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Smooth convex optimization

f ∗ = min
x∈Q

f (x)

where

• Q ⊂ Rn is a closed convex set

• f : Q → R is

1 convex:

f (x) ≥ f (y) + 〈∇f (y), x − y〉 ∀x , y ∈ Q

2 smooth with Lipschitz-continuous gradient:

f (x) ≤ f (y) + 〈∇f (y), x − y〉+
L(f )

2
‖x − y‖2

2 ∀x , y ∈ Q.

Notation: f ∈ F 1,1
L(f )(Q)
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First-order Methods

• Numerical methods using only values of the function and of
the gradient at some points.
This first-order information is given by an Oracle O.

• Oracle = Unit (Black-box) that computes f (xk) and ∇f (xk)
for the numerical method at each point xk :

(f (xk),∇f (xk)) = O(xk).
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First-order Methods

• Why FOM ?
Methods of choice for large-scale problems due to their cheap
iteration cost.
Obtaining an ε-solution x̃ i.e.:

f (x̃)− f ∗ ≤ ε

can take large number of iterations but each iteration is very
easy.

• In Smooth Convex Optimization, two main FOM:

1 Gradient method (GM)
2 Fast gradient method (FGM)
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Gradient Method

Very simple algorithm:

Initialization
Choose x0 ∈ Q

Iteration k ≥ 0

• (f (xk),∇f (xk)) = O(xk)

• xk+1 = arg minx∈Q [f (xk) + 〈∇f (xk), x − xk〉+ L(f )
2 ‖x − xk‖2

2]

Remark: When Q = Rn: xk+1 = xk − 1
L(f )∇f (xk).
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GM: Convergence rate

Convergence rate proportional to 1
k :

f (xk)− f ∗ ≤
L(f ) ‖x0 − x∗‖2

2

2k
= Θ

(
L(f )R2

k

)
where R = ‖x0 − x∗‖2.

Complexity: ε-solution obtained after O
(
L(f )R2

ε

)
iterations.
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Fast Gradient Method

Accelerated version of the gradient method due to Nesterov:
Let {αk}∞k=0 satisfying α0 ∈]0, 1], α2

k ≤
∑k

i=0 αi .
Initialization
Choose x0 ∈ Q

Iteration k ≥ 0

• (f (xk),∇f (xk)) = O(xk)

• yk = arg minx∈Q{f (xk) + 〈∇f (xk), y − xk〉+ L(f )
2 ‖y − xk‖2

2}
• zk = arg minx∈Q{

∑k
i=0 αi [f (xi ) + 〈∇f (xi ), x − xi 〉] +

L(f )
2 ‖x − x0‖2

2}
• τk = αk+1∑k+1

i=0 αi

• xk+1 = τkzk + (1− τk)yk
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FGM: Convergence rate

Convergence rate proportional to 1
k2 :

f (yk)− f ∗ ≤
4L(f ) ‖x0 − x∗‖2

2

(k + 1)(k + 2)
= Θ

(
L(f )R2

k2

)
This rate of convergence is optimal for FOM on F 1,1

L(f )(Q).

Complexity: ε-solution can be obtained after O

(√
L(f )
ε R

)
iterations.
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Why inexact oracle ?

• Sometimes: impossible/costly to compute exact first-order
information (function and gradient value).

• Possible reasons:

1 Numerical errors
2 f (x) is defined by another (simple) optimization problem that

can be solved only approximately.
3 f is not as smooth as we want

• Our goal: study the effect of inexact first-order informations
on GM and FGM.
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Previous definitions of inexact oracle

1 ε-subgradient (Rockafellar, Shor,...)

gy ,ε s.t. f (x) ≥ f (y) + 〈gy ,εx − y〉 − ε ∀x ∈ Q

Weak condition. Easy to satisfy but good only for non-smooth
convex function.

