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Convex Optimization Problems

f* = min f(x
XEQ ( )
where:
® QCR"is
e closed
o convex: ax+ (1 —a)ye Q Vx,y € Q,ac|0,1]
®f:Q—Ris
e closed i.e that epif is closed
e convex:

flax+(1—a)y) < af(x)+(1—-a)f(y) Vx,y € Q,a€[0,1].
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@ First-order methods and information-based complexity



Black-box First-order methods

Let F(Q) be a family/class of convex problems of the form:
minyeq f(x).

Let P be an instance in F(Q).

Let M be a first-order method i.e. a numerical method using only
values of the function and subgradients at some search points.
Black-box assumption:

In course of solving P, the only information that can obtain M
about P comes from a

First-order Oracle = Unit (Black-box) that computes f(xx) and
g(xx) € Of (xk) for the numerical method at each search point xy :

(F(xx), 8(x)) = O(xk)-

The method has no access to the problem structure.



What we can expect from a FOM 7 Information-based

Complexity

e Complexity of the method M on F(Q):

Compl(€) = Pg_g\(x@ N (P, €)

= Minimal number of steps in which M is capable to solve
with accuracy € every problem P in F(Q)

¢ Information-based complexity of the family F(Q):

[(e) = mi |
Compl(e) min Compl v,(€)

= Optimal complexity of a first-order method for F(Q)
e M is an Optimal Method for F(Q) if:

Compl r(€) = © ( Compl(e)).
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@® Classes of convex optimization problems



Convexity versus Strong Convexity

e f:Q — R is convex if:
flax+(1—a)y) < af(x)+(1—-a)f(y) Vx,y € Q,Va € [0,1]
First-order information (f(x), g(x)) with g(x) € 9f(x)
satisfies:
fly) 2 f(x) + (g(x),y =x) Yy e@
e f:Q — R is strongly convex with parameter ;(f) > 0 if:

FlaxH{(1-a)y) < af () HL-) () -a(t-0) T |~y
Vx,y € Q,Va € [0,1].

First;order information (f(x), g(x)) with g(x) € 9f(x)

satisfies:

2
|

)2 F00 + gy 0+ D e y? wye g

Convexity assumptions : a way to obtain lower bounds on f.



Lipschitz-continuity of f versus Lipschitz-continuity of Vf

e f: Q — R is Lipschitz-continuous with constant M(f) if:
FO) =W < M(F)lIx =yl ¥x,y € Q.

First-order information (f(x), g(x)) with g(x) € 0f(x)
satisfies:

fF(y) < f(x) + (g(x),y —x) + M(f) [[x =yl Vy e Q.

e f: Q — R has a Lipschitz-continuous gradient with
constant L(f) if:

IVE(x) = VI < L) [Ix =yl Vx.y € Q.
First-order information (f(x), Vf(x)) satisfies:

) < 70+ (V70 =0+ S oyl vy e @

Lipschitz assumptions : a way to obtain upper bounds on f.



Classes of Convex Functions

miner f (x )

AN

/ Lipschitz-continuous vt Lipschitz-continuous
with constant s With73<
f convex f Strongly convex f convex f Strongly convex
with parameter /¢ with parameter

World of non-smooth convex optimization World of smooth convex optimization




Optimal Complexity of Classes of Convex Functions

Class Optimal Complexity

Optimal Methods.

F,(\J/;O(Q): f conv. C) (#)
f Lipscht-cont.

Subgradient Methods,
Mirror descent Methods

f Lipscht-cont.

Sg:%,(Q): fS.conv. | © (Mz In ("‘TRZ))

Subgradient Methods,
Mirror descent Methods

Fl}’l(Q): f conv. © (y/LTRz)

Vf Lipscht-cont.

Gradient Method
Fast Gradient Method

Sji(Q) fS.conv. | © <\/%In (“TRZ
Vf Lipscht-cont.

)

Gradient-Method
Fast Gradient Method

where R = ||xo — x*|| < diam(Q).
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© The notion of (4, L) oracle.
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Our starting point: the class FLl(”})(Q)

min xeQ f (x )

/

f Lipschitz-continuous
with constant as

Vf Lipschitz-continuous
with constant L

[ Strongly convex

f convex f Strongly convex
—————— =/ with parameter &

with parameter ¢
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Exact Oracle for FLl("})(Q)

If fe FLl(’)lc)(Q) then the output of the oracle
(f(y),Vf(y)) = O(y) is characterized by:

F(y)+H(VE(y), x—y) < f(x) < f(y)+(VF(y),x—y)+
for all x € Q.

