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Université catholique de Louvain (UCL)

Minisymposium Optimization: complexity and applications
Glasgow, July 1

1



Convex Optimization Problems

f ∗ = min
x∈Q

f (x)

where:

1 Q ⊂ Rn is
• closed
• convex: αx + (1− α)y ∈ Q ∀x , y ∈ Q, α ∈ [0, 1]

2 f : Q → R is
• closed i.e that epif is closed
• convex:

f (αx +(1−α)y) ≤ αf (x)+(1−α)f (y) ∀x , y ∈ Q, α ∈ [0, 1].
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Black-box First-order methods

Let F(Q) be a family/class of convex problems of the form:
minx∈Q f (x).
Let P be an instance in F(Q).
Let M be a first-order method i.e. a numerical method using only
values of the function and subgradients at some search points.
Black-box assumption:
In course of solving P, the only information that can obtain M
about P comes from a
First-order Oracle = Unit (Black-box) that computes f (xk) and
g(xk) ∈ ∂f (xk) for the numerical method at each search point xk :

(f (xk), g(xk)) = O(xk).

The method has no access to the problem structure.
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What we can expect from a FOM ? Information-based
Complexity

• Complexity of the method M on F(Q):

ComplM(ε) = max
P∈F(Q)

NM(P, ε)

= Minimal number of steps in which M is capable to solve
with accuracy ε every problem P in F(Q)

• Information-based complexity of the family F(Q):

Compl(ε) = min
M

ComplM(ε)

= Optimal complexity of a first-order method for F(Q)

• M is an Optimal Method for F(Q) if:

ComplM(ε) = Θ ( Compl(ε)) .
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Convexity versus Strong Convexity

• f : Q → R is convex if:

f (αx+(1−α)y) ≤ αf (x)+(1−α)f (y) ∀x , y ∈ Q, ∀α ∈ [0, 1]

First-order information (f (x), g(x)) with g(x) ∈ ∂f (x)
satisfies:

f (y) ≥ f (x) + 〈g(x), y − x〉 ∀y ∈ Q

• f : Q → R is strongly convex with parameter µ(f ) > 0 if:

f (αx+(1−α)y) ≤ αf (x)+(1−α)f (y)−α(1−α)
µ(f )

2
‖x − y‖2

∀x , y ∈ Q,∀α ∈ [0, 1].
First-order information (f (x), g(x)) with g(x) ∈ ∂f (x)
satisfies:

f (y) ≥ f (x) + 〈g(x), y − x〉+
µ(f )

2
‖x − y‖2 ∀y ∈ Q

Convexity assumptions : a way to obtain lower bounds on f .
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Lipschitz-continuity of f versus Lipschitz-continuity of ∇f

• f : Q → R is Lipschitz-continuous with constant M(f ) if:

|f (x)− f (y)| ≤ M(f ) ‖x − y‖ ∀x , y ∈ Q.

First-order information (f (x), g(x)) with g(x) ∈ ∂f (x)
satisfies:

f (y) ≤ f (x) + 〈g(x), y − x〉+ M(f ) ‖x − y‖ ∀y ∈ Q.

• f : Q → R has a Lipschitz-continuous gradient with
constant L(f ) if:

‖∇f (x)−∇f (y)‖∗ ≤ L(f ) ‖x − y‖ ∀x , y ∈ Q.

First-order information (f (x),∇f (x)) satisfies:

f (y) ≤ f (x) + 〈∇f (x), y − x〉+
L(f )

2
‖x − y‖2 ∀y ∈ Q.

Lipschitz assumptions : a way to obtain upper bounds on f .
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Classes of Convex Functions
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Optimal Complexity of Classes of Convex Functions

Class Optimal Complexity Optimal Methods.

F 0,0
M (Q): f conv. Θ

(
M2R2

ε2

)
Subgradient Methods,

f Lipscht-cont. Mirror descent Methods

S0,0
µ,M(Q): f S. conv. Θ

(
M2

µε ln
(
µR2

ε

))
Subgradient Methods,

f Lipscht-cont. Mirror descent Methods

F 1,1
L (Q): f conv. Θ

(√
LR2

ε

)
Gradient Method

∇f Lipscht-cont. Fast Gradient Method

S1,1
µ,L(Q): f S. conv. Θ

(√
L
µ ln

(
µR2

ε

))
Gradient Method

∇f Lipscht-cont. Fast Gradient Method

where R = ‖x0 − x∗‖ ≤ diam(Q).
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Our starting point: the class F 1,1
L(f )(Q)
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Exact Oracle for F 1,1
L(f )(Q)

If f ∈ F 1,1
L(f )(Q) then the output of the oracle

(f (y),∇f (y)) = O(y) is characterized by:

f (y)+〈∇f (y), x−y〉 ≤ f (x) ≤ f (y)+〈∇f (y), x−y〉+L(f )

2
‖x − y‖2

for all x ∈ Q.