2 Comparison with exact gradient/subgradient (Baes,
D’Aspremont,...)
Various possible conditions, gy ,µ such that:

• ‖∇f (y)− gy ,µ‖ ≤ µ
• ‖g(y)− gy ,µ‖ ≤ µ, g(y) ∈ ∂f (y)
• |〈∇f (y)− gy ,µ, x − z〉| ≤ µ ∀x , z ∈ Q

Good results can be obtained but
Strong conditions: Difficult to guarantee in practice.
Restrictive assumptions: Sometime ∇f (y) must exist,
sometime Q must be bounded.
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Definition of inexact oracle

Exact Oracle:
If f ∈ F 1,1

L(f )(Q) then the output of the oracle

(f (y),∇f (y)) = O(y) is characterized by:

f (y)+〈∇f (y), x−y〉 ≤ f (x) ≤ f (y)+〈∇f (y), x−y〉+L(f )

2
‖x − y‖2

2

for all x ∈ Q.
Inexact Oracle:
f is equipped with a first-order (δ, L) oracle if for all y ∈ Q, we can
compute (fy ,δ, gy ,δ) = Oδ,L(y):

fy ,δ+〈gy ,δ, x−y〉 ≤ f (x) ≤ fy ,δ+〈gy ,δ, x−y〉+
L

2
‖x − y‖2

2+δ ∀x ∈ Q.
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Definition of inexact oracle

Consequences:

• fy ,δ is a δ-lower approximation of f (y):

fy ,δ ≤ f (y) ≤ fy ,δ + δ.

• gy ,δ is a δ-subgradient of f at y:

f (x) ≥ f (y) + 〈gy ,δ, x − y〉 − δ.

• In general, L is not the original Lipschitz constant L(f ).
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1) Exact computation at shifted point

Let f ∈ F 1,1
L(f )(Q).

Inexact oracle: At each point y ∈ Q, the oracle provides exact
value of f and ∇f but at a different point yδ such that

‖y − yδ‖2
2 ≤

δ

L(f )
.

If we define:

fy ,δ = f (yδ) + 〈∇f (yδ), y − yδ〉, gy ,δ = ∇f (yδ)

⇒ (δ, L)-oracle with L = 2L(f ).
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2) Inexact oracle for saddle-point problems

Assume that f ∈ F 1,1
L(f )(Q) is defined by another optimization

problem:
f (x) = max

u∈U
Ψ(x , u)

where Ψ is concave in u, convex in x and U is closed and convex.

Computations of f (x) and ∇f (x) require

ux ∈ Arg max
u∈U

Ψ(x , u)

since:
f (x) = Ψ(x , ux) ∇f (x) = ∇xΨ(x , ux).

But in practice, we are only able to solve this subproblem
approximatively, computing ux , an approximate solution.

Consequences?
Which quality of ux ensures a (δ, L)-oracle ?
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2a) Function obtained by the smoothing technique

When applying smoothing technique, we need to solve saddle-point
problem with:

Ψ(x , u) = G (u) + 〈Au, x〉

where G is strongly concave with parameter κ.
We know that:

• f (x) = maxu∈U Ψ(x , u) ∈ F 1,1
L(f )(Q) with L(f ) =

‖A‖2
2

κ

• f (x) = Ψ(x , ux) and ∇f (x) = Aux .

Inexact oracle: If ux satisfies

Ψ(x , ux)−Ψ(x , ux) ≤ δ

2

and
fx ,δ = Ψ(x , ux) gx ,δ = Aux

⇒ (δ, L)-oracle with L = 2L(f ).
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2b) Function obtained in the Augmented Lagrangian
Approach

When solving the convex problem minu∈U{H(u) s.t. Au = 0}
using augmented Lagrangian approach, we need to solve
saddle-point problem with:

Ψ(x , u) = −H(u) + 〈Au, x〉 − κ

2
‖Au‖2

2 .

We know that:
• f (x) = maxu∈U Ψ(x , u) ∈ F 1,1

L(f )(Q) with L(f ) = 1
κ

•
f (x) = Ψ(x , ux) ∇f (x) = Aux .