D ey

Exact oracle(f(y), Vf(y)) for F-(Q)

L
F+VEY-X+ ;IX-y\2

F+VE(y-x)

v.fy)
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f is equipped with a first-order (0, L) oracle if for all y € Q, we can
compute (f,.5,8y,5) = Os..(y):

L
fyat{gyax—y) <f(x) < fotlgys x—y)+5 lIx—yI*+3 ¥xe Q.

Inexact oracle (fsL(y),gs,L(¥))

L
f‘s,L(Y)+g(s,L(y)lY-><)+;\X—VFM

fsL+GsL((Y-X)
(¥, fsL(Y)+0)

B

. f50(9)
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Applications

Two kind of situations where a (4, L) oracle can be available:

@ Lack of accuracy in the first-order information
Smooth function (i.e. in FLl(tlf)(Q)) when the first-order
information is computed approximately.

In this case, d represent the accuracy of the first-order
information.

® Lack of smoothness for the function
Function with weaker level of smoothness (but typically with
exact first-order information).
In this case, d can be chosen but there is a trade-off with L.
Subject of this talk
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Our Goal

Prove, using the notion of (9, L) oracle, that the Fast-gradient
method, initially devoted for functions in FLI(’})(Q):

e Can be also applied to various other classes of convex
problems

e Provides in each case, an optimal method with respect to
information-based complexity.
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@ The fast-gradient method in smooth convex optimization
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Fast Gradient Method

First-order method devoted for problems in the class FLl(’})(Q).
Accelerated version of the gradient method due to Nesterov.
Let {ax}2, satisfying ag €]0,1], af < Sk pai
Initialization

Choose x € Q

Iteration kK > 0

(F(k), VF(xc)) = O(x)
vk = argminye{f(xk) + (VF(xk),y — xe) + 2 |ly — 3}
2 = arg minge@{ > K o ilf(xi) + (VF(x), x — xi)] +

HO ) x — x| 2

Ok
Tk = kL.
i=0 i

Xk+1 = Tkzk + (1 — 7) v
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FGM: Convergence rate if f € FLl’,lf)(Q)

(

Convergence rate proportional to %:

4L(F)R? o (L(f)R2)

f(Yk)—f*Sm P

€

Complexity: e-solution can be obtained after O ( ﬂR)

iterations.
= Optimal FOM for FLl(’})(Q)
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Fast Gradient Method with (d, L) oracle

Effect on fast gradient method (FGM) if we use an (4, L)-oracle
instead of a exact one by replacing:

(f(y), V£(y)) by (f,.5.8y.6)

and
L(f) by L?

4] R?

) =1 < G 2)

1
+ <2k +6)3.

e When § > 0, the convergence rate is slowed down by an extra
term that makes the method asymptotically divergent.

e But allowing § > 0, we can apply the FGM to functions that
.1
are not in FL(f)(Q).
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@ Application to Non-smooth convex problems
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Applications in Non-smooth Convex Optimization

The condition on (f, 5, 8y.5):
f'

(
L
fys+(gy.s,x—y) < f(x) < fy,6+<gy,6ax_)’>+§ Ix — y|?+d, Vx€Q

does not imply differentiability.

Assume that f is a non-smooth convex function with bounded
variation of the subgradients i.e:

lg(x) —g(¥)ll, < M(f) Vg(x) € 9f(x),g(y) € 0f(y),Vx,y € Q.
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Applications in Non-smooth Convex Optimization (2)

This conditions implies:
f(x) < fy)+(gy)x —y) + M(f)[Ix—yl, Yx,y€Q.

But M(f)t < MU 42 15 Wt >0,¥5 > 0 and therefore:

M(F)?
) < F)HE0) x )+ - y P46, ey € QW5 >0

The non-smooth exact oracle can be seen as a inexact (0, L)
smooth oracle:

fo=1fly) &.5=2gly)cof(y)

. . M(f)?
where § is arbitrary and L = 5—5).
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Fast Gradient Method for non-smooth problem

Consequence: We can apply any FOM of smooth
convex-optimization to a non-smooth function f.
In particular, we can apply FGM and we have:

2M(f)2R?

R == s

+o(k+1).
With a optimal choice of §:

1/2
— * <2M(f)R .
f(30) ==

= Optimal rate of convergence © <M\(/%)R) for the non-smooth

problem (i.e. optimal complexity of © ( () sz))

6
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Application to Non-smooth convex problems

min xeQ f (x )

/N

/ Lipschitz-continuous vf Lipschitz-continuous
with constant 1 withjs<
f convex f Strongly convex f convex f Strongly convex

with parameter /¢

T G

with parameter

25



Outline

@ Application to Weakly-smooth convex problems
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Intermediate case: Weakly-smooth Convex Optimization

/

f Lipschitz-continuous
with constant Az

f Strongly
convex

f‘ convex

min xeQ f (x )

J

vy Hélder-continuous with

constant L,
7/ convex  f Strongly
convex
1v
Fi @)

N\

Vf Lipschitz-continuous

Wlthf S%

f Strongly
convex

‘f convex

‘ Weakly-smooth convex opl

Smooth convex opt.
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(6, L) oracle for weakly-smooth functions

Assume that f satisfies the following smoothness condition:
lg(x) —gW)ll. < Lvllx —y[”.Vx,y € Q,Vg(x) € 9f(x), g(y) € Of(y).