f HyL+Ñf HyLHy-xL+
L

2
Èx-yÈ²

f HxL

Hy,f HyLL

f HyL+Ñf HyLHy-xL

Exact oracle HfHyL,ÑfHyLL for FL
1,1HQL
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(δ, L)-oracle

f is equipped with a first-order (δ, L) oracle if for all y ∈ Q, we can
compute (fy ,δ, gy ,δ) = Oδ,L(y):

fy ,δ+〈gy ,δ, x−y〉 ≤ f (x) ≤ fy ,δ+〈gy ,δ, x−y〉+
L

2
‖x − y‖2+δ ∀x ∈ Q.

f∆,LHyL+g∆,LHyLHy-xL+

L

2
Èx-yÈ²+∆

f HxL

Hy, f∆,LHyLL

Hy, f∆,LHyL+∆L
f∆,LHyL+g∆,LHyLHy-xL

∆

Inexact oracle H f∆,LHyL,g∆,LHyLL
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Applications

Two kind of situations where a (δ, L) oracle can be available:

1 Lack of accuracy in the first-order information
Smooth function (i.e. in F 1,1

L(f )(Q)) when the first-order
information is computed approximately.
In this case, δ represent the accuracy of the first-order
information.

2 Lack of smoothness for the function
Function with weaker level of smoothness (but typically with
exact first-order information).
In this case, δ can be chosen but there is a trade-off with L.
Subject of this talk
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Our Goal

Prove, using the notion of (δ, L) oracle, that the Fast-gradient
method, initially devoted for functions in F 1,1

L(f )(Q):

• Can be also applied to various other classes of convex
problems

• Provides in each case, an optimal method with respect to
information-based complexity.
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Fast Gradient Method

First-order method devoted for problems in the class F 1,1
L(f )(Q).

Accelerated version of the gradient method due to Nesterov.
Let {αk}∞k=0 satisfying α0 ∈]0, 1], α2

k ≤
∑k

i=0 αi .
Initialization
Choose x0 ∈ Q

Iteration k ≥ 0

• (f (xk),∇f (xk)) = O(xk)

• yk = arg miny∈Q{f (xk) + 〈∇f (xk), y − xk〉+ L(f )
2 ‖y − xk‖2

2}
• zk = arg minx∈Q{

∑k
i=0 αi [f (xi ) + 〈∇f (xi ), x − xi 〉] +

L(f )
2 ‖x − x0‖2

2}
• τk = αk+1∑k+1

i=0 αi

• xk+1 = τkzk + (1− τk)yk
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FGM: Convergence rate if f ∈ F 1,1
L(f )(Q)

Convergence rate proportional to 1
k2 :

f (yk)− f ∗ ≤ 4L(f )R2

(k + 1)(k + 2)
= Θ

(
L(f )R2

k2

)

Complexity: ε-solution can be obtained after O

(√
L(f )
ε R

)
iterations.
⇒ Optimal FOM for F 1,1

L(f )(Q)
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Fast Gradient Method with (δ, L) oracle

Effect on fast gradient method (FGM) if we use an (δ, L)-oracle
instead of a exact one by replacing:

(f (y),∇f (y)) by (fy ,δ, gy ,δ)

and
L(f ) by L?

f (yk)− f ∗ ≤ 4LR2

(k + 1)(k + 2)
+

1

6
(2k + 6)δ.

• When δ > 0, the convergence rate is slowed down by an extra
term that makes the method asymptotically divergent.

• But allowing δ > 0, we can apply the FGM to functions that
are not in F 1,1

L(f )(Q).
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Applications in Non-smooth Convex Optimization

The condition on (fy ,δ, gy ,δ):

fy ,δ+〈gy ,δ, x−y〉 ≤ f (x) ≤ fy ,δ+〈gy ,δ, x−y〉+
L

2
‖x − y‖2+δ, ∀x ∈ Q

does not imply differentiability.

Assume that f is a non-smooth convex function with bounded
variation of the subgradients i.e:

‖g(x)− g(y)‖∗ ≤ M(f ) ∀g(x) ∈ ∂f (x), g(y) ∈ ∂f (y),∀x , y ∈ Q.
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Applications in Non-smooth Convex Optimization (2)

This conditions implies:

f (x) ≤ f (y) + 〈g(y), x − y〉+ M(f ) ‖x − y‖ , ∀x , y ∈ Q.

But M(f )t ≤ M(f )2

4δ t2 + δ ∀t ≥ 0,∀δ > 0 and therefore:

f (x) ≤ f (y)+〈g(y), x−y〉+M(f )2

4δ
‖x − y‖2+δ, ∀x , y ∈ Q,∀δ > 0.

The non-smooth exact oracle can be seen as a inexact (δ, L)
smooth oracle:

fy ,δ = f (y) gy ,δ = g(y) ∈ ∂f (y)

where δ is arbitrary and L = M(f )2

2δ .
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Fast Gradient Method for non-smooth problem

Consequence: We can apply any FOM of smooth
convex-optimization to a non-smooth function f .
In particular, we can apply FGM and we have:

f (x̂k)− f ∗ ≤ 2M(f )2R2

(k + 1)2δ
+ δ(k + 1).

