The Fast-gradient method as a Universal Optimal First-order Method

O. Devolder (F.R.S.-FNRS Research Fellow), F. Glineur and Y. Nesterov

Center for Operations Research and Econometrics (CORE), Université catholique de Louvain (UCL)

Minisymposium Optimization: complexity and applications Glasgow, July 1

Convex Optimization Problems

$$f^* = \min_{x \in Q} f(x)$$

where:

 $Q \subset \mathbb{R}^n$ is

closed

- convex: $\alpha x + (1 \alpha)y \in Q \quad \forall x, y \in Q, \alpha \in [0, 1]$
- **2** $f: Q \to \mathbb{R}$ is
 - closed i.e that epif is closed
 - convex:

 $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) \quad \forall x, y \in Q, \alpha \in [0, 1].$

Outline

1 First-order methods and information-based complexity

- 2 Classes of convex optimization problems
- **3** The notion of (δ, L) oracle.
- 4 The fast-gradient method in smooth convex optimization
- 6 Application to Non-smooth convex problems
- 6 Application to Weakly-smooth convex problems
- Application to Strongly convex problems

Let $\mathcal{F}(Q)$ be a family/class of convex problems of the form: $\min_{x \in Q} f(x)$.

Let \mathcal{P} be an instance in $\mathcal{F}(Q)$.

Let \mathcal{M} be a first-order method i.e. a numerical method using only values of the function and subgradients at some search points. **Black-box assumption**:

In course of solving $\mathcal P,$ the only information that can obtain $\mathcal M$ about $\mathcal P$ comes from a

First-order Oracle = Unit (Black-box) that computes $f(x_k)$ and $g(x_k) \in \partial f(x_k)$ for the numerical method at each search point x_k :

$$(f(x_k),g(x_k))=\mathcal{O}(x_k).$$

The method has no access to the problem structure.

What we can expect from a FOM ? Information-based Complexity

• Complexity of the method \mathcal{M} on $\mathcal{F}(Q)$:

$$\operatorname{Compl}_{\mathcal{M}}(\epsilon) = \max_{\mathcal{P} \in \mathcal{F}(\mathcal{Q})} N_{\mathcal{M}}(\mathcal{P}, \epsilon)$$

= Minimal number of steps in which \mathcal{M} is capable to solve with accuracy ϵ every problem \mathcal{P} in $\mathcal{F}(Q)$

• Information-based complexity of the family $\mathcal{F}(Q)$:

$$\operatorname{Compl}(\epsilon) = \min_{\mathcal{M}} \operatorname{Compl}_{\mathcal{M}}(\epsilon)$$

= Optimal complexity of a first-order method for $\mathcal{F}(Q)$

• \mathcal{M} is an **Optimal Method** for $\mathcal{F}(Q)$ if:

$$\operatorname{Compl}_{\mathcal{M}}(\epsilon) = \Theta(\operatorname{Compl}(\epsilon)).$$

Outline

I First-order methods and information-based complexity

- 2 Classes of convex optimization problems
- **3** The notion of (δ, L) oracle.
- 4 The fast-gradient method in smooth convex optimization
- 6 Application to Non-smooth convex problems
- 6 Application to Weakly-smooth convex problems
- Application to Strongly convex problems

Convexity versus Strong Convexity

• $f: Q \to \mathbb{R}$ is convex if:

 $f(\alpha x+(1-\alpha)y) \leq \alpha f(x)+(1-\alpha)f(y) \quad \forall x, y \in Q, \forall \alpha \in [0,1]$ First-order information (f(x), g(x)) with $g(x) \in \partial f(x)$ satisfies:

$$f(y) \ge f(x) + \langle g(x), y - x \rangle \quad \forall y \in Q$$

• $f: Q \to \mathbb{R}$ is strongly convex with parameter $\mu(f) > 0$ if:

$$f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y) - \alpha(1-\alpha)\frac{\mu(f)}{2} \|x - y\|^2$$

 $\forall x, y \in Q, \forall \alpha \in [0, 1].$ First-order information (f(x), g(x)) with $g(x) \in \partial f(x)$ satisfies:

$$f(y) \ge f(x) + \langle g(x), y - x \rangle + rac{\mu(f)}{2} ||x - y||^2 \quad \forall y \in Q$$

Convexity assumptions : a way to obtain lower bounds on f.