Inexact oracle: If ux satisfies

max
u∈U
〈∇uΨ(x , ux), u − ux〉 ≤ δ

and
fx ,δ = Ψ(x , ux) gx ,δ = Aux

⇒ (δ, L)-oracle with L = L(f ).
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3) Applications in Non-smooth Convex Optimization

The condition on (fy ,δ, gy ,δ):

fy ,δ+〈gy ,δ, x−y〉 ≤ f (x) ≤ fy ,δ+〈gy ,δ, x−y〉+
L

2
‖x − y‖2

2 +δ (1)

does not imply differentiability.

Consider the case of a non-smooth convex function f with
bounded variation of the subgradients:

‖g(x)− g(y)‖∗ ≤ M(f ) ∀g(x) ∈ ∂f (x), g(y) ∈ ∂f (y), ∀x , y ∈ Q.

Then (f (y), g(y)) provides a (δ, L)-oracle with arbitrary δ and

L = M(f )2

2δ .
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3) Application in Non-smooth convex Optimization

Remarks:

• The first-order informations (f (y), g(y)) are exact, we have a
exact oracle but of non-smooth optimization.

• This non-smooth exact oracle can be seen as a inexact (δ, L)
smooth oracle.

• δ is not really a given accuracy, it is a parameter that we can

choose but there is a tradeoff with L = M(f )2

2δ .
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Effect of inexact oracle on FOM ?

Effect on gradient method (GM) and on fast gradient method
(FGM) if we use an (δ, L)-oracle instead of a exact one by
replacing:

(f (y),∇f (y)) by (fy ,δ, gy ,δ)

and
L(f ) by L?

Important Issues:

• Link between desired solution accuracy (SA) and accuracy
needed for the oracle (OA).

• Does the FGM still outperform GM when a inexact oracle is
used ?
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Gradient Method with Inexact Oracle

Exact oracle:

f (xk)− f ∗ ≤ L(f )R2

2k

(δ, L)-oracle:

f (xk)− f ∗ ≤ LR2

2k
+ δ.

• No accumulation of errors
Error asymptotically tends to δ (OA).

• Complexity: ε-solution if k ≥ O
(
LR2

ε−δ

)
• Let ε be the desired accuracy for the solution (SA). We can

take OA of same order than SA: δ = Θ(ε).
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Fast Gradient Method with Inexact Oracle

Exact oracle:

f (yk)− f ∗ ≤ 4L(f )R2

(k + 1)(k + 2)

(δ, L)-oracle:

f (yk)− f ∗ ≤ 4LR2

(k + 1)(k + 2)
+

1

6
(2k + 6)δ.

• Accumulation of errors
Divergence: Error asymptotically tends to ∞ (Decreases fast
at first then increases).

• Complexity: ε-solution if Θ

(√
L
εR

)
≤ k ≤ Θ

(
ε
δ

)
• OA must be smaller than SA: δ = Θ(ε3/2).
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Which method should we choose?

We have to consider three cases depending on the available oracle:

1 Exact oracle

2 Inexact oracle with a fixed accuracy δ

3 Inexact oracle but the accuracy δ can be chosen.
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Case 1: Exact oracle

In order to have a SA of ε:

GM : O

(
L(f )R2

ε

)
iterations

FGM : O

(√
L(f )

ε
R

)
iterations

FGM outperforms GM in all cases.
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Case 2: Inexact oracle with fixed OA δ

GM : f (xk)− f ∗ ≤ LR2

2k + δ

FGM : f (yk)− f ∗ ≤ 4LR2

(k+1)(k+2) + 1
6 (2k + 6)δ

We need to stop the FGM after k∗ = Θ

(
3

√
LR2

δ

)
iterations:

best SA reachable by the FGM ε∗ = Θ(δ2/3).
29



Case 2: Inexact oracle with fixed OA ε

We need to stop the FGM after k∗ = Θ

(
3

√
LR2

δ

)
iterations:

best SA reachable by the FGM ε∗ = Θ(δ2/3).

