))−

∑N
i=1〈u(t),Ai (t)T z i 〉 − µ

2 ‖u(t)‖2
2

)
dt
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Modified Dual Objective Function after the double
smoothing

This function θρ,µ,κ(z) is:

• Gradient Lipschitz-continuous with constant

Lρ,µ,κ =
1

ρ
+

∑N
i=1 ‖Li‖

2
2

µ
+ κ

• Strongly convex with parameter κ

• A good approximation of the original dual objective function:

−κ
2
‖z‖2

2 ≤ θ(z)−θρ,µ,κ(z) ≤ ρD̂+µD− κ
2
‖z‖2

2 ∀z ∈ RN×n

where D̂ =
∑N

i=1 maxy i∈Ci

1
2

∥∥y i∥∥2

2
and D = maxu∈U

1
2 ‖u‖

2
2 .
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We need to know the Lipschitz constant Lρ,µ,κ

We have modified θ in θρ,µ,κ ∈ S1,1
κ,Lρ,µ,κ

(RN×n), the class of
functions:

• Strongly convex with parameter κ

• Gradient Lipschitz-continuous with constant Lρ,µ,κ

That allows us to apply the very efficient optimal scheme for this
class of function to our modified dual objective function.
However, in this scheme and in its complexity analysis, we need to
know the Lipschitz constant

Lρ,µ,κ =
1

ρ
+

∑N
i=1 ‖Li‖

2
2

µ
+ κ

or an upper-bound for this quantity.
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Computation of the Lipschitz constant Lρ,µ,κ

Exact expression for ‖Li‖2 If the system is reachable, define the
reachability Gramian:

Wr (0, ti ) =

∫ ti

0
Φ(ti , τ)B(τ)B(τ)TΦ(ti , τ)Tdτ = LiL∗i .

We have:
‖Li‖2 = λ

1/2
max(Wr (0, ti )).

Computable bound for ‖Li‖2

Consider the time-invariant case i.e : ẋ(t) = Ax(t) + Bu(t).
We can solve the following quasi-convex problem that gives a
upper-bound for ‖Li‖2

2:

min

{
η2

3

τ1η2
: ATP + PA � −τ1I , η2I � P � η3I , τ1, η2, η3 ≥ 0

}
.
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Optimal Scheme for S1,1
κ,L(RN×n)

Let g : Rn → R be

• strongly convex with parameter κ > 0

• gradient Lipschitz-continuous with constant L > 0.

Algorithm

1 Initialization
Choose w0 = z0 ∈ Rm.

2 Iteration (k ≥ 0)
Set

zk+1 = wk −
1

L
∇g(wk)

wk+1 = zk+1 +

√
L−
√
κ√

L +
√
κ

(zk+1 − zk).
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Choice of the smoothing parameters

Let ε > 0 and define:

• D̂=
∑N

i=1 Di where Di = maxy∈Ci
1
2 ‖y‖

2
2

• D = maxu∈U
1
2 ‖u‖

2
2

• R is such that ‖z∗‖2 ≤ R where z∗ is the optimal solution of
the original dual problem.

We choose the parameters in the following way:

•
ρ(ε) =

1

4D̂
ε = C1ε

•
µ(ε) =

1

4D
ε = C2ε

•
κ(ε) =

1

2R2
ε = C3ε.
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Solving the dual problem using the optimal scheme for
S1,1
κ,Lρ,µ,κ

(RN×n)

If we apply the optimal scheme for S1,1
κ,L(ρ,µ,κ)(RN×n) to our

modified dual function with the choosen value of the parameters,
we have after a number of iteration

k(ε) = O

(
1

ε
ln

(
1

ε

))
an iterate zk(ε) such that

θ(zk(ε))− θ∗ ≤ ε.
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A nearly feasible and optimal primal solution

Using the dual iterate zk(ε), we can obtain a primal solution with
the same order of accuracy. Consider:

•

uk(ε) = arg sup
u∈U

∫ T

0

(
−F (t, u(t))−

N∑
i=1

〈u(t),Ai (t)T z ik(ε)〉

−µ(ε)

2
‖u(t)‖2

2

)
dt

the unique optimal solution of the problem defining
φµ(ε)(zk(ε)).

•

y ik(ε) = arg sup
y∈Ci

{〈y , z ik(ε)〉 −
ρ(ε)

2
‖y‖2

2}

the unique optimal solution of the problem defining
σρ(ε),Ci

(z ik(ε)).

26



A nearly feasible and optimal primal solution

This function uk(ε) is:

• In U by construction i.e uk(ε)(t) ∈ P(t) a.e. in [0,T ]

• Nearly optimal for the primal problem:∣∣∣∣∫ T

0
F (t, uk(ε)(t))dt − P∗

∣∣∣∣ ≤ 2(1 + 2
√

3)ε

• Nearly feasible for the coupling constraints:

dist(Liuk(ε),Ci ) ≤
∥∥∥Liuk(ε) − y ik(ε)

∥∥∥
2
≤ 2

R
ε.
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Double Smoothing Algorithm: Conclusion

After k(ε) = O
(

1
ε ln
(

1
ε

))
iterations, the double smoothing

algorithm provide us with a nearly optimal:∣∣∣∣∫ T

0
G (t, uk(ε)(t)) + 〈a(t), x(t)〉dt − P∗

∣∣∣∣ ≤ 2(1 + 2
√

3)ε

and nearly feasible:

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0

dist(x(ti ),Qi ) ≤
2

R
ε ∀i = 1, ...,N

uk(ε)(t) ∈ P(t) ∀t ∈ [0,T ]

solution of the original optimal control problem.
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Further research

• What is the efficiency of the double smoothing
algorithm in practice ?
Numerical experimentation and comparison with methods
based on preliminary discretization.

• How to compute φµ(z) and ∇φµ(z)?
In order to obtain the exact value of these quantities, we need
to compute an infinite number of pointwise minimization
which is impossible in practice.
What are the consequence on the optimal scheme, if we
use inexact first-order informations ?
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Thanks for your attention !
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