• $f: Q \to \mathbb{R}$ is Lipschitz-continuous with constant M(f) if:

$$|f(x)-f(y)| \leq M(f) ||x-y|| \quad \forall x, y \in Q.$$

First-order information (f(x), g(x)) with $g(x) \in \partial f(x)$ satisfies:

$$f(y) \leq f(x) + \langle g(x), y - x \rangle + M(f) ||x - y|| \quad \forall y \in Q.$$

f : *Q* → ℝ has a Lipschitz-continuous gradient with constant *L*(*f*) if:

$$\|\nabla f(x) - \nabla f(y)\|_* \le L(f) \|x - y\| \quad \forall x, y \in Q.$$

First-order information $(f(x), \nabla f(x))$ satisfies:

$$f(y) \leq f(x) + \langle
abla f(x), y - x
angle + rac{L(f)}{2} \|x - y\|^2 \quad \forall y \in Q.$$

Lipschitz assumptions : a way to obtain upper bounds on f.

Classes of Convex Functions

Optimal Complexity of Classes of Convex Functions

Class	Optimal Complexity	Optimal Methods.
$F_M^{0,0}(Q)$: f conv. f Lipscht-cont.	$\Theta\left(\frac{M^2R^2}{\epsilon^2}\right)$	Subgradient Methods, Mirror descent Methods
$S^{0,0}_{\mu,M}(Q)$: f S. conv. f Lipscht-cont.	$\Theta\left(rac{M^2}{\mu\epsilon}\ln\left(rac{\mu R^2}{\epsilon} ight) ight)$	Subgradient Methods, Mirror descent Methods
$F_L^{1,1}(Q)$: f conv. ∇f Lipscht-cont.	$\Theta\left(\sqrt{\frac{LR^2}{\epsilon}}\right)$	Gradient Method Fast Gradient Method
$S^{1,1}_{\mu,L}(Q)$: f S. conv. ∇f Lipscht-cont.	$\Theta\left(\sqrt{\frac{L}{\mu}}\ln\left(\frac{\mu R^2}{\epsilon}\right) ight)$	Gradient Method Fast Gradient Method

where $R = ||x_0 - x^*|| \le diam(Q)$.

Outline

- I First-order methods and information-based complexity
- 2 Classes of convex optimization problems
- **3** The notion of (δ, L) oracle.
- 4 The fast-gradient method in smooth convex optimization
- 6 Application to Non-smooth convex problems
- 6 Application to Weakly-smooth convex problems
- Application to Strongly convex problems

Our starting point: the class $F_{L(f)}^{1,1}(Q)$

Exact Oracle for $F_{L(f)}^{1,1}(Q)$

If $f \in F_{L(f)}^{1,1}(Q)$ then the output of the oracle $(f(y), \nabla f(y)) = \mathcal{O}(y)$ is characterized by:

 $f(y) + \langle \nabla f(y), x - y \rangle \le f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L(f)}{2} ||x - y||^2$ for all $x \in Q$.

(δ, L) -oracle

f is equipped with a first-order (δ, L) oracle if for all $y \in Q$, we can compute $(f_{y,\delta}, g_{y,\delta}) = \mathcal{O}_{\delta,L}(y)$:

$$f_{y,\delta}+\langle g_{y,\delta},x-y
angle\leq f(x)\leq f_{y,\delta}+\langle g_{y,\delta},x-y
angle+rac{L}{2}\|x-y\|^2+\delta\quad orall x\in Q.$$

Two kind of situations where a (δ, L) oracle can be available:

- Lack of accuracy in the first-order information Smooth function (i.e. in F^{1,1}_{L(f)}(Q)) when the first-order information is computed approximately. In this case, δ represent the accuracy of the first-order information.
- 2 Lack of smoothness for the function Function with weaker level of smoothness (but typically with exact first-order information).

In this case, δ can be chosen but there is a trade-off with *L*. Subject of this talk Prove, using the notion of (δ, L) oracle, that **the Fast-gradient method**, initially devoted for functions in $F_{I(f)}^{1,1}(Q)$:

- Can be also applied to various other classes of convex problems
- Provides in each case, an optimal method with respect to information-based complexity.

Outline

- I First-order methods and information-based complexity
- 2 Classes of convex optimization problems
- **3** The notion of (δ, L) oracle.
- **4** The fast-gradient method in smooth convex optimization
- 6 Application to Non-smooth convex problems
- 6 Application to Weakly-smooth convex problems
- Application to Strongly convex problems

First-order method devoted for problems in the class $F_{L(f)}^{1,1}(Q)$. Accelerated version of the gradient method due to Nesterov. Let $\{\alpha_k\}_{k=0}^{\infty}$ satisfying $\alpha_0 \in]0,1], \quad \alpha_k^2 \leq \sum_{i=0}^k \alpha_i$. Initialization Choose $x_0 \in Q$