With a optimal choice of δ:

f (x̂k)− f ∗ ≤ 2M(f )R

(
2

k + 1

)1/2

.

⇒ Optimal rate of convergence Θ
(
M(f )R√

k

)
for the non-smooth

problem (i.e. optimal complexity of Θ
(
M(f )2R2

ε2

)
).
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Application to Non-smooth convex problems
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Intermediate case: Weakly-smooth Convex Optimization
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(δ, L) oracle for weakly-smooth functions

Assume that f satisfies the following smoothness condition:

‖g(x)− g(y)‖∗ ≤ Lν ‖x − y‖ν , ∀x , y ∈ Q, ∀g(x) ∈ ∂f (x), g(y) ∈ ∂f (y).

When:

1 ν = 1: f is smooth with a Lipschitz-continuous gradient

2 ν = 0: f is non-smooth with bounded variation of the
subgradients

3 0 < ν < 1: f is weakly-smooth i.e. with a Hölder-continuous
gradient.

Important Observation: The exact oracle (f (y), g(y)) can be
seen as a inexact (δ, L) smooth oracle where δ is arbitrary and

L = Lν

[
Lν
2δ
· 1− ν

1 + ν

] 1−ν
1+ν

.
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FGM for weakly-smooth problems

Consequence: We can apply any FOM of smooth
convex-optimization to a weakly-smooth function f .
In particular, we can apply FGM and we have:

f (yk)− f (x∗) ≤ 4Lν

[
Lν
2δ
· 1− ν

1 + ν

] 1−ν
1+ν R2

(k + 1)2
+ δ · (k + 1)

With a optimal choice of δ:

f (yk)− f (x∗) ≤ 2LνR
1+ν

1 + ν

(
2

k + 1

) 1+3ν
2

.

Optimal rate of convergence Θ
(
LνR1+ν

k
1+3ν

2

)
for the weakly-smooth

problem.
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Application to Weakly-smooth convex problems
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What about the strongly convex case ?
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Notion of (δ, L, µ) oracle

• If f ∈ S1,1
µ(f ),L(f )(Q) then the output of the oracle

(f (y),∇f (y)) = O(y) is characterized by:

f (y) + 〈∇f (y), x − y〉+
µ(f )

2
‖x − y‖2 ≤

f (x) ≤ f (y) + 〈∇f (y), x − y〉+
L(f )

2
‖x − y‖2

for all x ∈ Q.

• f is equipped with a first-order (δ, L, µ) oracle if for all y ∈ Q,
we can compute (fy ,δ, gy ,δ) = Oδ,L,µ(y):

fy ,δ + 〈gy ,δ, x − y〉+
µ

2
‖x − y‖2 ≤

f (x) ≤ fy ,δ + 〈gy ,δ, x − y〉+
L

2
‖x − y‖2 + δ ∀x ∈ Q.
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FGM for strongly convex function using (δ, L, µ) oracle

An adapted version of the FGM applied to a function f endowed
with a (δ, L, µ) oracle satisfies:

f (xk)− f ∗ ≤ LR2

2
exp

(
−k
√
µ

L

)
+

√
L

µ
δ.

In particular:

• If f ∈ S1,1
µ(f ),L(f )(Q) (Smooth strongly convex function):

a (0, L(f ), µ(f )) oracle is available and the FGM reach the

optimal complexity Θ
(√

L(f )
µ(f ) ln

(
f (x0)−f ∗

ε

))
• If f ∈ S0,0

µ(f ),M(f )(Q) (Non-smooth strongly convex function):

a (δ, M(f )2

2δ , µ(f )) oracle is available. With an optimal choice of

δ, we obtain the optimal complexity Θ
(
M(f )2

µ(f )ε ln
(
f (x0)−f ∗

ε

))
.
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Application to non-smooth strongly convex function
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The Fast-gradient method as a Universal Optimal
first-order method :

Class δ L Complexity.

F 1,1
L(f )(Q) 0 L(f ) Θ

(√
L(f )R2

ε

)
F 0,0
M(f )(Q) δ M(f )2

2δ Θ
(
M(f )2R2

ε2

)
F 1,ν
Lν(f )(Q) δ Lν(f )

[
Lν(f )

2δ
1−ν
1+ν

] 1−ν
1+ν

Θ

((
Lν(f )R1+ν

ε

) 2
1+3ν

)
S1,1
µ,L(f )(Q) 0 L(f ) Θ

(√
L(f )
µ ln

(
µR2

ε

))
S0,0
µ,M(f )(Q) δ M(f )2

2δ Θ
(
M(f )2

µε ln
(
f (x0)−f ∗

ε

))
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Conclusion

• Introduction of the notion of (δ, L)-oracle, a generalization of
the first-order oracle in smooth convex optimization.

• With this notion, we can apply the Fast-gradient method,
initaly devoted for problems in F 1,1

L (Q), to other classes of
convex problems with weaker level of smoothness.

• In each case, we obtain an optimal method with respect to
information-based complexity.

• Same kind of results for strongly convex problems

⇒ FGM = Universal Optimal FOM.
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Thanks for your attention !
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