When:
® v = 1: f is smooth with a Lipschitz-continuous gradient
® v = 0: f is non-smooth with bounded variation of the
subgradients
©® 0 < v <1: fis weakly-smooth i.e. with a Holder-continuous
gradient.

Important Observation: The exact oracle (f(y),g(y)) can be
seen as a inexact (9, L) smooth oracle where § is arbitrary and

1—v
_ 1fv
L—1, [LV 1 1/] ¥ .

%'l-i-l/
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FGM for weakly-smooth problems

Consequence: We can apply any FOM of smooth
convex-optimization to a weakly-smooth function f.
In particular, we can apply FGM and we have:

1—v
L, 1-v]w R?
f —f(x*)<4L,|X.——= —— 4+ 0 (k+1
(vk) (x7) < [25 1—|—l/:| (k+1)2+ (k+1)
With a optimal choice of 4:
1+3v
2

2L, RtV 2
_ *) < v
Fv) =) < —— (k-l—l)

. 1+v
Optimal rate of convergence © (L”ﬁ; ) for the weakly-smooth
k=2

problem.
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Application to Weakly-smooth convex problems

/

/ Lipschitz-continuous
with constant a7

AN

f convex f Strongly

min xeQ f (x )

J N

\7a Hoélder-continuous with \Ya Lipschitz-continuous

constant L, Wmfs%‘
f convex f Strongly f convex f Strongly
convex convex

FIV(O)

,FG Wlth g LA(S, V))
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@ Application to Strongly convex problems
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What about the strongly convex case ?

minxeg f(x)

/N

/ Lipschitz-continuous Vf Lipschitz-continuous
with constant A with co SXL‘
‘/r _x _____ / PN ——————
. . . |,
[ convex / Strongly convex [ convex |] Strongly convex

with parameter /¢ with parameter /¢

|
I
|
I
|
L

L___Q____ ——————-

Strongly Convex case
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Notion of (§, L, i) oracle

e If f e S;’(i) L(f)(Q) then the output of the oracle
(f(y), Vf(y)) = O(y) is characterized by:

u(f)

F(y) + (V). x —y) + == Ix =yl <
Fx) < F) + (VF()x ) + 0 oy

for all x € Q.
e f is equipped with a first-order (9, L, ut) oracle if for all y € Q,
we can compute (f,5,8y.5) = Os,,.(y):

[
fro+{gax—y)+ 5 Ix—yl* <

L
F(x) < fys+ (gyax —y) + 5 Ix—yl>+d VxeQ.
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FGM for strongly convex function using (9, L, 1) oracle

An adapted version of the FGM applied to a function f endowed
with a (9, L, i) oracle satisfies:

2
Fxe) — F* < %exp (—k ﬁ) + 55

In particular:

o If f e S;’(},) L(f)(Q) (Smooth strongly convex function):
a (0, L(f), u(f)) oracle is available and the FGM reach the

optimal complexity © ( % In <M))

o If fe s )(Q) (Non-smooth strongly convex function):

u(f).M(f
a (9, %,u(f)) oracle is available. With an optimal choice of

0, we obtain the optimal complexity © <A:((ff))€2 In (f(xoz_f*>>.
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Application to non-smooth strongly convex function

min xeQ f (x )

/N

f Lipschitz-continuous V7 Lipschitz-continuous
with constant s withfs%‘
[ convex [ Strongly convex / convex [ Strongly convex

with parameter 1t with parameter 1.

25K



The Fast-gradient method as a Universal Optimal

first-order method :

Class L Complexity.
Q) L(f) o ( (ng2>
(@) G- o (MR
L (,c (Q) L,(f) [va(éf)%} e ( f)R1+” 1+3,,>
S;i i(f)(Q) L(f) < ,u#))
SIS L aEa)
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Conclusion

e Introduction of the notion of (4, L)-oracle, a generalization of
the first-order oracle in smooth convex optimization.

e With this notion, we can apply the Fast-gradient method,
initaly devoted for problems in F,_l’l(Q), to other classes of
convex problems with weaker level of smoothness.

e In each case, we obtain an optimal method with respect to
information-based complexity.

e Same kind of results for strongly convex problems

= FGM = Universal Optimal FOM.
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Thanks for your attention !

Université Z |
catholique
de Louvain
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