Iteration $k \ge 0$

•
$$(f(x_k), \nabla f(x_k)) = \mathcal{O}(x_k)$$

- $y_k = \arg \min_{y \in Q} \{ f(x_k) + \langle \nabla f(x_k), y x_k \rangle + \frac{L(f)}{2} \| y x_k \|_2^2 \}$
- $z_k = \arg \min_{x \in Q} \left\{ \sum_{i=0}^k \alpha_i [f(x_i) + \langle \nabla f(x_i), x x_i \rangle] + \frac{L(f)}{2} \|x x_0\|_2^2 \right\}$

•
$$\tau_k = \frac{\alpha_{k+1}}{\sum_{i=0}^{k+1} \alpha_i}$$

•
$$x_{k+1} = \tau_k z_k + (1 - \tau_k) y_k$$

Convergence rate proportional to $\frac{1}{k^2}$:

$$f(y_k) - f^* \leq \frac{4L(f)R^2}{(k+1)(k+2)} = \Theta\left(\frac{L(f)R^2}{k^2}\right)$$

Complexity: ϵ -solution can be obtained after $O\left(\sqrt{\frac{L(f)}{\epsilon}}R\right)$ iterations.

 \Rightarrow Optimal FOM for $F_{L(f)}^{1,1}(Q)$

Effect on fast gradient method (FGM) if we use an (δ, L) -oracle instead of a exact one by replacing:

 $(f(y), \nabla f(y))$ by $(f_{y,\delta}, g_{y,\delta})$

and

L(f) by L?

$$f(y_k) - f^* \leq \frac{4LR^2}{(k+1)(k+2)} + \frac{1}{6}(2k+6)\delta.$$

- When δ > 0, the convergence rate is slowed down by an extra term that makes the method asymptotically divergent.
- But allowing $\delta > 0$, we can apply the FGM to functions that are not in $F_{L(f)}^{1,1}(Q)$.

Outline

- I First-order methods and information-based complexity
- 2 Classes of convex optimization problems
- **3** The notion of (δ, L) oracle.
- 4 The fast-gradient method in smooth convex optimization
- **5** Application to Non-smooth convex problems
- 6 Application to Weakly-smooth convex problems
- Application to Strongly convex problems

The condition on $(f_{y,\delta}, g_{y,\delta})$: $f_{y,\delta} + \langle g_{y,\delta}, x - y \rangle \le f(x) \le f_{y,\delta} + \langle g_{y,\delta}, x - y \rangle + \frac{L}{2} ||x - y||^2 + \delta, \quad \forall x \in Q$

does not imply differentiability.

Assume that f is a non-smooth convex function with bounded variation of the subgradients i.e:

 $\|g(x) - g(y)\|_* \leq M(f) \quad \forall g(x) \in \partial f(x), g(y) \in \partial f(y), \forall x, y \in Q.$

This conditions implies:

$$f(x) \leq f(y) + \langle g(y), x - y \rangle + M(f) \|x - y\|, \quad \forall x, y \in Q.$$

But $M(f)t \leq \frac{M(f)^2}{4\delta}t^2 + \delta$ $\forall t \geq 0, \forall \delta > 0$ and therefore:

$$f(x) \leq f(y) + \langle g(y), x-y \rangle + rac{M(f)^2}{4\delta} \|x-y\|^2 + \delta, \quad \forall x, y \in Q, \forall \delta > 0.$$

The non-smooth exact oracle can be seen as a inexact (δ, L) smooth oracle:

$$f_{y,\delta}=f(y) \quad g_{y,\delta}=g(y)\in \partial f(y)$$

where δ is arbitrary and $L = \frac{M(f)^2}{2\delta}$.

Consequence: We can apply any FOM of smooth convex-optimization to a non-smooth function f. In particular, we can apply FGM and we have:

$$f(\hat{x}_k)-f^*\leq rac{2M(f)^2R^2}{(k+1)^2\delta}+\delta(k+1).$$

With a optimal choice of δ :

$$f(\hat{x}_k) - f^* \leq 2M(f)R\left(\frac{2}{k+1}\right)^{1/2}$$

⇒ Optimal rate of convergence $\Theta\left(\frac{M(f)R}{\sqrt{k}}\right)$ for the non-smooth problem (i.e. optimal complexity of $\Theta\left(\frac{M(f)^2R^2}{\epsilon^2}\right)$).

Application to Non-smooth convex problems

Outline

- I First-order methods and information-based complexity
- 2 Classes of convex optimization problems
- **3** The notion of (δ, L) oracle.
- 4 The fast-gradient method in smooth convex optimization
- 6 Application to Non-smooth convex problems
- 6 Application to Weakly-smooth convex problems
- Application to Strongly convex problems

Intermediate case: Weakly-smooth Convex Optimization

(δ, L) oracle for weakly-smooth functions

Assume that f satisfies the following smoothness condition:

 $\left\|g(x)-g(y)\right\|_{*} \leq L_{\nu} \left\|x-y\right\|^{\nu}, \forall x, y \in Q, \forall g(x) \in \partial f(x), g(y) \in \partial f(y).$

When:

- **()** $\nu = 1$: f is smooth with a Lipschitz-continuous gradient
- **2** $\nu = 0$: *f* is non-smooth with bounded variation of the subgradients
- **3** $0 < \nu < 1$: *f* is weakly-smooth i.e. with a Hölder-continuous gradient.