• If such accuracy is sufficient for the solution: FGM

• If not, the only possibility: GM.
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Case 3: Inexact oracle but the OA δ can be chosen

In order to have a SA of ε:

GM : O

(
LR2

ε

)
iterations but with δ = Θ(ε)

FGM : O

(√
L

ε
R

)
iterations but with δ = Θ(ε3/2)

Choice depends on the complexity of inexact oracle.
Let C (δ)= number of operations needed by the inexact oracle to
compute (fx ,δ, gx ,δ).

• If C (δ) = Ω
(

1
δ

)
(expensive inexact oracle), we have to use

GM.

• If C (δ) = o
(

1
δ

)
(cheap inexact oracle), we have to use FGM.
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Applications in Non-smooth Convex Optimization

Recall that when f is a non-smooth convex function with bounded
variation of the subgradients i.e:

‖g(x)− g(y)‖∗ ≤ M(f ) ∀g(x) ∈ ∂f (x), g(y) ∈ ∂f (y), ∀x , y ∈ Q

The non-smooth exact oracle can be seen as a inexact (δ, L)
smooth oracle:

fy ,δ = f (y) gy ,δ = g(y) ∈ ∂f (y)

where δ is arbitrary and L = M(f )2

2δ .
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Applications in Non-smooth Convex Optimization

These observations gives us the possibility to apply any FOM of
smooth convex-optimization to a non-smooth function:

1 We can apply GM with inexact oracle to the non-smooth
function f . With a optimal choice of δ:

Optimal rate of convergence Θ
(
M(f )R√

k

)
for the non-smooth

problem.

2 We can apply FGM with inexact oracle to the non-smooth
function f . With a optimal choice of δ:

Optimal rate of convergence Θ
(
M(f )R√

k

)
for the non-smooth

problem.
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Intrinsic accumulation of errors for fast FOM

The applicability of our definition of inexact oracle to non-smooth
function gives us also the possibility to prove that:

Accumulation of errors = Intrinsic and unavoidable property
of any fast FOM using inexact oracle.

If there exists FOM of smooth convex optimization with:

• optimal rate Θ
(
L(f )R2

k2

)
in the exact case

• without accumulation of errors in the inexact case

then we could solve the non-smooth problem minx∈Q f (x) with a

strictly better convergence rate than Θ
(
M(f )R√

k

)
.

Impossible!
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Intrinsic accumulation of errors for fast FOM

More generaly, we can prove the following result:
Theorem
Consider a FOM using a (δ, L)-oracle with convergence rate:

f (xk)− f ∗ ≤ C1LR
2

kp
+ C2k

qδ

then necessarily q ≥ p − 1.

In particular:

• q = 0⇒ p ≤ 1: GM is the fastest FOM without error
accumulation

• p = 2⇒ q ≥ 1: Any FOM with convergence rate 1
k2 must

suffer from error accumulation and FGM has the lowest
possible error accumulation for such a method: Θ(kδ).
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Conclusion

• Introduction of a new definition of inexact oracle:
(δ, L)-oracle.

• Important examples fit with this definition: computation at
shifted point, approximative resolution of subproblems for
saddle-point functions, function not as smooth as we want...

• GM is slow but robust with respect to oracle error. It is the
fastest FOM without error accumulation.

• FGM is faster but sensitive with respect to oracle error. Like
any FOM with optimal convergence rate, it suffers from
accumulation of errors.
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Further Research

• Using (δ, L)-oracle for saddle-point problems, find the exact
total complexity of Augmented Lagrangian approach. Better
to use GM or FGM ?

• Development of intermediate FOM between GM and FGM
(kind of interpolation) with intermediate accumulation of
errors

• Generalization of our results to non-smooth functions when
the non-smooth oracle is also inexact

• Study of random inexact oracle

• ...
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Thanks for your attention !
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