Important Observation: The exact oracle (f(y), g(y)) can be seen as a inexact (δ, L) smooth oracle where δ is arbitrary and

$$L = L_{\nu} \left[\frac{L_{\nu}}{2\delta} \cdot \frac{1-\nu}{1+\nu} \right]^{\frac{1-\nu}{1+\nu}}$$

Consequence: We can apply any FOM of smooth convex-optimization to a weakly-smooth function f. In particular, we can apply FGM and we have:

$$f(y_k) - f(x^*) \leq 4L_{\nu} \left[\frac{L_{\nu}}{2\delta} \cdot \frac{1-\nu}{1+\nu}\right]^{\frac{1-\nu}{1+\nu}} \frac{R^2}{(k+1)^2} + \delta \cdot (k+1)$$

With a optimal choice of δ :

$$f(y_k) - f(x^*) \le \frac{2L_{\nu}R^{1+\nu}}{1+\nu} \left(\frac{2}{k+1}\right)^{\frac{1+3\nu}{2}}$$

.

Optimal rate of convergence $\Theta\left(\frac{L_{\nu}R^{1+\nu}}{k^{\frac{1+3\nu}{2}}}\right)$ for the weakly-smooth problem.

Application to Weakly-smooth convex problems

Outline

- I First-order methods and information-based complexity
- 2 Classes of convex optimization problems
- **3** The notion of (δ, L) oracle.
- 4 The fast-gradient method in smooth convex optimization
- 6 Application to Non-smooth convex problems
- 6 Application to Weakly-smooth convex problems
- Application to Strongly convex problems

What about the strongly convex case ?

Notion of (δ, L, μ) oracle

 If f ∈ S^{1,1}_{µ(f),L(f)}(Q) then the output of the oracle (f(y), ∇f(y)) = O(y) is characterized by:

$$f(y) + \langle
abla f(y), x - y
angle + rac{\mu(f)}{2} \|x - y\|^2 \leq$$

$$f(x) \leq f(y) + \langle
abla f(y), x - y
angle + rac{L(f)}{2} \left\| x - y
ight\|^2$$
 for all $x \in Q$.

f is equipped with a first-order (δ, L, μ) oracle if for all y ∈ Q, we can compute (f_{y,δ}, g_{y,δ}) = O_{δ,L,μ}(y):

$$egin{aligned} & f_{y,\delta}+\langle g_{y,\delta},x-y
angle+rac{\mu}{2}\,\|x-y\|^2\leq \ & f(x)\leq f_{y,\delta}+\langle g_{y,\delta},x-y
angle+rac{L}{2}\,\|x-y\|^2+\delta \quad orall x\in Q. \end{aligned}$$

An adapted version of the FGM applied to a function f endowed with a (δ, L, μ) oracle satisfies:

$$f(x_k) - f^* \leq \frac{LR^2}{2} \exp\left(-k\sqrt{\frac{\mu}{L}}\right) + \sqrt{\frac{L}{\mu}}\delta.$$

In particular:

- If f ∈ S^{1,1}_{μ(f),L(f)}(Q) (Smooth strongly convex function):
 a (0, L(f), μ(f)) oracle is available and the FGM reach the optimal complexity Θ (√(L(f)/μ(f))) ln (f(x0)) f^{*}/ε))
- If f ∈ S^{0,0}_{μ(f),M(f)}(Q) (Non-smooth strongly convex function):
 a (δ, M(f)²/2δ, μ(f)) oracle is available. With an optimal choice of δ, we obtain the optimal complexity Θ (M(f)²/μ(f)ε ln (f(x₀)-f*)/ε)).

Application to non-smooth strongly convex function

The Fast-gradient method as a Universal Optimal first-order method :

Conclusion

- Introduction of the notion of (δ, L)-oracle, a generalization of the first-order oracle in smooth convex optimization.
- With this notion, we can apply the Fast-gradient method, initially devoted for problems in $F_L^{1,1}(Q)$, to other classes of convex problems with weaker level of smoothness.
- In each case, we obtain an optimal method with respect to information-based complexity.
- Same kind of results for strongly convex problems
- \Rightarrow FGM = Universal Optimal FOM.

Thanks for your attention !

